控制系统设计论文【优秀8篇】
控制系统设计论文 篇一
关键词 控制论 设计艺术学 最优值 可行性方法论
中图分类号:J50-4 文献标识码:A
1控制论的阐释
控制论是研究各类系统的调节和控制规律的科学。关于它的奠基性著作是由美国人诺伯特·维纳编著的。维纳把控制论定义为一门关于动物和机器中控制和通信的科学,即一门同时适用于生命现象与非生命现象的科学。
控制论中的“控制”具体来说,是控制动态系统在变化的环境条件下如何保持平衡状态或稳定状态。在计算机高速发展的今天,控制的基础是信息,信息传递的目的是为了控制,而控制必须靠信息反馈来实现。信息反馈是控制论的一个极其重要的概念。通俗地说,在一个超稳定的系统内,施控系统把信息发送给被控系统,被控系统输出信息反馈给施控系统。施控系统对反馈回来的信息进行分析、加工、整理,并与自己想要达到的目的进行比较,继而调整控制信息,最后,再向被控系统输入经过加工、整理后的新的信息。如此反复,逐步缩小与目标的差距,最终达到预期的目的。
2设计艺术学研究的控制体系方法
设计艺术学研究中的控制工作,是一个复杂过程,它是众多研究系统中的一个子系统。但它的实质和控制论中的“控制”一样,也是信息传输和信息反馈。从控制工作的信息传输和反馈过程可见,设计艺术学研究中的控制工作与控制论中的“控制”在概念上有相似之处:
(1)传输和反馈的基本过程是相似的。无论是设计艺术学研究控制工作还是控制论中“控制”,它们都要先确定一个标准,其次要通过这个标准去衡量成效这个过程在信息反馈完成后去实现,再次,如果出现误差,则需要采取纠正措施,使误差保持在技术达到的最小值。
(2)设计艺术学研究控制系统实质上也是一个信息反馈系统。在一个超稳定系统内,通过信息反馈,揭示研究过程中的漏洞,促进控制系统进行不断的优化,以逐渐趋于更加完美的状态。
(3)设计艺术学研究控制系统和控制论中的控制系统一样,也是一个有组织的系统。它根据系统内的反馈的变化而进行相应的调整,不断克服系统的不肯定性,而使系统保持在某稳定状态。一般把趋近于目标的反馈称为负反馈,把偏离目标,打破原有稳定状态的反馈称为正反馈。
3控制论在设计艺术学研究中的应用
设计艺术学研究是一个稳定的系统,按照控制论方法,其内部结构可以分为六个主要的子系统:确立设计研究课题,模拟设计计划,调查、分析、草案,实验、拟定设计报告书,客户评价反馈,修改定稿。每个子系统对其它五个子系统都有反馈作用。
第一步,我们应该明确设计课题的研究主题,由于设计主题中包含着思想文化、美学特征、客户形象等许多的内容,涉及到众多的方面,需要将较为宽泛的文化、美学等因素转化为比较具体明确的可操作的设计问题。同时,作为一个设计招标项目,也必须要有一个清晰地定位和明确的方向。于是在查阅分析国内外相关设计文献之后,选中一个侧重点,从中选取最具代表性,富有艺术审美与文化价值的符号或元素,由此设计几个研究方向。
第二步,当有了具体的设计主题并明确了设计研究方向之后,就开始准备为达到设计目标而要做的必要的计划工作。在工作方法上,采用控制论的方法,确定了由设计总监把握研究方向,编辑提交方案,经集体讨论修改后再有设计总监确定方案,设计小组协调整体的设计工作,这样就确保了每一阶段都能够达到阶段性的设计目标。
第三步,在广泛的的调研后,发现一个合适的设计艺术形式语言,设计出多个方案草图,经设计小组讨论初评后,每个小组都有些方案被肯定,一些被淘汰。于是,设计方案被不断整合。反映出设计研究中采用控制论方法使变量得到最大优化。
第四步,就是初评入选后的论证阶段,需要从工艺、材质、审美和客户要求作最佳的调整,这一步还需要做设计模拟实验,这是一个系列的设计。在正式设计完成提交给客户前,需要有一份详细的设计报告书。
第五步,等待客户的反馈,结果反馈给设计者后,通过反馈通道使设计者明确目标差的大小,并根据现实情况对控制器发出调整的指令,也就是通过设计的方式对产品进行调整或改良,已达到客户满意的水平,这个过程可能会是一个反复的过程,使最终产品更贴近于目标,这种控制过程就是负反馈调节,前文中已经提到,负反馈调节并不是一次性就能够完成的,它是一个循环往复、不断减小目标差、直到实现目标的过程,所以产品系统的反馈控制过程也不是一次就能够完成的,也需要一个循环往复的过程。
第六步,客户满意后,改良后的产品推入市场。这六步是一个完整的从产品设计到完成的步骤,在科学技术飞速发展,市场竞争日益激烈,产品更新换代的今天,在设计艺术学研究中导入控制论思想,关系到设计的产品是否符合未来的发展,设计的产品投入市场时是否受到欢迎。
4结语
控制论在设计艺术学研究点就是在系统出现震荡或不稳定的时候,能够通过自身的调节机制进行调节,使系统重归于稳定。本文以控制论方法为基础,分析了其设计艺术学研究中的运用,明确了设计学研究方法论的重要作用,指出控制论是对设计艺术学研究有效的一种方法。在设计出现偏离目标或不稳定状况的时候,根据系统反馈信息调整设计或改变设计的方法,能够使设计品的发展更加靠近初始目标或重新归于稳定的状态。
参考文献
[1] 李立新。设计艺术学研究方法[M].南京:南京江苏美术出版社,2010.
