数据挖掘论文优秀10篇
在现实的学习、工作中,许多人都写过论文吧,通过论文写作可以培养我们独立思考和创新的能力。你知道论文怎样写才规范吗?众鼎号为朋友们精心整理了10篇《数据挖掘论文》,希望能够对困扰您的问题有一定的启迪作用。
数据挖掘论文 篇一
网络的发展带动了电子商务市场的繁华,大量的商品、信息在现有的网络平台上患上以交易,大大简化了传统的交易方式,节俭了时间,提高了效力,但电子市场繁华违后暗藏的问题,同样成为人们关注的焦点,凸起表现在海量信息的有效应用上,如何更为有效的管理应用潜伏信息,使他们的最大功效患上以施展,成为人们现在钻研的重点,数据发掘技术的发生,在必定程度上解决了这个问题,但它也存在着问题,需要不断改善。
数据发掘(Data Mining)就是从大量的、不完整的、有噪声的、隐约的、随机的原始数据中,提取隐含在其中的、人们事前不知道的、但又是潜伏有用的信息以及知识的进程。或者者说是从数据库中发现有用的知识(KDD),并进行数据分析、数据融会(Data Fusion)和决策支撑的进程。数据发掘是1门广义的交叉学科,它汇聚了不同领域的钻研者,特别是数据库、人工智能、数理统计、可视化、并行计算等方面的学者以及工程技术人员。
数据发掘技术在电子商务的利用
一 找到潜伏客户
在对于 Web 的客户走访信息的发掘中, 应用分类技术可以在Internet 上找到未来的潜伏客户。使用者可以先对于已经经存在的走访者依据其行动进行分类,并依此分析老客户的1些公共属性, 抉择他们分类的症结属性及互相间瓜葛。对于于1个新的走访者, 通过在Web 上的分类发现, 辨认出这个客户与已经经分类的老客户的1些公共的描写, 从而对于这个新客户进行正确的分类。然后从它的分类判断这个新客户是有益可图的客户群仍是无利可图的客户群,抉择是不是要把这个新客户作为潜伏的客户来对于待。客户的类型肯定后, 可以对于客户动态地展现 Web 页面, 页面的内容取决于客户与销售商提供的产品以及服务之间的关联。若为潜伏客户, 就能够向这个客户展现1些特殊的、个性化的页面内容。
二 实现客户驻留
在电子商务中, 传统客户与销售商之间的空间距离已经经不存在, 在 Internet 上, 每一1个销售商对于于客户来讲都是1样的, 那末使客户在自己的销售站点上驻留更长的时间, 对于销售商来讲则是1个挑战。为了使客户在自己的网站上驻留更长的时间, 就应当全面掌握客户的阅读行动, 知道客户的兴致及需求所在, 并依据需求动态地向客户做页面举荐, 调剂 Web 页面, 提供独有的1些商品信息以及广告, 以使客户满意, 从而延长客户在自己的网站上的驻留的时间。
三 改良站点的设计
数据发掘技术可提高站点的效力, Web 设计者再也不完整依托专家的定性指点来设计网站, 而是依据走访者的信息特征来修改以及设计网站结构以及外观。站点上页面内容的支配以及连接就如超级市场中物品的货架左右1样, 把拥有必定支撑度以及信任度的相干联的物品摆放在1起有助于销售。网站尽量做到让客户等闲地走访到想走访的页面, 给客户留下好的印象, 增添下次走访的机率。
四 进行市场预测
通过 Web 数据发掘, 企业可以分析顾客的将来行动, 容易评测市场投资回报率, 患上到可靠的市场反馈信息。不但大大降低公司的运营本钱, 而且便于经营决策的制订。
数据发掘在利用中面临的问题
一数据发掘分析变量的选择
数据发掘的基本问题就在于数据的数量以及维数,数据结构显的无比繁杂,数据分析变量即是在数据发掘中技术利用中发生的,选择适合的分析变量,将提高数据发掘的效力,尤其合用于电子商务中大量商品和用户信息的处理。
针对于这1问题,咱们完整可以用分类的法子,分析出不同信息的属性和呈现频率进而抽象出变量,运用到所选模型中,进行分析。
二数据抽取的法子的选择
数据抽取的目的是对于数据进行浓缩,给出它的紧凑描写,如乞降值、平均值、方差值、等统计值、或者者用直方图、饼状图等图形方式表示,更主要的是他从数据泛化的角度来讨论数据总结。数据泛化是1种把最原始、最基本的信息数据从低层次抽象到高层次上的进程。可采取多维数据分析法子以及面向属性的归纳法子。
在电子商务流动中,采取维数据分析法子进行数据抽取,他针对于的是电子商务流动中的客户数据仓库。在数据分析中时常要用到诸如乞降、共计、平均、最大、最小等汇集操作,这种操作的计算量尤其大,可把汇集操作结果预先计算并存储起来,以便用于决策支撑系统使用
三数据趋势的。预测
数据是海量的,那末数据中就会隐含必定的变化趋势,在电子商务中对于数据趋势的预测尤为首要,尤其是对于客户信息和商品信息公道的预测,有益于企业有效的决策,取得更多地利润。但如何对于这1趋势做出公道的预测,现在尚无统1标准可寻,而且在进行数据发掘进程中大量数据构成文本后格式的非标准化,也给数据的有效发掘带来了难题。
针对于这1问题的发生,咱们在电子商务中可以利用聚类分析的法子,把拥有类似阅读模式的用户集中起来,对于其进行详细的分析,从而提供更合适、更令用户满意的服务。聚类分析法子的优势在于便于用户在查看日志时对于商品及客户信息有全面及清晰的把握,便于开发以及执行未来的市场战略,包含自动给1个特定的顾客聚类发送销售邮件,为1个顾客聚类动态地扭转1个特殊的站点等,这不管对于客户以及销售商来讲都是成心义。
四数据模型的可靠性
数据模型包含概念数据模型、逻辑数据模型、物理模型。数据发掘的模型目前也有多种,包含采集模型、处理模型及其他模型,但不管哪一种模型都不是很成熟存在缺点,对于数据模型不同采取不同的方式利用。可能发生不同的结果,乃至差异很大,因而这就触及到数据可靠性的问题。数据的可靠性对于于电子商务来讲尤为首要作用。
针对于这1问题,咱们要保障数据在发掘进程中的可靠性,保证它的准确性与实时性,进而使其在最后的结果中的准确度到达最高,同时在利用模型进程中要尽可能全面的分析问题,防止片面,而且分析结果要由多人进行评价,从而最大限度的保证数据的可靠性。
五数据发掘触及到数据的私有性以及安全性
大量的数据存在着私有性与安全性的问题,尤其是电子商务中的各种信息,这就给数据发掘造成为了必定的阻碍,如何解决这1问题成了技术在利用中的症结。
为此相干人员在进行数据发掘进程中必定要遵照职业道德,保障信息的秘要性。
六数据发掘结果的不肯定性
数据发掘结果拥有不肯定性的特征,由于发掘的目的不同所以最后发掘的结果自然也会千差万别,以因而这就需要咱们与所要发掘的目的相结合,做出公道判断,患上出企业所需要的信息,便于企业的决策选择。进而到达提高企业经济效益,取得更多利润的目的。
数据发掘可以发现1些潜伏的用户,对于于电子商务来讲是1个不可或者缺的技术支撑,数据发掘的胜利请求使用者对于指望解决问题的领域有深入的了解,数据发掘技术在必定程度上解决了电子商务信息不能有效应用的问题,但它在运用进程中呈现的问题也亟待人们去解决。相信数据发掘技术的改良将推动电子商务的深刻发展。
参考文献:
[一]胡迎松,宁海霞。 1种新型的Web发掘数据采集模型[J]。计算机工程与科学,二00七
[二] 章寒雁,杨瑞珍。数据发掘技术在电子商务中的钻研与利用[J]。计算机与网络,二00七
[三]董德民。 面向电子商务的Web使用发掘及其利用钻研[J]。中国管理信息化,二00六
[四] 尹中强。电子商务中的 Web 数据发掘技术利用[J]。计算机与信息技术,二00七
数据挖掘论文 篇二
摘要:主要通过对数据挖掘技术的探讨,对职教多年累积的教学数据运用分类、决策树、关联规则等技术进行分析,从分析的结果中发现有价值的数据模式,科学合理地实现教学评估,让教学管理者能够从中发现教学活动中存在的主要问题以便及时改进,进而辅助管理者决策做好教学管理。
关键词:教学评估;数据挖掘;教学评估体系;层次分析法
1概述
近年来国家对中等职业教育的发展高度重视,在政策扶持与职教工作者的努力下,职业教育获得了蓬勃的发展。如何提高教学质量、培养合格的高技术人才成为职教工作者研究的课题。各种调查研究结果表明:加强师资队伍的建设,强化教师教学评估对教学质量的提高尤为重要。
所谓教学评估,就是运用系统科学的方法对教学活动或教育行为的价值、效果作出科学的判断过程。教学评估方式要灵活多样,要多途径、多方位、多形式的发挥评估的导学作用,以鼓励评估为主,充分发挥评估的激励功能,促进教学的健康发展。
在中等职业学校多年的教育教学工作中积累了大量的教务管理数据、教师档案数据等,怎样从庞杂大量的数据中挖掘出有效提高教学质量的关键因素是个难题。数据挖掘技术却可以从人工智能的角度很好地解决这一课题。通过数据挖掘技术,得到隐藏在教学数据背后的有用信息,在一定程度上为教学部门提供决策支持信息促使更好地开展教学工作,提高教学质量和教学管理水平,使之能在功能上更加清晰地认识教师教与学生学的关系及促进教育教学改革。
2数据挖掘技术
2.1数据挖掘的含义
数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘应该更正确地命名为“从数据中挖掘知识”。即数据挖掘是对巨大的数据集进行寻找和分析的计算机辅助处理过程,在这一过程中显现先前未曾发现的模式,然后从这些数据中发掘某些内涵信息,包括描述过去和预测未来趋势的信息。人工智能领域习惯称知识发现,而数据库领域习惯将其称为数据挖掘。
2.2数据挖掘的基本过程
数据挖掘过程包括对问题的理解和提出、数据收集、数据处理、数据变换、数据挖掘、模式评估、知识表示等过程,以上的过程不是一次完成的,其中某些步骤或者全过程可能要反复进行。对问题的理解和提出在开始数据挖掘之前,最基础的工作就是理解数据和实际的业务问题,在这个基础之上提出问题,对目标作出明确的定义。