控制系统设计论文 篇二
OPC作为微软公司的对象链接和嵌入技术应用于过程控制领域,为工业自动化软件面向对象的开发提供一项统一的标准,解决了应用软件与各种设备驱动程序之间的通信问题。它把硬件厂商和应用软件开发商分离开来,为基于Windows的应用程序和现场过程控制应用建立了桥梁,大大提高了双方的工作效率。应用程序与OPC服务器之间必须有OPC接口,OPC规范提供了两套标准接口:Custom标准接口和OLE自动化标准接口,通常在系统设计中采用OLE自动化标准接口。OLE自动化标准接口定义了以下3层接口,依次呈包含关系。OPCServer(服务器):OPC启动服务器,获得其他对象和服务的起始类,并用于返回OPCGroup类对象。OPCGroup(组):存储由若干OPCItem组成的Group信息,并返回OPCItem类对象。OPCItem(数据项):存储具体Item的定义、数据值、状态值等信息。3层接口的层次关系如图2所示。
2菇棚温度控制系统的设计
2.1菇棚的温度控制原理
宁夏南部山区杏鲍菇生产基地采用大棚式培养方式,作为对杏鲍菇生长起最重要影响的因素,温度显得尤为重要[8]。菇棚温度采用自动记录仪对温度进行检测,利用空调对菇棚温度进行调节。由于温度控制系统具有大时变、非线性、滞后性等特点,采用模糊控制非常合适[9-10]。本文对菇棚的温度进行了控制设计,最终采用模糊PID控制方案,达到对温度的实时控制,从而将出菇阶段的温度控制在14~17℃的范围之内。菇棚温度控制系统的原理如图3所示。图3中,虚线框内的部分在工业控制环境中大多由PLC等控制设备完成,而这些设备很难实现模糊PID的控制功能。因此,将虚线框部分在Simulink中实现,把在Simulink中创建的模糊PID控制器直接应用到现场设备中。菇棚实时温度控制系统原理图如图4所示。图4中,该系统以PCACCESS软件作为OPC服务器,用MATLAB/OPC工具箱中的OPCWrite模块和OPCRead模块与Simulink进行数据交换。传感变送装置检测温度后将电信号传送给S7-200PLC的模拟量输入模块EM231,经过A/D转换后得出温度值;PCACCESS软件从PLC中读取温度值,通过OPCRead模块传送给Simulink;在Simulink中与设定的温度值进行比较后,进行模糊PID计算,将结果通过OPCWrite模块传送给PCACCESS软件,经PCACCESS软件写入到PLC中,计算分析得出数字量,输出到模拟量输出模块EM232,经D/A转换为电信号送给温控装置(空调),实现对菇棚温度的模糊PID控制。
2.2模糊PID控制系统
2.2.1模糊PID控制器的设计菇棚的温度控制系统是一个复杂的非线性系统,很难建立精确的数学模型,而常规的PID控制则需建立被控对象的精确数学模型,对被控过程的适应性差,算法得不到满意的控制效果。单纯使用模糊控制时,控制精度不高、自适应能力有限,可能存在稳态误差,引起振荡[11-12]。因此,本文针对PID控制和模糊控制的各自特点,将两者结合起来,设计了模糊PID控制器,可以利用模糊控制规则对PID参数进行在线修改,从而实现对菇棚温度的实时控制,将出菇阶段的温度控制在14~17℃的范围之内。基于上述分析,将菇棚温度作为研究对象,E、EC作为模糊控制器的输入,其中E为设定温度值与实际温度值的差值。PID控制器的3个参数KP、KI、KD作为输出。设输入变量E、EC和输出变量的KP、KI、KD语言值的模糊子集均为{NB,NM,NS,ZO,PS,PM,PB}={负大,负中,负小,零,正小,正中,正大},误差E和误差变化率EC的论域为{-30,-20,-10,0,10,20,30},KP的论域为{-0.3,-0.2,-0.1,0,0.1,0.2,0.3},KI的论域为{-0.06,-0.04,-0.02,0,0.02,0.04,0.06},KD的论域为{-3,-2,-1,0,1,2,3}。为了论域的覆盖率和调整方便,均采用三角形隶属函数。根据对系统运行的分析和工程设计人员的技术知识和实际操作经验,得出KP、KI、KD的模糊控制规则表,如表1所示。利用Simulink工具箱,建立系统的模糊PID控制器的模型,如图5所示。2.2.2系统的仿真菇棚温度的传递函数采用G(s)=e-τsαs+k。其中,α为惯性环节时间常数,α=10.3s/℃;k=0.023;τ=10s,为纯滞后时间。设定菇棚温度值为15℃,常规PID控制器的仿真结果如图6所示,模糊PID控制器的仿真结果如图7所示。结果表明,菇棚温度控制系统采用模糊PID控制器具有超调小、抗干扰能力强等特点,能较好地满足系统的要求。
3Simulink与S7-200PLC数据交换的实现
PCACCESS软件是专用于S7-200PLC的OPC服务器软件,它向作为客户机的MATLAB/OPC客户端提供数据信息。在菇棚温度控制系统中,模糊PID控制器的输出值和反馈值就是Simulink与S7-200PLC进行交换的数据。实现数据交换的具体步骤如下:1)打开软件PCACCESSV1.0SP4,在“MicroWin(USB)”下,单击右键设置“PC/PG”接口,本文选用“PC/PPI(cable)”。然后,右键单击“MicroWin(USB)”进入“新PLC”,添加监控S7-200PLC,本文默认名称为“NewPLC”。右键单击所添加的新PLC的名称,进入“NewItem”添加变量,本文为输出值“wendu1”和反馈值“wendu2”,设置完成,如图8所示。PCACCESS软件自带OPC客户测试端,客户可以将创建的条目拖入测设中心进行测试,观察通信质量,如图9所示。测试后的通信质量为“好”。2)打开MATLAB,在工作空间输入命令“opctool”后,将弹出OPCTool工具箱的窗口,在该窗口的MAT-LABOPCClients对话框下单击右键,进入“AddClient”添加客户端,用户名默认“localhost”,ServerID选择“S7200.OPCServer”;与PCACCESS软件连接成功后,在“S7200.OPCServer”中添加组和项,把在PCACCESS软件中创建的两个变量“wendu1”和“wendu2”添加到项中,操作完成后结果如图10所示。3)新建Simulink文件,导入模糊PID控制器模型,调用OPCWrite模块、OPCRead模块和OPCConfigura-tion模块,设置OPCWrite模块和OPCRead模块的属性,把OPC工作组中的变量“wendu1”添加到OPCWrite模块中,把变量“wendu2”添加到OPCRead模块中,设置完成后两个模块与控制器相连,如图11所示。这样,基于Simulink和S7-200PLC的模糊PID实时温度控制系统的设计就完成了。
4结论
控制系统设计论文 篇三
机械系统设计的过程中需要从管理模型出发,按照机械设计管理成熟度模型的具体要求推进各项工作,保证机械制造企业能够符合生产经营管理的具体要求,按照机械模型标准化的要求推进系统设计,提高对系统的综合控制和管理能力,为机械系统优化控制创造良好的条件。机械系统设计的过程中需要从现成模型管理出发,保证模型化管理方案能够符合机械控制的总体要求,推进机械设计管理体系创新,为机械管理体系优化创造良好的平台。企业管理模式优化控制管理的过程中需要对模型控制的整体思路进行优化,确保整体思路能够符合管理效益提升的要求,实现机械系统的自动化控制,让机械系统设计更加符合机械系统管理的要求。机械设计过程中需要不断改变传统思维模式,让思维模式符合机械系统设计体系的具体要求,确保机械系统设计符合模型化控制的全面要求。机械设计模型化的提出对机械系统优化具有积极的作用,并且能够形成机械控制、机械管理、方案优化与一体,实现目标测算模型的全面控制和优化。
1.1机械设计业务模型探索
机械设计的过程中需要对机械控制功能进行全面的分析,只有把握住机械控制功能,才能对机械功能进行全面的分析,提高机械设计业务管理水平,为机械业务模型控制和优化创造良好的平台。在新的机械业务管理链条控制下,需要对信息流进行优化控制,才能提升机械设计的综合管理控制能力,为机械综合控制管理创造良好的内部条件和外部条件。机械设计的过程中业务模型优化需要从价值链角度出发,对模型化管理工具进行全面的分析,实现对管理工具的全面控制,提升对机械管理工具的综合管理能力。
1.2通过IT工具实现机械设计的模型优化
随着信息技术的发展,机械设计所利用的IT工具越来越多,因此要从云计算、互联网、大数据等角度出发,充分发挥机械工具的控制管理要求,保证新兴IT技术能够在机械设计中得到全面的应用。IT工具在业务需求控制管理的过程中需要进行流程化管理,确保权责控制能够符合机械化的具体要求,实现机械的流程化管理和控制,提高对机械控制管理的总体需求,在具体实施的过程中需要从价值创造和管理效率角度出发,实现机械设计的管理模型优化,为管理方案的探索和优化创造良好的条件,通过搜集整理和数据管理分析,保证机械设计能够符合管理决策控制的要求,实现机械系统的全面优化。机械设计中需要通过软件诊断和经验分析等手段,保证模型能够按照机电一体化控制的要求进行系统设计。机械设计咨询与机械设计软件和机械设计软件服务融合在一起的,需要按照一体化管理和控制的具体要求,积极推进机械系统的综合控制管理,从机械模型主脉出发,积极稳妥的推进机械系统优化控制。机械设计软件本身就是一种模型,因此管理模式存在固化现象,需要从全面预算管理的角度出发,解决机械设计中出现的问题,对机械系统进行全面的风险控制,保证机械系统设计符合模型化的具体要求。
2机械设计管理模型控制和优化
机械设计管理过程中需要从全面预算管理的角度出发,控制和优化机械设计的方案,提高机械模型的综合控制管理水平,对范式有效控制具有积极的作用,通过对机械业务的全面控制,才能对管理模型进行优化,提高对机械系统的综合管理水平。
2.1机械设计中多业务模型控制
机械设计过程中需要对不同的功能进行不同的分析,确保功能业务能够被全面的掌控,实现对机械设计的管理模型优化,让参数能够符合机械设计中多业务管理的要求,提升对多业务模型的综合控制管理水平。机械设计要和参数及控制点紧密结合在一起,实现对情景的有效匹配,为机械控制管理和模型优化创造良好的条件。机械系统多业务模型控制管理的过程中需要从风险控制角度出发,按照管理模型的综合管理要求,提升机械系统的优化管理要求。
2.2机械系统设计的质量模型控制优化
机械系统设计的过程中需要建立完善的质量管理和控制体系,通过对质量模型的优化和管理,实现对算法的全面管理,让机械系统设计能够符合质量标准要求,机械系统的质量控制与机械系统的效率是紧密结合在一起的,只有把机械系统的质量和系统的模型融合在一起,才能提升机械系统的综合控制管理水平,质量控制需要从机械元件出发,对每个元件进行机械模型优化,提高对机械模型的控制管理水平。机械系统模型设计与质量控制要从不同的方案出发,建立完善的质量控制管理体系,为模型管理创造良好的内部环境和外部环境。在机械设计平台中植入质量管理方案,可以实时对机械系统的质量进行监控,确保机械系统的质量管理能够符合质量控制的具体要求,实现对模型的全面分析和优化,对模型应用具有重要的作用。机械系统设计质量控制与机械系统模型管理是紧密结合在一起的,需要从不同的方案设计出发,提高机械系统的管理控制能力。
3机械系统设计模型控制和管理机制
机械系统设计模型控制要从模型管理的角度出发,加强管理机制建设,提高对机械系统的控制管理水平,为机械设计系统的综合管理创造良好的条件。
3.1机械系统设计模型控制
机械系统设计需要从机械控制角度出发,建立完善的机械模型,保证机械系统能够得到全面的运行。机械系统设计模式控制需要遵循一定的规范,全面提升机械系统的综合控制、管理功能。机械系统功能模块设计过程中要从技术创新出发,确保CAD解决方案能够符合功能设计的总体要求,从机械系统操作角度进行模型控制,按照机械资源管理器的控制理念,提升机械系统的资源控制和管理能力,为机械系统更好的管理文件创造良好的条件。机械系统要实现高质量的模型控制,必须要从资源管理角度出发,促进机械系统模型优化管理工作。机械系统设计要和零件设计、部件设计紧密结合在一起,形成工程模式管理,全面优化机械系统的综合功能,提高机械系统的优化控制和管理功能。机械系统模型设计过程中需要建立一套完整的动态管理界面,减少不必要的操作流程,提高机械系统设计的控制管理能力。机械模型设计中要从特征模块出发,建立完善的标准控制管理系统,通过特征模型设计,可以实现对其标准的优化和控制,实现零件系统的信息共享。机械系统设计控制模型优化要与调用标准紧密结合在一起,形成机械配置管理的模式,从部件设计、零件设计、工程图角度出发,确保机械系统设计能够符合机械控制管理的具体要求。机械系统设计中需要通过不同的参数组合和变换,提高机械系统的综合控制管理水平。
3.2机械设计模型管理机制设计
机械设计模型管理机制要从信息资源共享角度出发,建立完善的信息共享平台,提高机械设计的信息共享能力,为其更好的实现机械控制创造良好的平台。机械设计模型管理中要利用先进的工具,通过互联网进行协同控制和管理,保证机械系统能够得到全面的优化,为机械系统的管理模式创新创造良好的条件。机械设计中信息管理机制建设需要从文件控制管理角度出发,通过实体模型优化控制,确保互联网信息能够协同工作,在机械部件设计中进行参数信息管理,使设计能够符合机械控制管理的具体要求。通过智能零件技术能够实现系统的自动重复设计,保证智能零件能够符合创新技术方案设计的具体要求。机械设计模型与管理模式要紧密结合在一起,确保管理模式能够符合机械设计平台设计的管理要求,从不同平台实现信息资源的共享。
4结语
控制系统设计论文 篇四
关键词:应用型;智能控制;教学改革
一、教学中的主要问题
由于具有内容丰富、概念较抽象、信息量大等特点,智能控制传统教材的课程体系存在如下问题:①教学内容不合理。多数智能控制教材的理论知识过多且内容过于深奥,公式推导过多且复杂难懂,教材内容的实用性不强。②教学方法单一。由于该课程内容抽象,理论知识点多,大多数教师把理论知识讲解放在首要位置,没有把理论和实际应用相联系, 讲授过程“满堂灌”,导致学生学习起来感觉晦涩难懂,慢慢就会失去兴趣。③教学资源少,无实验实践环节。大多数智能控制教材中没有实验方案和实验环节,多数高校也没有智能控制实验室和实验平台,无法进行智能控制课程实验。
二、教学改革方法及思路
1.对教学内容进行整合优化