2.3数据挖掘常用的算法
2.3.1分类分析方法:是通过分析训练集中的数据,为每个类别做出准确的描述或建立分析模型或挖掘出分类规则,以便以后利用这个分类规则对其它数据库中的记录进行分类的方法。2.3.2决策树算法:是一种常用于分类、预测模型的算法,它通过将大量数据有目的的分类,从而找到一些有价值的、潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。2.3.3聚类算法:聚类分析处理的数据对象的类是未知的。聚类分析就是将对象集合分组为由类似的对象组成的多个簇的过程。在同一个簇内的对象之间具有较高的相似度,而不同簇内的对象差别较大。2.3.4关联规则算法:侧重于确定数据中不同领域之间的关系,即寻找给定数据集中的有趣联系。提取描述数据库中数据项之间所存在的潜在关系的规则,找出满足给定支持度和置信度阈值的多个域之间的依赖关系。
在以上各种算法的研究中,比较有影响的是关联规则算法。
3教学评估体系
评价指标体系是教学评估的基础和依据,对评估起着导向作用,因此制定一个科学全面的评价指标体系就成为改革、完善评价的首要目标。评价指标应以指导教学实践为目的,通过评价使教师明确教学过程中应该肯定的和需要改进的地方;以及给出设计评价指标的导向问题。
3.1教学评估体系的构建方法
层次分析法(简称AHP法)是美国运筹学家T·L·Saaty教授在20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策的系统分析方法,其原理是把一个复杂问题分解、转化为定量分析的方法。它需要建立关于系统属性的各因素多级递阶结构,然后对每一层次上的因素逐一进行比较,得到判断矩阵,通过计算判断矩阵的特征值和特征向量,得到其关于上一层因素的相对权重,并可自上而下地用上一层次因素的相对权重加权求和,求出各层次因素关于系统整体属性(总目标层)的综合重要度。
3.2构建教学评估指标体系的作用
3.2.1构建的教学评估指标,作为挖掘库选择教学信息属性的依据。
3.2.2通过AHP方法,能筛选出用来评价教学质量的相关重要属性,从而入选为挖掘库字段,这样就减去了挖掘库中对于挖掘目标来说影响较小的属性,进而大大减少了挖掘的工作量,提高挖掘效率。3.2.3通过构建教学评估指标,减少了挖掘对象的字段,从而避免因挖掘字段过多,导致建立的决策树过大,出现过度拟合挖掘对象,进而造成挖掘规则不具有很好的评价效果的现象。3.2.4提高教学质量评估实施工作的效率。
4数据挖掘在教学评估中的应用
4.1学习效果评价学习评价是教育工作者的重要职责之一。评价学生的学习情况,既对学生起到信息反馈和激发学习动机的作用,又是检查课程计划、教学程序以至教学目的的手段,也是考查学生个别差异、便于因材施教的途径。评价要遵循“评价内容要全面、评价方式要多元化、评价次数要多次化,注重自评与互评的有机结合”的原则。利用数据挖掘工具,对教师业务档案数据库、行为记录数据库、奖励处罚数据库等进行分析处理,可以即时得到教师教学的评价结果,对教学过程出现的问题进行及时指正。
另外,这种系统还能够克服教师主观评价的不公正、不客观的弱点,减轻教师的工作量。
4.2课堂教学评价
课堂教学评价不仅对教学起着调节、控制、指导和推动作用,而且有很强的导向性,是学校教学管理的重要组成部分,是评价教学工作成绩的主要手段。实现对任课教师及教学组织工作效果做出评价,但是更重要的目的是总结优秀的教学经验,为教学质量的稳定提高制定科学的规范。学校每学期都要搞课堂教学评价调查,积累了大量的数据。利用数据挖掘技术,从教学评价数据中进行数据挖掘,将关联规则应用于教师教学评估系统中,探讨教学效果的好坏与老师的年龄、职称、学历之间的联系;确定教师的教学内容的范围和深度是否合适,选择的教学媒体是否适合所选的教学内容和教学对象;讲解的时间是否恰到好处;教学策略是否得当等。从而可以及时地将挖掘出的规则信息反馈给教师。管理部门据此能合理配置班级的上课教师,使学生能够较好地保持良好的学习态度,从而为教学部门提供了决策支持信息,促使教学工作更好地开展。
结束语
数据挖掘作为一种工具,其技术日趋成熟,在许多领域取得了广泛的应用。在教育领域里,随着数据的不断累积,把数据挖掘技术应用到教学评价系统中,让领导者能够从中发现教师教学活动中的主要问题,以便及时改进,进而辅助领导决策做好学校管理,提高学校管理能力和水平,同时通过建立有效的教学激励机制来达到提高教学质量的目的。这一研究对发展中的职业教育教学管理提出了很好的建议,为教学管理工作的计算机辅助决策增添了新的内容。将数据挖掘技术应用于中职教学评估,设计开发一套行之有效的课堂教学评价系统,是下一步要做的工作,必将有力推动职业教育的快速发展。
数据挖掘论文 篇三
1数据挖掘技术和过程
1.1数据挖掘技术概述
发现的是用户感兴趣的知识;发现的知识应当能够被接受、理解和运用。也就是发现全部相对的知识,是具有特定前提与条件,面向既定领域的,同时还容易被用户接受。数据挖掘属于一种新型的商业信息处理技术,其特点为抽取、转化、分析商业数据库中的大规模业务数据,从中获得有价值的商业数据。简单来说,其实数据挖掘是一种对数据进行深入分析的方法。因此,可以描述数据挖掘为:根据企业设定的工作目标,探索与分析企业大量数据,充分揭示隐藏的、未知的规律性,并且将其转变为科学的方法。数据挖掘发现的最常见知识包括:
1.1.1广义知识体现相同事物共同性质的知识,是指类别特点的概括描述知识。按照数据的微观特点对其表征的、具有普遍性的、极高概念层次的知识积极发现,是对数据的高度精炼与抽象。发现广义知识的方法与技术有很多,例如数据立方体和归约等。
1.1.2关联知识体现一个事件与其他事件之间形成的关联知识。假如两项或者更多项之间形成关联,则其中一项的属性数值就能够借助其他属性数值实行预测。
1.1.3分类知识体现相同事物共同特点的属性知识与不同事物之间差异特点知识。
1.2数据挖掘过程
1.2.1明确业务对象对业务问题清楚定义,了解数据挖掘的第一步是数据挖掘目的。挖掘结果是无法预测的,但是研究的问题是可预见的,仅为了数据挖掘而数据挖掘一般会体现出盲目性,通常也不会获得成功。基于用户特征的电子商务数据挖掘研究刘芬(惠州商贸旅游高级职业技术学校,广东惠州516025)摘要:随着互联网的出现,全球范围内电子商务正在迅速普及与发展,在这样的环境下,电子商务数据挖掘技术应运而生。电子商务数据挖掘技术是近几年来数据挖掘领域中的研究热点,基于用户特征的电子商务数据挖掘技术研究将会解决大量现实问题,为企业确定目标市场、完善决策、获得最大竞争优势,其应用前景广阔,促使电子商务企业更具有竞争力。主要分析了电子商务内容、数据挖掘技术和过程、用户细分理论,以及基于用户特征的电子商务数据挖掘。
1.2.2数据准备第一选择数据:是按照用户的挖掘目标,对全部业务内外部数据信息积极搜索,从数据源中获取和挖掘有关数据。第二预处理数据:加工选取的数据,具体对数据的完整性和一致性积极检查,并且处理数据中的噪音,找出计算机丢失的数据,清除重复记录,转化数据类型等。假如数据仓库是数据挖掘的对象,则在产生数据库过程中已经形成了数据预处理。
1.2.3变换数据转换数据为一个分析模型。这一分析模型是相对于挖掘算法构建的。构建一个与挖掘算法适合的分析模型是数据挖掘获得成功的重点。可以利用投影数据库的相关操作对数据维度有效降低,进一步减少数据挖掘过程中数据量,提升挖掘算法效率。
1.2.4挖掘数据挖掘获得的经济转化的数据。除了对选择科学挖掘算法积极完善之外,其余全部工作都自行完成。整体挖掘过程都是相互的,也就是用户对某些挖掘参数能够积极控制。
1.2.5评价挖掘结果这个过程划分为两个步骤:表达结果和评价结果。第一表达结果:用户能够理解数据挖掘得到的模式,可以通过可视化数据促使用户对挖掘结果积极理解。第二评价结果:用户与机器对数据挖掘获得的模式有效评价,对冗余或者无关的模式及时删除。假如用户不满意挖掘模式,可以重新挑选数据和挖掘算法对挖掘过程科学执行,直到获得用户满意为止。
2用户细分理论
用户细分是指按照不同用户的属性划分用户集合。目前学术界和企业界一般接受的是基于用户价值的细分理论,其不仅包含了用户为企业贡献历史利润,还包含未来利润,也就是在未来用户为企业可能带来的利润总和。基于用户价值的细分理论选择客户当前价值与客户潜在价值两个因素评价用户。用户当前价值是指截止到目前用户对企业贡献的总体价值;用户潜在价值是指未来用户可能为企业创造的价值总和。每个因素还能够划分为两个高低档次,进一步产生一个二维的矩阵,把用户划分为4组,价值用户、次价值用户、潜在价值用户、低价值用户。企业在推广过程中根据不同用户应当形成对应的方法,投入不同的资源。很明显对于企]www.1126888.com[业来说价值用户最重要,被认为是企业的玉质用户;其次是次价值用户,被认为是金质用户,虽然数量有限,却为企业创造了绝大部分的利润;其他则是低价值用户,对企业来说价值最小,成为铅质用户,另外一类则是潜在价值用户。虽然这两类用户拥有较多的数量,但是为企业创造的价值有限,甚至很小。需要我们注意的是潜在价值用户利用再造用户关系,将来极有可能变成价值用户。从长期分析,潜在价值用户可以是企业的隐形财富,是企业获得利润的基础。将采用数据挖掘方法对这4类用户特点有效挖掘。
3电子商务数据挖掘分析
3.1设计问卷
研究的关键是电子商务用户特征的数据挖掘,具体包含了价值用户特征、次价值用户特征、潜在价值用户特征,对电子商务用户的认知度、用户的需求度分析。问卷内容包括3部分:其一是为被调查者介绍电子商务的概念与背景;其二是具体调查被调查对象的个人信息,包含了性别、年龄、学历、感情情况、职业、工作、生活地点、收入、上网购物经历;其三是问卷主要部分,是对用户对电子商务的了解、需求、使用情况的指标设计。