智能控制课程主要特点有概念抽象、理论性强、信息涵盖范围大等,教材中实例少,教学有偏重理论的趋势,需要进行教学内容整合优化。通过整合优化,把教学内容分为“预备知识”“重点内容”“案例分析”“系统仿真设计”四个部分。
通过内容整合,可以突出课程重难点,使学生在少学时的情况下全面掌握知识体系,并把原理部分和应用实例相结合。以模糊逻辑推理中的多输入多规则推理方法(即削顶法)为例,在“预备知识”中讲解其推理原理和基本方法;在“重点内容”中,通过具体实例分析,加深对其理论方法的理解;在“案例分析”中研究如何采用单片机程序来掌握削顶法;在“系统仿真设计”中采用MATLAB模糊逻辑工具箱中的图形交互工具来掌握削顶法,这样通过不同侧面对同一个重点内容进行讲解,可以强化和加深学生的理解,使学生实现学习上质的飞跃。
2.增加实验仿真环节
采用MATLAB中的模糊逻辑工具箱的辅助设计功能,可以方便设计模糊控制系统。通过增加实验环节,设计使用图形交互工具构成模糊逻辑推理系统实验,使用模糊工具箱的命令行函数方式实现模糊逻辑推理系统实验,采用PID参数自整定方法构成控制系统实验,采用BP网络模式识别仿真实验等。实验内容新颖,覆盖面广泛,针对性强,并且以应用为主线,实验设计围绕着采用MATLAB模糊逻辑工具箱解决工程实际中的问题,体现了以应用型人才培养为导向的培养目的。
3.设置综合性、设计型实践环节
利用电气与电子工程学院已有的过程控制实验室设置智能控制系统综合性、设计型的实践环节。本过程控制实验室采用北京华晟经世信息技术有限公司基于ProfibusDP现场总线的A3000现场控制系统,包括智能仪表控制系统、ADAM4000-DDC控制系统、PCI采集卡控制系统,基于PLC S7-300的现场总线控制系统、HMI触摸屏监控与控制设备以及基于工业以太网技术的网络控制系统。
智能控制系统的设计按照如下步骤进行:设计任务分析查阅文献总体方案设计工作原理分析智能控制算法研究智能控制系统硬件设计智能控制系统软件设计MATLAB仿真及结果分析结论。设计型实践项目包括多容水箱液位模糊控制系统设计、多容水箱液位单神经元自适应PID控制系统设计、锅炉水温模糊控制系统设计等。通过设计型实践环节,使学生学会针对具体对象设计相应的智能控制系统,培养学生运用理论知识解决实际控制问题的能力。
三、结语
智能控制作为自动化、电气工程专业高年级学生的专业核心课,是一门具有综合性强、理论性较深的特点的交叉学科。通过整合优化教学内容、增加实验仿真环节和设置设计型实践环节等教学改革方法,能提高学生的兴趣,使学生较快掌握智能控制系统的精髓,并能用智能控制原理和方法分析、设计智能控制系统。从近几年的教学改革实践反馈效果来看,学生反映良好,达到了较好的教学效果。
参考文献:
控制系统设计论文 篇五
关键词:Delta算子系统;变结构控制;准滑动模态;趋近律;反正切函数
中图分类号: TP273
文献标志码:A
0 引言
在现代控制理论分析与综合中,连续系统的研究成果易于理论分析,离散系统的研究成果易于计算机仿真实现。Delta算子系统(Delta operator system)是连续系统和离散系统的统一描述形式[1],在高速信号处理[2]、视觉伺服系统[3]等方面具有广阔的应用前景。Delta算子的采样易于观察和分析,具有良好的数字特性。利用传统的前向移位算子采样的高速系统,当采样周期趋近于零时,采样系统并不完全趋近于相应的连续系统,采样系统的极点趋近于稳定域的边界上,易产生不稳定的状态[4]。近年来,Delta算子系统的理论发展迅速,已成为计算机控制系统分析与综合的重要方法。文献[5]给出了Delta算子离散化模糊系统的鲁棒H∞控制器设计;文献[6]采用线性矩阵不等式等方法给出了Delta算子系统的非脆弱H∞滤波器设计问题;文献[7]基于有界实引理理论,设计了带有多面体参数摄动的Delta算子系统参数依赖H∞控制器;文献[8]等基于凸优化理论,给出了具有范数有界的参数不确定Delta算子系统的保性能滤波器设计。
滑模变结构控制是一种先进的非线性控制策略,其准滑动模态易于实现,在满足一定的匹配条件下,对系统内部参数摄动和外部干扰具有完全鲁棒性[9]。趋近律方法是离散滑模变结构控制器设计的常用方法,主要思想是根据准滑动模态的到达条件,保证从任意初始状态出发的系统状态轨线在有限时间内到达切换面来确定趋近律形式,再利用趋近律方法实现滑模变结构控制器的设计[10]。文献[9]提出了工程上容易实现的离散指数趋近律,所设计的滑模变结构控制系统调节精度高、响应速度快,但在平衡状态产生一定程度的抖振,影响了系统的动态性能;文献[11]利用变速趋近律设计了比例—等速—变速的滑模变结构控制,有效地削弱了准滑动模态段内的抖振,但趋近运动段的时间较长;文献[12]基于Sigmoid函数改进了离散指数趋近律,较好地削弱了系统抖振;文献[13]设计了基于扰动动态补偿的理想趋近律,直接平滑地预测扰动;文献[14]利用线性矩阵不等式技术给出了Delta算子滑模变结构控制系统的切换面存在的充分条件,分析了Delta算子系统实现滑模变结构控制的到达条件,基于Delta算子离散指数趋近律设计了不确定Delta算子系统的滑模变结构控制器;文献[15]给出了Delta算子滑模变结构控制系统的状态观测器,具有良好的动态性能;文献[16]给出了不确定时滞Delta算子系统的鲁棒滑模变结构控制器设计。
本文讨论了含有内部参数摄动和外部干扰的Delta算子系统滑模变结构控制器的设计问题。基于反正切函数的趋近律方法设计的不确定Delta算子滑模变结构控制系统,在趋近运动段内,系统状态轨线迅速趋近切换带,在准滑动模态段内,系统状态轨线快速到达平衡状态,有效地削弱了系统抖振,保证了原点的稳定性和过程的平稳性。
将上述Delta算子系统对应的连续系统进行移位算子变换后,得到的离散滑模变结构控制系统的闭环极点趋近于单位圆周,处于临界稳定状态,引起了病态问题。而进行Delta算子离散化得到的滑模变结构控制系统的闭环极点仍趋近于连续系统的闭环极点,系统是渐近稳定的。采用Delta算子离散趋近律(10)设计的滑模变结构控制系统的原点稳定性好,系统平稳性强,保持快速趋近,抖振幅度较小。改变实例仿真中的不确定项的参数,系统在趋近运动段内存在一定的偏差,而在准滑动模态段内,系统的运动过程几乎一致。由此可见,基于Delta算子离散趋近律(10)的滑模变结构控制策略具有良好的仿真效果。
5 结语
本文基于反正切函数的Delta算子离散指数趋近律方法,给出了不确定Delta算子系统的滑模变结构控制器设计,克服了传统移位算子离散化方法在高速采样系统中容易引起病态的问题。另外,具有滞后情形的Delta算子系统是一个无穷维的动态系统,结构复杂,其滑模变结构控制策略有待于进一步分析研究。
参考文献:
[1]MIDDLETON R H, GOODWIN G C. Improved finite word length characteristics in digital control using delta operators [J]. IEEE Transactions on Automatic Control, 1986, 31(11): 1015-1021.