3.2调查方式
本次调查的问卷主体是电脑上网的人群,采用随机抽象的方式进行网上访问。一方面采用大众聊天工具,利用电子邮件和留言的方式发放问卷,另一方面在大众论坛上邀请其填写问卷。
3.3数据挖掘和结果
(1)选择数据挖掘的算法利用Clementine数据挖掘软件,采用C5.O算法挖掘预处理之后数据。
(2)用户数据分析
1)电子商务用户认知度分析按照调查问卷的问题“您知道电子商务吗?”得到对电子商务用户认知情况的统计,十分了解20.4%,了解30.1%,听过但不了解具体使用方法40.3%,从未听过8.9%。很多人仅听过电子商务,但是并不清楚具体的功能与应用方法,甚至有一小部分人没有听过电子商务。对调查问卷问题“您听过电子商务的渠道是什么?”,大部分用户是利用网了解电子商务的,占40.2%;仅有76人是利用纸质报刊杂志上知道电子商务的并且对其进行应用;这也表明相较于网络宣传纸质媒体推广电子商务的方法缺乏有效性。
2)电子商务用户需求用户希求具体是指使用产品服务人员对应用产品或服务形成的需求或者期望。按照问题“假如你曾经使用电子商务,你觉得其用途怎样,假如没有使用过,你觉得其对自己有用吗?”得到了认为需要和十分需要的数据,觉得电子商务有用的用户为40.7%,不清楚是否对自己有用的用户为56.7%,认为不需要的仅有2.4%。
3)电子商务用户应用意愿应用意愿是指消费者对某一产品服务进行应用或者购买的一种心理欲望。按照问题“假如可以满足你所关心的因素,未来你会继续应用电子商务吗?”获得的数据可知,在满足各种因素时,将来一年之内会应用电子商务的用户为78.2%,一定不会应用电子商务的用户为1.4%。表明用户形成了较为强烈的应用电子商务欲望,电子商务发展前景很好。基于用户特征的电子商务数据研究,电子商务企业通过这一结果能够更好地实行营销和推广,对潜在用户积极定位,提高用户体验,积极挖掘用户价值。分析为企业准确营销和推广企业提供了一个有效的借鉴。
4结语
互联网中数据是最宝贵的资源之一,大量数据中包含了很大的潜在价值,对这些数据深入挖掘对互联网商务、企业推广、传播信息发挥了巨大的作用。近些年来,数据挖掘技术获得了信息产业的极大重视,具体原因是出现了大量的数据,能够广泛应用,并且需要转化数据成为有价值的信息知识。通过基于用户特征的电子商务数据挖掘研究,促使电子商务获得巨大发展机会,发现潜在用户,促使电子商务企业精准营销。
数据挖掘论文 篇四
摘 要:数据挖掘技术在各行业都有广泛运用,是一种新兴信息技术。而在线考试系统中存在着很多的数据信息,数据挖掘技在在线考试系统有着重要的意义,和良好的应用前景,从而在众多技术中脱颖而出。本文从对数据挖掘技术的初步了解,简述数据挖掘技术在在线考试系统中成绩分析,以及配合成绩分析,完善教学。
关键词:数据挖掘技术;在线考试;成绩分析 ;完善教学
随着计算机网络技术的快速发展,计算机辅助教育的不断普及,在线考试是一种利用网络技术的重要辅助教育手段,其改革有着重要的意义。数据挖掘技术作为一种新兴的信息技术,其包括了人工智能、数据库、统计学等学科的内容,是一门综合性的技术。这种技术的主要特点是对数据库中大量的数据进行抽取、转换和分析,从中提取出能够对教师有作用的关键性数据。将其运用于在线考试系统中,能够很好的处理在线考试中涉及到的数据,让在线考试的实用性和高效性得到进一步的增强,帮助教师更加快速、完整的统计考试信息,完善教学。
1.初步了解数据挖掘技术
数据挖掘技术是从大量数据中"挖掘"出对使用者有用的知识,即从大量的、随机的、有噪声的、模糊的、不完全的实际应用数据中,"挖掘"出隐含在其中但人们事先却不知道的,而又是对人们潜在有用的信息与知识的整个过程。
目前主要的商业数据挖掘系统有SAS公司的Enterprise Miner,SPSS公司的Clementine,Sybas公司的Warehouse Studio,MinerSGI公司的Mineset,RuleQuest Research公司的See5,IBM公司的Intelligent,还有 CoverStory, Knowledge Discovery,Quest,EXPLORA, DBMiner,Workbench等。
2.数据挖掘在在线考试中的主要任务
2.1数据分类
数据挖掘技术通过对数据库中的数据进行分析,把数据按照相似性归纳成若干类别,然后做出分类,并能够为每一个类别都做出一个准确的描述,挖掘出分类的规则或建立一个分类模型。
2.2数据关联分析
数据库中的数据关联是一项非常重要,并可以发现的知识。数据关联就是两组或两组以上的数据之间有着某种规律性的联系。数据关联分析的作用就是找出数据库中隐藏的联系,从中得到一些对学校教学工作管理者有用的信息。就像是在购物中,就可以通过顾客的购买物品的联系,从中得到顾客的购买习惯。
2.3预测
预测是根据已经得到的数据,从而对未来的情况做出一个可能性的分析。数据挖掘技术能自动在大型的数据库中做出一个较为准确的分析。就像是在市场投资中,可以通过各种商品促销的数据来做出一个未来商品的促销走势。从而在投资中得到最大的回报。
3.数据挖掘的方法
数据挖掘技术融合了多个学科、多个领域的知识与技术,因此数据挖掘的方法也呈现出很多种类的形式。就目前的统计分析类的数据挖掘技术的角度来讲,光统计分析技术中所用到的数据挖掘模型就回归分析、逻辑回归分析、有线性分析、非线性分析、单变量分析、多变量分析、最近邻算法、最近序列分析、聚类分析和时间序列分析等多种方法。数据挖掘技术利用这些方法对那些异常形式的数据进行检查,然后通过各种数据模型和统计模型对这些数据来进行解释,并从这些数据中找出隐藏在其中的商业机会和市场规律。另外还有知识发现类数据挖掘技术,这种和统计分析类的数据挖掘技术完全不同,其中包括了支持向量机、人工神经元网络、遗传算法、决策树、粗糙集、关联顺序和规则发现等多种方法。
4.数据挖掘在考试成绩分析中的几点应用
4.1运用关联规则分析教师的年龄对学生考试成绩的影响
数据挖掘技术中的关联分析在教学分析中,是一种使用频繁,行之有效的方法,它能挖掘出大量数据中项集之间之间有意义的关联联系,帮助知道教师的教学过程。例如在如今的一些高职院校中,就往往会把学生的英语四六级过级率,计算机等级等,以这些为依据来评价教师的教学效果。将数据挖掘技术中的关联规则运用于考试的成绩分析当中,就能够挖掘出一些对学生过级率产生影响的因素,对教师的教学过程进行重要的指导,让教师的教学效率更高,作用更强。
还可以通过关联规则算法,先设定一个最小可信度和支持度,得到初步的关联规则,根据相关规则,分析出教师的组成结构和过级率的影响,从来进行教师队伍的结构调整,让教师队伍更加合理。
4.2采用分类算法探讨对考试成绩有影响的因素
数据挖掘技术中的分类算法就是对一组对象或一个事件进行归类,然后通过这些数据,可以进行分类模型的建立和未来的预测。分类算法可以进行考试中得到的数据进行分类,然后通过学生的一些基本情况进行探讨一些对考试成绩有影响的因素。分类算法可以用一下步骤实施:
4.2.1数据采集
这种方法首先要进行数据采集,需要这几方面的数据,学生基本信息(姓名、性别、学号、籍贯、所属院系、专业、班级等)、学生调查信息(比如学习前的知识掌握情况、学习兴趣、课堂学习效果、课后复习时间量等)、成绩(学生平常学习成绩,平常考试成绩,各种大型考试成绩等)、学生多次考试中出现的易错点(本次考试中出现的易错点,以往考试中出现的易错点)
4.2.2数据预处理
(1)数据集成。把数据采集过程中得到的多种信息,利用数据挖掘技术中的数据库技术生产相应的学生考试成绩分析基本数据库。(2)数据清理。在学生成绩分析数据库中,肯定会出现一些情况缺失,对于这些空缺处,就需要使用数据清理技术来进行这些数据库中数据的填补遗漏。例如,可以采用忽略元组的方法来删除那些没有参加考试的学生考试数据已经在学生填写的调查数据中村中的空缺项。(3)数据转换。数据转换主要功能是进行进行数据的离散化操作。在这个过程中可以根据实际需要进行分类,比如把考试成绩从0~59的分到较差的一类,将60到80分为中等类,81到100分为优秀等。(4)数据消减。数据消减的功能就是把所需挖掘的数据库,在消减的过程又不能影响到最终的数据挖掘结果。比如在分析学生的基本学习情况的影响因素情况中,学生信息表中中出现的字段很多,可以选择性的删除班别、籍贯等引述,形成一份新的学生基本成绩分析数据表。
4.2.3利用数据挖掘技术,得出结论
通过数据挖掘技术在在线考试中的应用,得出这些学生数据的相关分析,比如说学生考试中的易错点在什么地方,学生考试成绩的自身原因,学生考试成绩的环境原因,教师队伍的搭配情况等等,从中得出如何调整学校教学资源,教师的教学方案调整等等,从而完善学校对学生的教学。
5.结语
数据挖掘技术在社会各行各业中都有一定程度的使用,基于其在数据组织、分析能力、知识发现和信息深层次挖掘的能力,在使用中取得了显著的成效,但数据挖掘技术中还存在着一些问题,例如数据的挖掘算法、预处理、可视化问题、模式识别和解释等等。对于这些问题,学校教学管理工作者要清醒的认识,在在线考试系统中对数据挖掘信息做出合理的使用,让数字挖掘技术在在线考试系统中能够更加有效的发挥其长处,避免其在在线考试系统中的的缺陷。
参考文献:
[1]胡玉荣。基于粗糙集理论的数据挖掘技术在高校学生成绩分析中的作用[J]。荆门职业技术学院学报,20xx,12(22):12.
[2][加]韩家炜,堪博(Kam ber M.) 。数据挖掘:概念与技术(第2版)[M]范明,译。北京:机械工业出版社,20xx.
[3]王洁。《在线考试系统的设计与开发》[J]。山西师范大学学报,20xx(2)。
[4] 王长娥。数据挖掘技术在教育中的应用[J]。计算机与信息技术,20xx(11)
数据挖掘论文 篇五
在当前的学校管理中,教学和教务管理工作中积累了大量的数据信息。但是,由于这些教学中的数据没有得到很好地运用,在一定程度上使数据挖掘没有得到重视。数据挖掘,从本质上看,就是从大量和模糊以及不完全的数据中提取出潜在信息的过程。并且,随着计算机教学改革的不断推进,计算机教学系统更加注重计算机网络无纸化考试,有效地改变传统教学评价手段。
1关联规则的数据挖掘分析方法在计算机教学中的作用
数据挖掘作为一种全新的计算机运用技术,在各个应用领域都发挥巨大的潜力。通常情况下,数据挖掘分析方法主要是有关联规则分析、序列模式分析以及分类分析等方法。笔者经过一些分析方法的对比,在系统开发过程中,选择关联规则算法进行相应的探讨。为了能够进一步说明关联规则的数据挖掘方法,同时有效地结合实践过程,通过对以下两个案例进行深入分析,希望能更好地了解数据挖掘方法的运用。例如,在“男同学-高分”的关联规则中,这种表示方法是在考试过程中,男同学和女同学相比得高分的几率更高,在一个具有一万条记录的事物数据库中,只有将近300条记录包括得到高分的男同学,说明这种关联支持度为3%,这个支持度相对来说较高。但是,也不能因此来做出这个关联的意义,若通过科学的统计发现其中有6000条的记录包含男同学,使可以计算出男同学的置信度为300/6000=5%,从此方面来看,这个关联规则的置信度并不是很高,同时也就不能做出这种关联的实际意义。但是,如果是此记录中只有600个是“男同学”,这样就可以知道有将近50%的人得到高分,值得关注。又如,可以针对不同类别教师所教学生的成绩进行统计。根据图中数据显示,可以假设,甲类教师-学生高分,设置为X-Y,可以知道,其支持度为50/310=16.13%,其置信度则为50/105=47.2%。因此,可以通过这种方法,以此来推导出其他的关联支持度以及置信度。
2教师因素对挖掘计算机学生成绩数据的促进作用
当前,我国计算机教学考试主要采用无纸化考试,其阅卷工作可以在计算机上自动完成,其成绩也可以由省教育厅逐一下发,通过这样的方式,可以更好地开展数据挖掘工作。例如,可以利用关联规则法研究学生A科成绩和B科成绩的关联:①在对可信度的运行过程中,学生在A科成绩为优秀时,B科也为优秀的概率;②在对支持度的运行过程中,可以描述学生A和B科目的成绩为优秀的概率;③在对期望可信度的运用过程中,可以在没有任何约束的情况下,加强对学生A和B科目成绩为优秀的概率分析;④在作用度的分析上,作为一种可信度和期望可信度的比值,当学生在A类成绩为优秀时,可以对B科目的优秀影响进行深入分析。从以上的分析中可以看出,可信度能够衡量关联规则的准确度,而且在关联规则中,支持度是当前关联规则中最为重要的衡量标准。
3关联规则推导技术的有效运用
数据挖掘所得出的关联规则只是作为数据库中的数据之间相关性的描述,同时也可以作为一种分析工具,通过历史数据来预测各种未来的行为。但是,数据挖掘所得出的结果只是作为一种概率,由于不同探究问题的类型和规模有所不同,只有灵活地运用数据挖掘技术才能进行补充。在划分方法上,可以将数据库中分成几个互不相干的模块,并且可以单独考虑到每个分块生成的所有的频集,之后可以通过所产生的频集合并生成所有可能的频集,计算出这些项集的支持度。可以针对分块规模的大小来选择被放入的主存,而且在每个阶段只需要被扫描一次,有效降低挖掘时间,提高挖掘效率。
4结语
从本质上看,数据挖掘作为一种全新的数据分析技术,在关联规则中不仅在检验评价数据可靠性方面发挥着非常重要的作用,而且更能够有效地帮助其进行科学预测。为了能够更好达到相应的计算机教学评价效果,就必须不断加强对教学评价调查,逐步积累大量数据,充分利用数据挖掘技术,挖掘一些科学有效的信息,以此来为教学知识构建提供相应的服务。
数据挖掘论文 篇六
前言
近些年来,已经有越来越多的企业把通信、网络技术和计算机应用引入企业的日常管理工作和业务开发处理当中,企业的各类信息化程度也在不断提高。现代科技信息技术的广泛应用已经显著的提高了企业的工作效率和经济效益。但是,在使用信息技术给企业带来的方便、快捷的同时,也不断的出现了新的问题和需求。企业经过多年积累了大量的历史数据,这些数据对企业当前的日常经营活动几乎没有任何的使用价值,成了留之无用弃之可惜的累赘。而且储藏这些历史数据会对企业造成很大的困难和费用开销。为此数据挖掘技术应用在网络营销中势在必行,全面细致的分析数据库资源并从中提取有价值的信息来对商业决策进行支持,从而来控制运营成本、提高经济效益。本文将从网络营销中数据挖掘技术的几个应用进行探讨和分析。
客户关系管理
客户关系管理在网络营销,商业竞争是一家以客户为中心的竞技状态的客户,留住客户,扩大客户基础,建立密切的客户关系,客户需求分析和创造客户需求等,是非常关键的营销问题。客户关系管理,营销和信息技术领域是一个新概念,这在90年代初,软件产品在上世纪90年代后期出现的诞生。目前,在国内和国外的此类产品的研究和发展阶段。然而,继续与数据仓库和数据挖掘技术的进步和发展,客户关系管理,也是对实际应用阶段。CRM的目标是管理者与客户的互动,提升客户价值,提高客户满意度,提高客户的忠诚度,还发现,市场营销和销售渠道,然后寻找新客户,提高客户的利润贡献率的最终目的是为了推动社会和经济效益。客户关系管理的目的,应用是改善企业与客户的关系,它是企业和服务本质管理和协调,以满足客户的需求,企业政策支持这项工作,并联系客户服务加强管理,提高客户满意度和品牌忠诚度。
然而,数据挖掘可以应用到很多方面的CRM和不同阶段,包括以下内容:
(1)“一对一”营销的内部工作人员认识到,客户是在这个领域的企业,而不是贸易发展生存的关键。与每一个客户接触的过程,也是了解客户的进程,而且也让客户了解业务流程。
(2)企业与客户之间的销售应该是一种商业关系不断向前发展。客户和营销公司成立这种方式,而且有许多方法可以使这种与客户的关系,往往以改善包括:延长时间,客户关系和维护客户关系,以进一步加强相互交往过程中,公司可以在对方取得联系更多的利润。
(3)客户对客户盈利能力分析。我们的客户盈利能力是非常不同的,如果你不明白客户盈利能力,很难制定有效的营销策略,以获取最有价值的客户,或进一步提高客户的忠诚度的价值。数据挖掘技术可以用来预测客户在市场条件变化不同的盈利能力。它可以找到所有这些行为和使用模型来预测客户行为模式的客户交易盈利水平或新客户找到高利润。
(4)在所有部门维护客户关系的竞争日趋激烈,企业获得新客户的成本上升,因此,保持现有客户的关系变得越来越重要。对于企业客户可分为三大类:没有价值或者低价值的客户,不容易失去宝贵的客户,并不断寻找更多的优惠,更有价值的服务给客户。前两个类型的客户,客户关系管理,现代化,然而,最具潜力的市场活动,是第三个层次的用户,而且还特别需求和营销工具,以保护客户,可以减缓企业经营成本,而且还获得了宝贵的客户。数据挖掘还可以发现,由于客户流失,该公司能够满足这些客户的需要,采取适当措施,保持销售。
(5)客户访问企业业务系统资源,包括能够获得新客户的关键指标。为了提供这些新的资源,包括企业搜索客户谁不知道该产品的客户,可能是竞争对手,服务客户。这些细分客户,潜在客户可以帮助企业完成检查。
企业经营定位
通过挖掘客户的有关数据,可以对客户进行分类,找出其相同点和不同点,以便为客户提供个性化的产品和服务,使企业和客户之间能够通过网络进行有效的沟通和信息交流。例如,关联分析,客户在购买某种商品时,有可能会连带着购买其他的相关产品,这样购买的某种商品和连带购买的其他相关产品之间就存在着某种关联,企业可以针对这种关联进行分析,分析出规律,已制定有效的营销策略来长效的起到吸引客户连带消费,购买其他产品的营销策略。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