[2]张端金, 王忠勇, 吴捷。 系统控制和信号处理中的Delta算子方法[J]. 控制与决策, 2003, 18(4): 385-391.
[3]李惠光, 武波, 李国友,等。 Delta算子控制及其鲁棒控制理论基础[M]. 北京: 国防工业出版社, 2005.
[4]CHEN S, ISTEPANIAN R, WU J, et al. Comparative study on optimizing closedloop stability bounds of finiteprecision controller structures with shift and delta operators [J]. Systems & Control Letters, 2000, 40(3): 153-163.
[5]YANG H, SHI P, ZHANG J, et al. Robust H∞ control for a class of discrete time fuzzy systems via delta operator approach [J]. Information Sciences, 2012, 184(1): 230-245.
[6]GUO X G, YANG G H. Nonfragile H∞ filter design for delta operator formulated systems with circular region pole constraints: an LMI optimization approach [J]. Acta Automatica Sinica, 2009, 35(9): 1209-1215.
[7]姚郁, 张瑞。 Delta算子不确定系统扩展参数依赖H∞控制[J]. 控制与决策, 2009, 24(2): 293-296.
[8]胡刚, 任俊超, 谢湘生。 Delta算子不确定系统最优保性能控制[J]. 电机与控制学报, 2003, 7(2): 139-142.
[9]GAO W B, WANG Y F, HOMAIFA A. Discretetime variable structure control systems [J]. IEEE Transactions on Industrial Electronics, 1995, 42(2): 117-122.
[10]刘云龙。 变结构控制策略及在广义系统和δ算子系统中设计研究[D]. 青岛: 中国海洋大学, 2012.
[11]姚琼荟, 宋立忠, 温洪。 离散变结构控制系统的比例-等速-变速控制[J]. 控制与决策, 2000, 15(3): 329-332.
[12]高存臣, 刘云龙, 李云艳。 不确定离散变结构控制系统的趋近律方法[J]. 控制理论与应用, 2009, 26(7): 781-785.
[13]刘云龙, 高存臣, 赵林,等。 离散变结构控制基于扰动动态补偿的理想趋近律[J]. 计算机应用, 2011, 31(7): 2011-2014.
[14]张彩虹, 刘云龙, 高存臣,等。 Delta算子不确定系统的滑模变结构控制[J]. 控制与决策, 2012, 27(2): 237-242.
控制系统设计论文 篇六
1国内外成功应用案例研究
1.1国内应用
(1)上海截至2011年底,上海中心城快速路路网里程数稳定在141.0km,基本采用高架形式。至2009年,上海浦西地区快速路88个入口匝道中有70多个实施了匝道控制,除了武宁路实施了匝道调节控制,其他都为匝道开关控制,其中部分入口预留了汇入控制功能。浦东中环8个匝道及A1的11个匝道实施匝道控制,其中17个入口匝道为开关控制,并预留远期汇入控制功能,1个入口匝道实施自适应汇入控制,1个出口匝道实施可变车道控制。近期,在杨高路上匝道,汇入南浦大桥的入口处,浦东张扬路上匝道与进入杨浦大桥的主线,设置了挑杆信号灯控制。上述匝道控制在关联道路上布设“固定文字+可变文字”可变信息标志,在匝道入口及高架路段上设置了交通流情报信息板,目前系统运行良好。上海市快速路出入口控制系统开关控制较多,有交通引导信息/交通监控设备,电子警察设备。2005年上海快速路匝道实施控制系统后,交通量和平均车速均有一定程度的提升,特别是在内环高架内圈武夷路入口匝道实施自适应汇入控制后,更是取得了很好的控制效果,充分体现了汇入控制的优越性。试验区域主线流量提高了1.1%~23.2%;主线平均车速提高了11.1%~84.6%,主线拥堵时间减小了22.8%~76.5%,缩短了主线车辆排队长度,改善了快速路主线的交通状态。上海快速路出入口控制系统改善了快速路主线的交通状态,同时,快速路控制系统的交通信息和诱导设施均衡了交通需求,提高了快速路系统和区域路网的服务水平。(2)北京北京快速路由二、三、四、五环和11条联络线组成,长达360km,承担着全市50%以上的交通流,快速路出入口密集,平均间距仅为318m,是世界上最复杂、控制难度最大的快速路。北京快速路与呼市类似,即为地面快速路,两侧设置地面辅路,快速路出入口加减速车道较短,从辅路汇入分流。针对这一结构和特点,北京市公安交管局自主研发了快速路出入通流特性分析、快速路多节点OD建模技术和给予主辅路占有率映射算法的交通控制策略,以及城市快速路交通控制技术。基于上述技术建成的快速路交通控制系统,利用设置在快速路主要出入口的信号灯,依据对快速路主辅路流量信息的检测实施占有率控制,智能控制快速路出入口的开启和关闭。北京的地面快速路+辅路形式使得其匝道控制与上海有很大的不同。出入口控制方式包括入口开关控制、入口汇入控制、出口辅路信号控制,配有交通监控系统。北京快速路出入口控制系统有效提高了北京快速路网的承载能力、交通管控能力和城市抗风险能力,快速路网日均时速提高6.92%。
1.2国外应用