客户群体的划分也会用到数据挖掘,没有基于数据挖掘的客户划分,就没有真正的差异化、个性化营销,就没有现代营销的根本。做为企业的领导者,不管你的企业是卖产品的还是卖服务,第一个应该准确把握的商业问题就是你的目标客户群体,他们是谁,有什么特点和行为模式,有那些独特的喜好可以作为营销的突破口,有多大的多长久的赢利价值。这些问题是你整个商业运做的核心和基础,不了解你的客户,下面的路就根本别指望能走下去了。数据挖掘营销应用中的客户群体划分可以科学有效的解决这个问题,也能给企业找到一个合理的营销定位。
客户信用风险控制
数据挖掘技术在90年代开始应用于信用评估与风险分析中。企业在进行网络营销的过程中会受到各种各样的来自买方的信用风险的威胁,随着市场竞争的加剧,贸易信用已经成为企业成功开发客户和加强客户关系的重要条件。客户信用管理主要是搜集储存客户信息,因为客户既是企业最大的财富来源,也是风险的主要来源。为了让企业在这方面更少的受到威胁,可以利用数据挖掘技术发现企业经常面临的诈骗行为或延付货款行为,进而进行回避。同时尽可能把客户信用风险控制在交易发生之前是成功信用管理的根本。因此,充分获取客户的详细资料并做出安全的决策非常重要。
客户信用风险管理应用数据挖掘技术的优势:
(1)数据挖掘技术,自动总结相对简单的评估模型,数据挖掘应用程序的形式被广泛用于学习技术,它可以自动完成统计归纳和推理机实现的任务数量,系统用户无法理解模型详情及有关统计知识的情况下,它可以很容易地得出结论。这种评价模型在实际应用中降低了成本;
(2)数据挖掘技术更适合描述的财务指标和信贷上的信用评价模型指标为基础的传统方法,非线性特性的情况基本上是线性的基础上适当的方法和实际应用,企业信用状况和财务指标常表现出非线性特性,但在体重指标体系和分配方法来描述这些困难的非线性关系,实现了数据挖掘应用,其中不少是在非线性系统为基础,尤其描述了合适的非线性特性;
(3)数据挖掘技术也可以适应各种形式的数据,数据挖掘可以是连续的数据,离散数据,而其他形式的数据处理,以便在更大的灵活性,在选择指标时,更加符合客观实际的信用风险模型。
(4)数据挖掘技术是优于修正的噪音数据,对那些在特殊阶段或数据的完整性,市场条件可能不准确,有可能是虚假的数据。由数据挖掘的方法可以修改一些在一定程度上,从而提高了模型的准确性进行评估;
(5)数据挖掘在不完全信息的情况下也可以计算,计算信贷风险往往会遇到德国不完整的信息问题,一些指标只能在一个范围的估计。通过粗糙集数据挖掘或分类树方法,可以优化性能的范围,以获取该指标更准确的估计;
为现代信用风险管理方法有两个:第一是所谓的指数法,其基础是信用相关业务的某些特性来企业信用评估;第二类是所谓的结构化方法,根据历史数据和市场数据模拟在企业资产价值变化的动态持续的过程,然后确定其企业信用的位置。
在网络营销中进行数据挖掘的优势
网络营销作为适应网络经济时代的网络虚拟市场的新营销理论,是市场营销理念在新时期的发展和应用。它能够智能化地从大量的数据中提取出有用的信息和知识,为企业的管理人员提供决策支持。数据挖掘技术使数据库技术进入了一个更高级的阶段,它不仅能对过去的数据进行查询和遍历,并且能够找出过去数据之间的潜在联系,从而促进信息的传递。
1.维护原有客户,挖掘潜在新客户
网络营销中销售商可以通过客户的访问记录来挖掘出客户的潜在信息,跟据客户的兴趣与需求向客户有针对性的做个性化的推荐,制定出客户满意的产品服务。在做好维护原有老客户的基础上,通过对数据的挖掘,利用分类技术,也可以寻找出潜在的客户,通过对web日志的挖掘,可以对已经存在的访问者进行分类,根据这种精细的分类,还可以找到潜在的新客户。
2.制定营销策略,优化促销活动
对于保留的商品访问记录和销售记录进行挖掘,可以发现客户的访问规律,了解客户消费的生命周期,起伏规律,结合市场形势的变化,针对不同的商品和客户群制定不同的营销策略,保证促销活动针对客户群有的放矢,收到意想不到的效果。
3.降低运营成本,提高竞争力
网络营销的管理者可以通过数据挖掘发现市场反馈的可靠信息,预测客户未来的购买行为,有针对性的进行营销活动,还可以根据产品访问者的浏览习惯来觉定产品广告的位置,使广告有针对性的起到宣传的效果。从而提高广告的投资回报率,从而能降低运营成本,提高且的核心竞争力。
4.对客户进行个性化推荐
根据客户采矿活动对网络规则,有针对性的网络营销平台,提供“个性化”服务。个性化服务是在服务策略和服务内容的不同客户的不同,其本质是客户为中心的Web服务的需求。它通过收集和分析客户资料,以了解客户的利益和购买行为,然后采取主动,以达到建议的服务。
5.完善网络营销网站的设计
网站的建设者可以根据对客户交易行为的记录和反馈的情况对站点做出改进,站点的设计者可以根据这些信息进一步优化网站结构,站点导航等功能来提高站点的点击率,为客户提供更为方便的浏览方式。利用关联规则,
参考文献
1冯英健著,《网络营销基础与实践》,清华大学出版社,20xx年1月第1版
2 U.M.Fayyad. P.Smyt,and. G.Piatetsky-Shairo h,R.Uthurusamy.Advances in Knowledge discovery and data mining. AAAI/MIT Press,Menlo Park,CA.1996:
10刘书香,卢才武,张志霞。数据挖掘中的客户聚类分析及其算法实现信息技术20xx(1):5~8
数据挖掘论文的参考文献 篇七
[1]刘莹。基于数据挖掘的商品销售预测分析[J].科技通报。2014(07)
[2]姜晓娟,郭一娜。基于改进聚类的电信客户流失预测分析[J].太原理工大学学报。2014(04)
[3]李欣海。随机森林模型在分类与回归分析中的应用[J].应用昆虫学报。2013(04)
[4]朱志勇,徐长梅,刘志兵,胡晨刚。基于贝叶斯网络的客户流失分析研究[J].计算机工程与科学。2013(03)
[5]翟健宏,李伟,葛瑞海,杨茹。基于聚类与贝叶斯分类器的网络节点分组算法及评价模型[J].电信科学。2013(02)
[6]王曼,施念,花琳琳,杨永利。成组删除法和多重填补法对随机缺失的二分类变量资料处理效果的比较[J].郑州大学学报(医学版).2012(05)
[7]黄杰晟,曹永锋。挖掘类改进决策树[J].现代计算机(专业版).2010(01)
[8]李净,张范,张智江。数据挖掘技术与电信客户分析[J].信息通信技术。2009(05)
[9]武晓岩,李康。基因表达数据判别分析的随机森林方法[J].中国卫生统计。2006(06)
[10]张璐。论信息与企业竞争力[J].现代情报。2003(01)
[11]杨毅超。基于Web数据挖掘的作物商务平台分析与研究[D].湖南农业大学2008
[12]徐进华。基于灰色系统理论的数据挖掘及其模型研究[D].北京交通大学2009
[13]俞驰。基于网络数据挖掘的客户获取系统研究[D].西安电子科技大学2009
[14]冯军。数据挖掘在自动外呼系统中的应用[D].北京邮电大学2009
[15]于宝华。基于数据挖掘的高考数据分析[D].天津大学2009
[16]王仁彦。数据挖掘与网站运营管理[D].华东师范大学2010
[17]彭智军。数据挖掘的若干新方法及其在我国证券市场中应用[D].重庆大学2005
[18]涂继亮。基于数据挖掘的智能客户关系管理系统研究[D].哈尔滨理工大学2005
[19]贾治国。数据挖掘在高考填报志愿上的应用[D].内蒙古大学2005
[20]马飞。基于数据挖掘的航运市场预测系统设计及研究[D].大连海事大学2006
[21]周霞。基于云计算的太阳风大数据挖掘分类算法的研究[D].成都理工大学2014
[22]阮伟玲。面向生鲜农产品溯源的基层数据库建设[D].成都理工大学2015
[23]明慧。复合材料加工工艺数据库构建及数据集成[D].大连理工大学2014
[24]陈鹏程。齿轮数控加工工艺数据库开发与数据挖掘研究[D].合肥工业大学2014
[25]岳雪。基于海量数据挖掘关联测度工具的设计[D].西安财经学院2014
[26]丁翔飞。基于组合变量与重叠区域的SVM—RFE方法研究[D].大连理工大学2014
[27]刘士佳。基于MapReduce框架的频繁项集挖掘算法研究[D].哈尔滨理工大学2015
[28]张晓东。全序模块模式下范式分解问题研究[D].哈尔滨理工大学2015
[29]尚丹丹。基于虚拟机的Hadoop分布式聚类挖掘方法研究与应用[D].哈尔滨理工大学2015
[30]王化楠。一种新的混合遗传的基因聚类方法[D].大连理工大学2014
拓展阅读
什么是大数据?
“大数据”到底有多大?根据研究机构统计,仅在2011年,全球数据增量就达到了1.8ZB(即1.8万亿GB),相当于全世界每个人产生200GB以上的数据。这种增长趋势仍在加速,据保守预计,接下来几年中,数据将始终保持每年50%的增长速度。
纵观人类历史,每一次划时代的变革都是以新工具的出现和应用为标志的。蒸汽机把人们从农业时代带入了工业时代,计算机和互联网把人们从工业时代带入了信息时代,而如今大数据时代已经到来,它源自信息时代,又是信息时代全方位的深化应用与延伸。大数据时代的生产原材料是数据,生产工具则是大数据技术,是对信息时代所产生的海量数据的挖掘和分析,从而快速地获取有价值信息的技术和应用。
概括来讲,大数据有三个特征,可总结归纳为“3V”,即量(Volume)、类(Variety)、时(Velocity)。量,数据容量大,现在数据单位已经跃升至ZB级别。类,数据种类多,主要来自业务系统,例如社交网络、电子商务和物联网应用。时,处理速度快,时效性要求高,从传统的事务性数据到实时或准实时数据。
什么是数据挖掘?
数据挖掘,又称为知识发现(Knowledge Discovery),是通过分析每个数据,从大量数据中寻找其规律的技术。知识发现过程通常由数据准备、规律寻找和规律表示3个阶段组成。数据准备是从数据中心存储的数据中选取所需数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含规律找出来;规律表示则是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。
“数据海量、信息缺乏”是相当多企业在数据大集中之后面临的尴尬问题。目前,大多数事物型数据库仅实现了数据录入、查询和统计等较低层次的功能,无法发现数据中存在的有用信息,更无法进一步通过数据分析发现更高的价值。如果能够对这些数据进行分析,探寻其数据模式及特征,进而发现某个客户、群体或组织的兴趣和行为规律,专业人员就可以预测到未来可能发生的变化趋势。这样的数据挖掘过程,将极大拓展企业核心竞争力。例如,在网上购物时遇到的提示“浏览了该商品的人还浏览了如下商品”,就是在对大量的购买者“行为轨迹”数据进行记录和挖掘分析的基础上,捕捉总结购买者共性习惯行为,并针对性地利用每一次购买机会而推出的销售策略。
数据挖掘在供电企业的应用前景
随着社会的进步和信息通信技术的发展,信息系统在各行业、各领域快速拓展。这些系统采集、处理、积累的数据越来越多,数据量增速越来越快,以至用“海量、爆炸性增长”等词汇已无法形容数据的增长速度。
2011年5月,全球知名咨询公司麦肯锡全球研究院发布了一份题为《大数据:创新、竞争和生产力的。下一个新领域》的报告。报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于大数据的运用预示着新一波生产率增长和消费者盈余浪潮的到来。2012年3月29日,美国政府在白宫网站上发布了《大数据研究和发展倡议》,表示将投资2亿美元启动“大数据研究和发展计划”,增强从大数据中分析萃取信息的能力。
在电力行业,坚强智能电网的迅速发展使信息通信技术正以前所未有的广度、深度与电网生产、企业管理快速融合,信息通信系统已经成为智能电网的“中枢神经”,支撑新一代电网生产和管理发展。目前,国家电网公司已初步建成了国内领先、国际一流的信息集成平台。随着三地集中式数据中心的陆续投运,一级部署业务应用范围的拓展,结构化和非结构化数据中心的上线运行,电网业务数据从总量和种类上都已初具规模。随着后续智能电表的逐步普及,电网业务数据将从时效性层面进一步丰富和拓展。大数据的“量类时”特性,已在海量、实时的电网业务数据中进一步凸显,电力大数据分析迫在眉睫。
当前,电网业务数据大致分为三类:一是电力企业生产数据,如发电量、电压稳定性等方面的数据;二是电力企业运营数据,如交易电价、售电量、用电客户等方面的数据;三是电力企业管理数据,如ERP、一体化平台、协同办公等方面的数据。如能充分利用这些基于电网实际的数据,对其进行深入分析,便可以提供大量的高附加值服务。这些增值服务将有利于电网安全检测与控制(包括大灾难预警与处理、供电与电力调度决策支持和更准确的用电量预测),客户用电行为分析与客户细分,电力企业精细化运营管理等等,实现更科学的需求侧管理。
例如,在电力营销环节,针对“大营销”体系建设,以客户和市场为导向,省级集中的95598客户服务、计量检定配送业务属地化管理的营销管理体系和24小时面向客户的营销服务系统,可通过数据分析改善服务模式,提高营销能力和服务质量;以分析型数据为基础,优化现有营销组织模式,科学配置计量、收费和服务资源,构建营销稽查数据监控分析模型;建立各种针对营销的系统性算法模型库,发现数据中存在的隐藏关系, 为各级决策者提供多维的、直观的、全面的、深入的分析预测性数据, 进而主动把握市场动态,采取适当的营销策略,获得更大的企业效益,更好地服务于社会和经济发展。此外,还可以考虑在电力生产环节,利用数据挖掘技术,在线计算输送功率极限,并考虑电压等因素对功率极限的影响,从而合理设置系统输出功率,有效平衡系统的安全性和经济性。
公司具备非常好的从数据运维角度实现更大程度信息、知识发现的条件和基础,完全可以立足数据运维服务,创造数据增值价值,提供并衍生多种服务。以数据中心为纽带,新型数据运维的成果将有可能作为一种新的消费形态与交付方式,给客户带来全新的使用体验,打破传统业务系统间各自为阵的局面,进一步推动电网生产和企业管理,从数据运维角度对企业生产经营、管理以及坚强智能电网建设提供更有力、更长远、更深入的支撑。
数据挖掘专业就业方向
1.数据挖掘主要是做算法还是做应用?分别都要求什么?
这个问题太笼统,基本上算法和应用是两个人来做的,可能是数据挖掘职位。做算法的比较少,也比较高级。
其实所谓做算法大多数时候都不是设计新的算法(这个可以写论文了),更多的是技术选型,特征工程抽取,最多是实现一些已经有论文但是还没有开源模块的算法等,还是要求扎实的算法和数据结构功底,以及丰富的分布式计算的知识的,以及不错的英文阅读和写作能力。但即使是这样也是百里挑一的,很难找到。
绝大读书数据挖掘岗位都是做应用,数据清洗,用现成的库建模,如果你自己不往算法或者架构方面继续提升,和其他的开发岗位的性质基本没什么不同,只要会编程都是很容易入门的。
2.北上广以外的普通公司用的多吗?待遇如何?
实际情况不太清楚,由于数据挖掘和大数据这个概念太火了,肯定到处都有人招聘响应的岗位,但是二线城市可能仅仅是停留在概念上,很多实际的工作并没有接触到足够大的数据,都是生搬硬套框架(从我面试的人的工作经验上看即使是在北上广深这种情况也比较多见)。
只是在北上广深,可能接触到大数据的机会多一些。而且做数据挖掘现在热点的技术比如Python,Spark,Scala,R这些技术除了在一线城市之外基本上没有足够的市场(因为会的人太少了,二线城市的公司找不到掌握这些技术的人,不招也没人学)。
所以我推测二线城市最多的还是用JAVA+Hadoop,或者用JAVA写一些Spark程序。北上广深和二线城市程序员比待遇是欺负人,就不讨论了。
3.和前端后端程序员比有什么区别?有什么优缺点?
和传统的前后端程序员相比,最主要的去别就是对编程水平的要求。从我招聘的情况来看,做数据挖掘的人编程水平要求可以降低一个档次,甚至都不用掌握面向对象。
但是要求技术全面,编程、SQL,Linux,正则表达式,Hadoop,Spark,爬虫,机器学习模型等技术都要掌握一些。前后端可能是要求精深,数据挖掘更强调广博,有架构能力更好。
4.目前在学习机器学习,如果想找数据挖掘方面的工作应该学习哪些内容?
打基础是最重要的,学习一门数据挖掘常用的语言,比如Python,Scala,R;学习足够的Linux经验,能够通过awk,grep等Linux命令快速的处理文本文件。掌握SQL,MySQL或者PostgreSQL都是比较常用的关系型数据库,搞数据的别跟我说不会用数据库。
补充的一些技能,比如NoSQL的使用,Elasticsearch的使用,分词(jieba等模块的使用),算法的数据结构的知识。
5.hadoop,hive之类的需要学习吗?
我觉得应当学习,首先Hadoop和Hive很简单(如果你用AWS的话你可以开一台EMR,上面直接就有Hadoop和Hive,可以直接从使用学起)。
我觉得如果不折腾安装和部署,还有Linux和MySQL的经验,只要半天到一天就能熟悉Hadoop和Hive的使用(当然你得有Linux和MySQL的基础,如果没有就先老老实实的学Linux和MySQL,这两个都可以在自己的PC上安装,自己折腾)。
Spark对很多人来说才是需要学习的,如果你有JAVA经验大可以从JAVA入门。如果没有那么还是建议从Scala入门,但是实际上如果没有JAVA经验,Scala入门也会有一定难度,但是可以慢慢补。
所以总的来说Spark才足够难,以至于需要学习。
最后的最后我有一些建议。第一要对自己有一个系统的认知,自己的编程水平够么,SQL会用么,Linux会用么,能流畅的看英文文档么?