(1)美国美国采用“stop-and-go”(停-走)交通信号,控制进入高速公路主线车辆的频率。华盛顿大多数的快速路出入口匝道调节允许每次绿灯通过1辆车,最多不超过3辆,调节率大概在4~15s之间,这样的间隔可以保障进口匝道的汇入交通受到一定的阻滞,减少高速汇入时容易产生的刮擦、碰撞等事故。美国亚特兰实行固定周期式匝道调节,但是如果排队检测器检测到预设的排队长度极限值,匝道调节的速度将会被提高,周期缩短,以尽快地减少排队。在美国快速路控制系统采用需求-容量控制策略较为广泛。需求-容量控制策略是以交通量为控制参量,通过调节进入快速路的交通量,使得进入快速路的交通量与上游交通量之和不超过匝道下游的通行能力,保证主路下游交通量维持在其通行能力之内,最大限度利用快速路。华盛顿实施匝道调节后,该地区高速公路全范围内事故发生率降低30%,在Renton的I405高速公路,匝道调节使得平均行程时间减少了3~16min,匝道调节是一种比较有效地缓解交通拥挤的控制手段。(2)欧洲欧洲的高快速路出入口匝道控制一般是车队放行,每次绿灯信号放行匝道车辆数不确定,但每次最多放行的车辆数有限制,一般不超过9辆,控制策略中的红灯时长和绿灯时长都是变化的。欧洲的快速路系统大部分采用ALINEA控制算法。ALINEA控制算法属于线性状态调节,由Papageorgiou在1991年提出。它通过调整匝道调节率使得其下游主线的占有率尽量维持在理想状态,是经典控制理论的应用,现在欧洲很多国家在该算法的基础之上进行了许多不同的改进,在实际应用中也得到了很好的效果。
1.3应用小结
通过国内外的快速路出入口控制系统,可以看到出入口匝道控制是比较常用的控制方法。它通过限制入口匝道汇入主线的车流量,达到减少主线交通拥堵的目的,通过控制出口汇出辅路的交通流,使主线的交通流可以更快地离开主线。快速路匝道控制主要采用在入口匝道处及出口匝道相连辅路上设置信号灯的方式,调节进出快速路的交通流,使匝道交通流进出有度、有序,避免快速路上形成交通瓶颈。为达到此目的,在进行匝道信号控制时应从城市快速路的交通特性、控制策略、配时方法及协调效果几方面加以考虑。在出入口控制算法方面,对于在美国得到广泛应用的需求-容量差额控制方法,还存在着一些不足。由于该方法仅仅检测交通量的值,所以不能够判断快速路主线是拥挤还是自由流的状态,并且算法采用开环控制,不能把控制后的微小变化再反馈给系统进行优化,因此,往往无法达到理想的控制效果。欧洲采用的ALINEA算法研究表明,即使算法中的值在很大范围内变动,系统也能保持一个良好的性能,说明ALINEA算法的稳健性较好。此外,ALINEA算法的可移植性强,如果外部交通条件变化,只需要调整目标占有率的值,而且控制算法简单,易于实现。目前它成为实际应用中非常成功的一种单点动态控制方法,在实际中还有许多的应用对该方法进行了改进。
总之,快速路出入口控制方法的效果取决于多种因素,交通特性、道路条件、匝道分布等多种因素都会影响到控制算法的适用性。即使是同样的控制算法,其控制参数的取值往往也会在很大程度上影响控制的效果。从本质上讲,入口匝道控制是对主线交通与入口匝道交通进行调节,方案的可行性与当地道路交通条件紧密相关。呼市快速路系统和国内外其他城市的快速路相比,有自身的特点和情况,主要表现为:(1)以主辅路布置形式为主,部分路段采用高架、地下隧道、半地下路堑形式;(2)快速路网少,承载的交通流量大,主线交通流量、匝道需求将常处于饱和运行状态;(3)匝道布置间距较小,主辅路之间的合流、分流成为影响主线运行状况的一个重要因素;(4)周边路网发达,匝道车辆的可行替代路径较多。所以应该在总结国内外其他城市快速路出入口控制系统的前提下,结合呼市自身的实际情况,选择符合需求的快速路出入口的控制系统。
2快速路出入通管理控制系统设计
2.1系统目标
目前呼市快速路正在建设,出入口的现状道路基础条件、线形较好,存在着出入口控制系统实施可行性较好的地点。通过综合考虑各方面因素(科学性及实用性),应用比较成熟的技术,吸取北京上海经验,可以在呼市快速路出入口实现出入口控制,体现出入口控制的效果、优势。经过对呼市快速路网的布局和交通控制系统现状的深入分析,建立呼市快速路出入口控制系统,可实现以下目标:(1)保证主路基本畅通、辅路不至于产生严重的交通拥堵;(2)改善出入口匝道车辆的行驶秩序,确保车辆行驶安全;(3)对快速路及其关联区域进行协调控制,有效使用地面道路的容量;(4)保证大型活动、紧急事件等非常态的快速路骨架路网作用;(5)与其他系统协同,提高对道路交通的诱导能力和综合调控水平。
2.2系统功能需求
目前呼市二环线以内路网密度较大,但高峰时间交通拥堵严重,其中一个重要原因是呼市交通信息管理系统不完善,出行者无法及时查询或获取路况信息,导致交通需求分布失衡。因此,呼市快速路出入口管理与控制系统功能主要集中在几个方面:中心控制、出入口多级调控、出入口信号协调、快速路交通信息采集、快速路信息、系统关联、快速路信息查询。呼市快速路出入通管理控制系统可分为三个层次:策略层、管控层、执行层。三个层次相互协调,实现系统信息采集、多级调控、日常管理和系统关联的功能[3]。
2.3控制管理中心
管理控制中心分为硬件设备和软件设备两大部分。其中,硬件部分按功能分为数据库服务器、管理端设备、以太网传输网络设备和不间断电源(UPS)等几个部分;软件部分分为系统软件、数据库软件、数据处理软件、管理平台软件等[4]。快速路出入口控制中心局域网系统是系统集成和管理协调系统的基础平台,是一个分布式计算机平台,包括基础平台服务、分布式计算和对象服务、公共设施、共享领域服务以及应用,可以让不同的软件对象跨网络、跨操作系统进行互操作,满通信息的与查询、访问。
2.4系统控制方法和算法
根据以往研究,快速路控制系统匝道进出口的主要控制方法包括单点信号灯控制、单点开关控制、多匝道协调控制、快速路干线控制、区域控制、路由控制和不同控制方式的协调控制等[3]。目前呼市二环线快速路匝道相距较近,主线为双向六车道,沿线相交道路高峰时间交通流量大,拥堵严重。因此,针对呼市快速路交通瓶颈形成原因,快速路出、入口匝道控制主要采用在入口匝道处及出口匝道相连辅路上设置信号灯的方式,平峰时间采用单点控制,高峰时间采用整体协调控制方法,调节进出快速路的交通流,使匝道交通流进出有度、有序,避免快速路上形成交通瓶颈,并有效利用辅路容量。建议呼市快速路与常规道路信号控制综合考虑,形成快速路、区域信号控制协调控制系统,提高快速路的抗风险能力和消散阻塞的能力。进一步确保快速路系统的高速、高效、安全和舒适性。根据呼市快速路道路网设计和出入口布置形式,建议呼市快速路出入口控制算法可以结合采用改进型的ALINEA控制算法、需求-容量差额控制算法、占有率控制算法和定时控制算法。针对呼市快速路道路网不同的道路条件、交通状况,采用不同的快速路出入口控制算法,将几种控制算法相互结合,针对不同的适用条件和系统实际运行状况选择合适的快速路出入口控制算法策略[5]。