如果上面任何一个问题的答案是No,我都不建议直接转行或者申请高级的数据挖掘职位(因为你很难找到一个正经的数据挖掘岗位,顶多是一些打擦边球的岗位,无论是实际干的工作还是未来的成长可能对你的帮助都不大)。
无论你现在是学生还是已经再做一些前段后端、运维之类的工作你都有足够的时间补齐这些基础知识。
补齐了这些知识之后,第一件事就是了解大数据生态,Hadoop生态圈,Spark生态圈,机器学习,深度学习(后两者需要高等数学和线性代数基础,如果你的大学专业学这些不要混)。
数据挖掘论文 篇八
摘要:随着科学技术的不断发展,数据挖掘技术也应运而生。为了高效有序的医疗信息管理,需要加强数据挖掘技术在医疗信息管理中的实际应用,从而提升医院的管理水平,为医院的管理工作及资源的合理配置提供多样化发展的可能性。笔者将针对数据挖掘技术在医疗信息管理中的应用这一课题进行相应的探究,从而提出合理的改进建议。
关键词:挖掘技术;医疗信息管理;应用方式
数据挖掘作为一种数据信息再利用的有效技术,能够有效地为医院的管理决策提供重要信息。它以数据库、人工智能以及数理统计为主要技术支柱进行技术管理与决策。而在医疗信息管理过程之中应用数据挖掘技术能够较好地针对医疗卫生信息进行整理与归类来建立管理模型,形成有效的总结数据的同时能够为医疗工作的高效进行提供有价值的信息。所以笔者将以数据挖掘技术在医疗信息管理中的应用为着手点,从而针对其应用现状进行探究,以此提出加强数据挖掘技术在医疗信息管理中应用的具体措施,希望能够在理论层面上推动医疗信息管理工作的飞跃。
1在医疗信息管理中应用数据挖掘技术的基本内涵
数据挖掘是结合信息收集技术、人工智能处理技术以及分析检测技术等所形成的功能强大的技术。它能够实现对于数据的收集、问题的定义与处理,并且能够较好地对于结果进行解释与评估。在医疗信息管理工作进行的过程之中,应用数据挖掘技术可以较好地加强医疗信息数据模型的建立,同时以多种形式出现,例如文字信息、基本信号信息、图像收集等,也能够用来进行医疗信息的科普与宣传。并且,数据挖掘技术在医疗信息中所体现出的应用方式有所不同,在数据挖掘技术应用过程之中,既可以针对同一类的实物反应出共同性质的基本特征,同时也能够根据具有一定关联性的事物信息来探究差异。这些功能不仅仅能够在医疗信息的管理层面上给予医疗人员较大的信息管理指导,同时在实际的医疗诊断过程之中,也可以向医生提供患者的患病信息,并且辅助治疗的进行[1]。所以,在医疗信息管理中应用数据挖掘技术不仅仅能够推动医疗信息管理水平的提升,也是医院实现现代化、信息化建设的重要体现,需要从根本上明确医疗信息管理应用数据挖掘技术的必要性与基本内涵,从而针对医院的管理现状实现其管理方式与技术应用的转变与优化。
2在医疗信息管理过程之中加强数据挖掘技术应用的重要措施
2.1实现建模环节以及数据收集环节的优化
在应用数据挖掘技术的过程之中,必须基于数据库信息的基础之上,其数据挖掘技术才能够进行相应的规律探究与信息分析,所以需要在源头处加强数据收集环节以及建模环节的优化。以医院中医部门为例,在对于中医处方经验的挖掘方法使用过程之中,需要针对不同的药物进行关联性建模,比如数据库中有基础性药物,针对药物进行频数和次数的统计,然后以此类推,将所有药物都按照出现的频数进行降数排列,从而探究参考价值。建模环节以及数据收集环节是医疗信息管理过程的根本,所以需要做好对于建模环节以及数据收集环节的优化,才能够为数据挖掘技术的应用奠定相应的基础[2]。
2.2细化数据挖掘技术应用类别
想要在医疗信息管理过程之中,加强对于数据挖掘技术的有效应用,就需要从数据挖掘技术应用类别处进行着手,从而提升技术应用的针对性与有效性。常见的技术应用类别有:医院资源配置方面、病患区域管理方面、医疗卫生质量管理方面、医疗急诊管理方面、医院经济管理方面以及医疗卫生常见病宣传方面等,数据挖掘技术都可以在这些类别之中实现应用,但是在应用的过程之中也有所不同。以病房区域管理为例,在应用数据挖掘技术之前,首先需要明确不同的科室状况以及病房区域分配状况等,加强病患区域的指标分析,因为病房管理不仅仅影响到科室的工作效率与工作效果,同时也是医疗物资分配与人员编制的主要参考标准。其次利用数据挖掘技术能够较好地实现不同科室工作效率、质量管理质量以及经济收益等多种指标的评估,建立其科室的运营模型,从而实现科室的又好又快发展。比如使用数据挖掘技术建立其病区管理的标准模型以及统计指标,从而计算出科室动态的工作模型以及病床动态的周转次数等[3]。另外在医疗质量管理过程之中,数据挖掘技术提供的不仅仅是资料数据的参考以及疾病的诊断,也能够针对临床的治疗效果进行分析与评价,并且能够预测治疗状况:可以利用医院的医疗数据库,对于病人的基本患病信息进行分类,从而比对死亡率、治愈率等多个数据,实现治疗方案的制订。而在医疗质量管理过程之中也有很多的影响因素,例如基础医疗设备、病床周转次数、病种治愈记录等,所以也可以利用数据挖掘技术来进一步加强其多种数据之间的关联性,从而为提升医院的社会效益与经济效益提出合理的参考性建议。
2.3明确数据挖掘技术的应用方向
医院加强数据挖掘技术应用方向的探索上,可以从客户拓展这个角度出发实现对于医疗信息管理。例如通过数据挖掘技术多方进行患者信息比对,同时制订完善的医疗服务影响策略方式,加强对于客户行为的分析;在数据挖掘的基础之上,增强其技术应用的实用性,在分析的基础之上比对自身的竞争优势,实现医院资源的合理规划与合理配置,例如药品、资金以及疾病诊断等,从而实现经营状况的优化。目前医院也逐步向现代化、信息化方向发展,无论是信息管理还是医疗技术方面,医院都已经成为了一个信息化的综合行业体系,所以在加强数据挖掘应用的过程之中,还需要加强数据信息的管理,实现数据挖掘结果的维护,从而提升医院的决策能力,实现数据挖掘技术的高效应用。
3结语
医院在目前的医疗信息管理过程之中,还有很大的发展空间,需要综合利用数据挖掘技术,实现其信息管理水平的提升。通过明确数据挖掘技术的应用方向、应用类别以及建模数据环节的优化等,促进医院管理水平的提升,实现数据挖掘技术应用效果的提升。
参考文献:
[1]郑胜前。数据挖掘技术在社区医疗服务系统中的应用与研究[J].数字技术与应用,20xx(09):81-82.
[2]廖亮。数据挖掘技术在医疗信息管理中的应用[J].中国科技信息,20xx(11):54,56.
[3]牟勇。数据挖掘技术在医院信息化系统中应用[J].电子测试,20xx(11):23-24,22.