2.5出入口信号协调控制
由于快速路出入口的控制有很多的限制条件,对于不同的路段和车流量,出入口控制的效果也会有很大差异。其中对出入口控制影响最大的还是出入口是否有较多的道路空间资源可以储存出入口控制造成的排队。对于呼市部分快速路出入口间距较小的路段,将快速路出入口控制和快速路上下游交叉口控制结合起来,实行协调控制。快速路出入口协调控制从区域路网的角度上,将快速路和普通道路进行衔接和整合,制定协调控制的策略和方法,将快速路出入口和上下游交叉口控制作为一个整体控制系统,从整体路网的角度出发,制定统一的协调控制目标。从而更好地提高整个道路系统的运输效率[6]。
2.6诱导信息系统
用于快速路出入通信息,对交通流进行有效地引导分流。入口控制信息情报板能够接受匝道控制器的指令,在可变文字显示部分以不同颜色显示“匝道开放”、“匝道关闭”、“汇入调节”等匝道控制内容,以及“主线畅通”、“主线拥挤”、“主线堵塞”等交通状态信息[7]。目前呼市尚缺少交通诱导信息系统,导致交通高峰期间部分路段和区域非常拥挤,而有些道路上车流量很少,道路资源未得到有效利用。
3结语
控制系统设计论文 篇七
关键词:倒立摆;Backstepping;控制器
中图分类号: TM571文献标识码:A
1引言
倒立摆是控制理论、计算机控制等多个领域的结合,其系统作为一个具有绝对不稳定、高阶次、多变量、强耦合的典型的非线性系统,是检验控制理论和方法的理想模型,本文选择倒立摆系统作为研究对象具有重要的理论意义和应用价值。而对倒立摆系统的研究方法常见有线性理论控制方法[7],变结构控制和自适应控制方法[8],智能控制方法[9],鲁棒控制方法[10]及Backstepping方法[11]。本文主要利用Backstepping方法设计了直线型一级倒立摆系统控制器,相对于其他研究倒立摆系统的控制方法,Backstepp-
ing方法最大的优点是不必对系统进行线性
化,可以直接对系统进行递推性的控制器设计,保留了被控对象中有用的非线性项,使得控制设计更接近实际情况。
2直线型一级倒立摆数学模型建立
在忽略了空气阻力和各种摩擦之后,可将直线型一级倒立摆系统抽象成小车和匀质摆杆组成的系统,如图所示:
图1 一级倒立摆系统的力学示意图
将摆杆视为刚体,则一级倒立摆系统的参数为:小车质量 ,摆杆质量 ,摆杆重心到铰链的长度 ,重力加速度,小车位置,摆杆角度,作用在小车上的驱动力F 。当小车在水平方向运动时,若忽略摩擦力矩的非线性,对小车和摆杆进行水平和垂直方向受力分析 ,如图:
图2 小车和摆杆的受力分析图
其中N和P为小车和摆杆间的相互作用力水平和垂直方向上的分量。分析小车水平方向上的合力,由牛顿运动定律可得:
(1)
由摆杆水平方向的受力分析可得:
(2)
即: (3)
把式子(3)代入(1)式中,就得系统的第一个运动方程:
(4)
对摆杆垂直方向上的合力进行分析并由力矩平衡方程可得:
(5)(6)
合并这两个方程,约去P和N,得到第二个运动方程:(7)
为了后面设计的方便我们对得到的两个方程进行化简和处理可得直线型一级倒立摆系统的数学模型如下:
(8)
在这里可以将倒立摆系统(8)看作是由小车和摆两部分组成的具有两个子系统的组合系统。倒立摆的摆系统控制具有高度非线性,同时考虑到实际设备长度的约束,我们必须限制小车系统的位移。以前大部分研究工作都是通过对倒立摆数学模型中的非线性项进行近似或忽略,从而简化控制器的设计。我们采用基于Lyapunov能量反馈的方法对倒立摆进行起摆控制,这实际上是利用正反馈不断增大摆的能量。针对摆系统,采用Backstepping方法设计非线性控制器,但此时得到的控制器不能实现对小车位移的控制;因此我们结合线性控制理论的极点配置方法获得对小车位移和速度控制的部分控制器;两者结合则得到整个倒立摆系统的一个非线性稳摆控制器。
3控制器设计和闭环系统数值仿真
针对直线型一级倒立摆系统的控制器设计方法很多,包括状态反馈控制、LQR最优控制、模糊控制和PID控制等方法,同时各种方法的相互结合使用来设计倒立摆系统已经称为研究热点。
针对上面的直线型一级倒立摆系统(令),选取M=2.0kg, m=8.0kg,l=0.5m,g=9.8m/s^2。我们先考虑摆子系统的动态模型:
(9)
step1 令, 看作是系统:
(10)
的虚拟控制。 现在我们的控制目的就是设计虚拟反馈控制去镇定。为此, 构造Lyapunov函数, 则有。取,为可设计常数,并引入误差变量,则有:
(11)(12)
故若,则,即子系统被镇定,下面镇定。
step 2对应一个二阶系统:
(13)
此时真正的控制出现,这一步主要是镇Z2。
构造函数,则(14)
令
(15)
其中为设计常数,由(15)求得系统的控制输入:
(16)6)代入式(14)则,即,子系统(13)被镇定,所以,
进而,反推之后可得,
即可得系统(9)在控制(16) 作用下被镇定。
而把,
代入(17) 可得系统(9)的控制输入:
(17)
其中的为可设计常数,可以根据实际系统的具体要求进行设计,这一点也是Backstepping方法的特点和优点之一。当取,时相应的控制器:
(18)
我们先对上面得到的非线性系统(8)作近似线性化。考虑摆杆在平衡点()附近摆动微小,对非线性系统(8)进行局部线性化,即令做近似处理后,就得到倒立摆的线性状态方程:
(19)
式中,,输出,
,,
其中,
用Matlab中的place函数得到反馈矩阵:
(20)
截取部分为的系数,则可得(21)
两者结合可得:
(22)
该控制器可以控制摆杆保持平衡的同时,跟踪小车的位置。
数值仿真及结果分析
在一级倒立摆系统实验平台进行数值仿真,其程序如下:
function dxdt=denglixia(t,x)
a=20-3*cos(x(1))^2;b=3*cos(x(1));
c=294*sin(x(1))-1.5*x(2)^2*sin(2*x(1));
u1=a/b*(100*x(2)+150*x(1)+c/a);u2=-31.62*x(3)-20.95*x(4);
u=u1+u2;
d=-0.8299*u-0.083*x(4)-0.0227*x(2)^2*sin(x(1));
e=1-0.0227*2.6732*cos(x(1))^2;
A=(d+0.0227*cos(x(1))*26.154*sin(x(1)))/e;
B=26.154*sin(x(1))+2.6732*cos(x(1))*d;
C=B/e;
dxdt=[x(2);C;x(4);A]
[t,x]=ode45(@denglixia,[0 10],[-0.05 0.5 0.5 -0.15]);
plot(t,x(:,1));hold on;plot(t,x(:,3))
得出小车和摆杆的状态响应曲线如下图:
图3 小车和摆杆的状态响应曲线
从仿真结果来看,在给出的算法里面含有可调参数,只要合适的调节参数,就可以使得稳定时间大大缩短,其抗干扰能力;稳定时间快,因保留了系统的非线性项,控制效果好,稳态性能指标比较好。
5结论
采用Backstepping设计控制器,将设计好的控制器用于一级倒立摆实验台,只要调节参数选择合理,在没有给扰动时,系统在及短时间趋于稳定,如外加一扰动,系统也在很短的时间里达到新的平衡。
参考文献:
[1] Kanellakopoulos I, Kokotovic P V and Morse A S. Systematic design of adaptive controllers for feedback linearizable systems[J]. IEEE Transon AC, 1991, 36(11):1241~1253
[2] Miroslav K, Kanellakopoulos I and Kokotovic P V.Nonlinear and Adaptive ControlDesign[M].NewYork;A Wlley-
Interscience Publication,John Wiley and Sons,1995
[3]Miroslav K, Kokotovic P V. Control Lyapunov function for adaptive nonlinear stabilization[J].Systems & Control Letter,1995,26(2):17~23
[4] Kokotovic PV Arcak M.Constructivetrol nonlinear control: A historical perspective[J].
Automatica,2001,37(5):637~662
[5] Skjetne R, Fossen T I, Kokotovic P V. Robust output maneuvering for a class of nonlinear systems[J]. Automatica, 2004, 40(3):373~383
[6] 李文磊,张智焕等.基于自适应backstepping设计的TCSC的非线性鲁棒控制器[J].控制理论与应用,2005,22(1):153~156
[7] 谢克明.现代控制理论基础[M].北京:北京工业大学出版社,2003,497~500
[8] 项武,陈元春等.基于模糊神经网络的倒立摆控制系统[J].计算机应用与软件,2006,23(10):68~70
[9] 蔡增威,张晓华.一阶直线倒立摆运动控制技术的研究[J].哈尔滨工业大学硕士学位论文
控制系统设计论文 篇八
本系统高压发泡机以高性价比的台达DVP系列PLC和台达的DOP的人机界面为核心控制单元,有多组工作模式多组配方工艺参数选择,且可自主编辑工艺参数,流量注入精确稳定,压力流速可控可调,故障报警实时监控。实践证明,相比老式发泡机,PLC控制系统的设备性能稳定可靠,易于操作,工作效率大幅提高。发泡机控制系统充分利用了现代先进技术,提高了劳动生产率,改善了劳动条件,减轻了工人的劳动强度,保持稳定的发泡倍数,克服了人为的不稳定因数,具有良好的应用前景。
发泡机是利用塑料颗粒作为发泡包装的原料,可以对精密仪器、电子类产品、工艺品、插花等多类怕震、怕压的产品进行现场的发泡包装。发泡机作为一种机电一体化产品,在现代工业生产的自动化控制中占有重要的地位。高压发泡机广泛用在各种行业,可用于汽车装饰、保温墙喷涂、保温管道制造、自行车和摩托车车座海绵的加工等等。
发泡机最早出现于国外,其原始机型是采用叶轮高速旋转制泡,故又名“打泡机”。后来随着技术的不断进步,发泡机的技术含量不断提高,新的机型不断出现,形成了不同的技术体系。我国早在20世纪50年代就开始使用发泡机,但不是专用的发泡机型,而是采用砂浆搅拌机。即将发泡剂直接加入砂浆搅拌机或混凝土搅拌机,让发泡剂和砂浆或混凝土一起搅拌生成泡沫。20世纪70年代前后,开始出现专用的发泡剂,即高速叶轮发泡机。以后又不断技术升级和换代,如今已发展为以高压充气为主体的第三代机型,基本可满足泡沫混凝土的需要挤出技术的发展越来越具有如下特色:一方面要求挤出系统高效率,另方面又要求挤出系统具有灵活性、广泛适应性。应用广泛的高效挤出系统应兼颐这两个方面。其中发泡机控制系统将直接影响该产品的发泡倍数的稳定。发泡机控制系统的发泡倍数受原料添加重量和发泡好后粒子的总量决定,蒸汽压力和气压不直接影响发泡倍数。因此,为这类发泡机开发出一种可以保持稳定的发泡倍数的控制系统是一个有着较大实际意义的课题。
它山之石可以攻玉,以上就是众鼎号为大家整理的8篇《控制系统设计论文》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。