数据挖掘论文 篇九
随着互联网技术的迅速发展,尤其移动互联网的爆发性发展,越来越多的公司凭借其备受欢迎的系统和APP如雨后春笋般发展起来,如滴滴打车、共享单车等。海量数据自此不再是Google等大公司的专利,越来越多的中小型企业也可以拥有海量数据。如何从浩如烟海的数据中挖掘出令人感兴趣和有用的知识,成为越来越多的公司急需解决的问题。因此,他们对数据挖掘分析师求贤若渴。在这一社会需求下,培养出优秀的数据挖掘分析师,是各个高校目前急需完成的一项任务。
一、教学现状反思
目前,各大高等院校本科阶段争相开设数据挖掘课程。然而,该课程是一门相对较新的交叉学科,涵盖了概率统计、机器学习、数据库等学科的知识内容,难度较大。因此,大部分高校一般将此课程开设在研究生阶段,在本科生中开设此课程的学校相对较少。另外,不同的学校将其归入不同的专业中,如计算机专业、信息管理专业、统计学、医学等。可以说,这一课程基本上处于探索的过程中。我院灾害信息系于20xx年在信息管理与信息系统本科学生中首次开设了该课程。通过开设此课程,学生能够掌握数据挖掘的基本原理和各种挖掘算法等,掌握数据分析和处理、高级数据库编程等技能,达到数据聚类、分类、关联分析的目的。然而,通过前期教学过程,我们发现教学效果不理想,存在很多问题。
1、数据内驱力差
以往数据挖掘课程重点讲授数据挖掘算法,对数据源的获取和处理极少获取。目前各大教材都在使用一些公共数据资源,这些数据资源有些已经非常陈旧了,比如20世纪80年代的加州房价数据。这些数据脱离现实,分析这些数据,学生没有任何兴趣和学习动力,也就无法发现价值。
2、过于强调学习数据挖掘理论及算法的学习
大量具有难度的数据挖掘算法的学习,使学生丧失了学习兴趣,学完即忘,不知所用。
3、忽视对数据预处理过程的学习
以往所使用的公共数据源或软件自带数据源,数据量小,需要的预处理工作比较少;这部分内容基本只安排一次理论课、一次实验课。而实际通过爬虫获取的数据源数据量大;这部分工作量比较大,需要占到整个数据挖掘工作量的一半以上。因此,一次理论课和一次实验课是无法让学生掌握数据预处理技能的。
4、算法编程实现难度较大
要求学生学习一门新的编程语言,如R语言、Python语言,对本科非计算机专业的学生来说难度是非常大的,尤其是课时安排只有48课时。
5、数据挖掘分析及应用技能较差
学生能够理解课堂案例,但在实际应用中,无法完成整个数据分析流程。
二、数据挖掘课程改革
该课程的教学对象是信息管理与信息系统专业本科大四学生。因此,培养实际应用人才,使其完成整个实际数据挖掘分析流程是教师的教学目的。笔者对智联招聘、中华英才网、51job等几个大型招聘网站的几百个数据挖掘分析师相关职位进行分析,主要分析了相關职位的工作内容、职位要求以及需求企业。数据分析师主要利用数据挖掘工具对运营数据等多种数据源进行预处理、建模、挖掘、分析及优化。该职位是受业务驱动的,特点是将现有数据与业务相结合,最大程度地变现数据价值。该职位对计算机编程等相关技术不作要求,但是需要有深厚的数据挖掘理论基础,熟练使用主流的数据挖掘(或统计分析)工具。基于此,教师可以采取以下策略进行教学改革。
1、加强对业务数据的理解
数据挖掘分析师是受业务驱动的,所以要理解实际业务,明确本次数据挖掘要解决什么问题。教师可以构建案例库,包括教师案例库、学生讨论案例库。教师案例库由教师构建,可用于课堂讲授。学生案例库由学生分组构建,并安排讨论课,由学生讲述、讨论并提交报告。
2、加强对数据的获取
对学生感兴趣的数据源进行挖掘,这样才能更好地帮助学生理解吸收知识。因此,可以教授学生爬虫技术,编写爬虫程序,使其自主获取感兴趣的数据。
3、加强对数据的预处理工作
在数据挖掘之前使用数据预处理技术,能够显著提高数据挖掘模式的质量,降低实际挖掘所需要的时间,应将其作为整门课程的重点进行学习。增加理论课程和实验课时,使学生掌握数据清理、数据集成、数据变换、数据归纳等数据预处理技术,并能够应对各种复杂数据源,最终利用爬虫程序获取的各种数据源进行预处理工作。
4、强化数据挖掘分析
教师可以选择SPSS Modeler这款所见即所得的数据挖掘软件作为配套实验平台。该软件具有必需的数据预处理工具及预设的挖掘算法,学生可以把注意力放在要挖掘的数据及相关需求上,设定挖掘的主题,然后通过鼠标的点击拖拉即可完成相关主题的数据挖掘过程。学生最终可对自己获取并已处理过的数据进行挖掘分析。
5、加强教师外出培训学习
数据挖掘技术以及大数据技术是近来比较新颖而且发展迅速的技术。教师长期身处三尺讲台之上,远离了新技术,脱离了实际。因此,需派遣教师到知名高校学习数据挖掘教学技术,到培训机构进行系统学习,到企业进行实战学习。
基于以上分析,形成了新的数据挖掘理论课程内容和实践课程内容,安排如表1和表2所示。共安排48学时,其中理论课24学时,实验课24学时。理论课重点讲授数据的获取、数据的理解、数据的预处理以及常用挖掘算法。实验课重点学习基于SPSS modeler的数据挖掘,对理论课的内容进行实践。整个学习以工程项目为载体,该工程贯穿整个学习过程。学生通过爬虫程序获取自己感兴趣的数据源,根据课程进度,逐步完成后续数据的理解,再进行预处理,建模分析,评估整个过程。在课程结束时,完成整个项目,并提交报告。
三、结论
在数字时代,越来越多的企业急需数据挖掘分析人才。教师应以培养实际应用人才为目的,充分培养学生对数据挖掘的学习兴趣,以工程项目为载体,贯穿整个课程周期。在教学中,打牢数据获取、理解预处理这一基石,加强建模挖掘分析,弱化对晦涩算法的编程学习,使学生真正掌握数据挖掘技术,满足社会需求。
参考文献:
[1]李海林。大数据环境下的数据挖掘课程教学探索[J]。计算机时代,20xx(2):54-55.
[2]宋威,李晋宏。项目驱动的数据挖掘教学模式探讨[J]。中国电力教育,20xx(27):116-177.
[3]徐琴。应用型本科数据挖掘技术课程教学探讨与实践[J]。电脑知识与技术,20xx,12(8):148-149.
[4]李姗姗,李忠。就业需求驱动下的本科院校数据挖掘课程内容体系探讨[J]。计算机时代,20xx(2):60-61.
数据挖掘论文 篇十
摘要:随着我国社会经济的不断发展,人力资源管理也受到越来越多人们的重视,然而在如今激烈的市场竞争下很多企业依然不重视人力资源管理,从而使得自身的整体工作效率不高。为此,笔者认为为了提高矿建人力资源管理的质量,应采取数据挖掘技术来开展工作,从而让整个企业在激烈的市场竞争中稳定、长久发展下去。
关键词:数据挖掘技术;企业人力资源管理;应用
1、数据挖掘技术在企业人力资源管理中应用的现状
随着我国人力资源管理体系的不断发展,隐藏在管理工作中的问题也被逐渐显露出来,虽然很多企业的高层管理者对人力资源管理这块已经高度重视,但是企业往往是希望通过运用相关的系统来对人才进行管理,基于我国社会整体经济实力的不断发展以及互联网信息时代的到来,数据挖掘技术也受到越来越多的企业多关注,并纷纷采用该技术对自身人力资源进行管理,同时也将人力资源管理系统作为整个信息化建设过程中的核心部位,就数据调查显示,数据挖掘技术已经被国外很多软件开放式引入自身的人力资源管理工作中,并使自身内部逐步形成了一套完整的人力资源管理系统体系。除此之外,数据挖掘技术也被广泛应用在企业的基本人力资源档案管理工作中,随着信息技术时代的到来,以往传统的计算机管理模式对人力资源管理效率往往并不高,为此,数据挖掘技术对企业人力资管理工作是百利而无一害的。
2、数据挖掘技术在企业人力资源管理中的应用
2、1人才的招聘
任何企业在发展过程中都是离不开新鲜血液注入的,随着目前我国市场经济竞争趋势的不断增长,企业要想稳固发展必须要引入人力资源管理,只有这样才能提高企业经济效益以及社会收益。为此,企业应对人才进行招聘,这也是获取人力资源的重要手段,通过采用数据挖掘技术来吸引社会中的各类人才,并采取有效的人才管理流程来对人才进行筛选,最终选择质量最佳的人才资源。与此同时,企业对人才招聘质量的优与良对自身内部的员工、人类资源也会造成一定的影响,换句话来讲,人才的招聘往往是企业人力资源管理工作开展的前期阶段,然而在实际人才招聘过程中很多企业总是找不到合适的人选,同时也有大量的优质人才也很难找的适合自身的工作,这也就加大了企业人才招聘的难度,也进一步加大了招聘的成本,为此,企业采取数据挖掘技术可以有效降低人才招聘的成本支出,从而使自身获得更大的经济收益与社会利益。
2、2对人才的管理
随着社会对人才需求量的不断增加,企业对员工的数据记录和管理方式也逐步优化,然而在很多企业人力资源管理过程中仍然存在着诸多问题,而这些问题的存在对企业未来发展也产生阻碍作用。为了企业在未来发展道路上稳固、长久发展,应采取数据挖掘技术来对人才进行管理,以往传统的管理模式往往是对员工的基本信息以及日常考核进行管理,这种管理方式已经不适应现在时代发展的趋势,为此,矿建企业必要顺应当下时代的发展趋势来采取有效的措施来对人力资源进行管理,现代化的管理模式主要强调的是对相关数据的分析和整理能力,通过对数据的分析来形成具有实际指导作用的总结,从而为企业人力资源管理工作提供有价值的参考依据。例如,在实际人力资源管理过程中可以利用数据挖掘技术来对企业内部员工的薪资水平进行分析,并对企业的成本控制提出有效的建议,也可以利用数据挖掘技术对企业中年纪较大的员工进行分析,并对其进行科学的评判,从而对其提出更有利的参考价值和依据。
2、3实现对企业人才的合理分配
随着我国社会经济的不断发展,人才的发展形势也变得越来越“多元化”“个体化”。为此,笔者认为为了进一步提高矿建企业人力资源管理工作的质量,应采取数据挖掘技术来对人才进行合理分配,并结合内部员工的实际特点以及具体类型进行客观性的评判,这对企业的人才资源管理以及未来发展无疑是百利无一害的。通过采取数据挖掘技术不仅可以实现对员工的共性以及特点进行分析,使每一位员工的信息资源、岗位职责得到有效划分,同时也进一步实现对企业人才的合理分配。通过对数据信息的管理技术构建实现对人员分组,从而使数据挖掘技术在企业人力资源管理中得到有效利用,使其发挥最大的作用与价值,同时也进一步提高企业人力资源管理工作的效率和和质量,最终推动企业稳固、长久的发展。
3、结语
综上所述,随着社会经济的飞速发展,建设领域也得到逐步提高,然而在人力资源管理工作中依然存在着诸多问题,这些问题的存在也严重阻碍我国社会经济的稳固发展。所以,只有充分采用数据挖掘技术来开展人力资源管理工作,才能提高企业的人力资源管理水平。
参考文献:
[1]曾巍、数据挖掘在人力资源市场中的应用与研究[D]。吉林大学,20xx
[2]赖华强,王三银,仲崇高、人力资源管理领域的数据挖掘应用展望———以基于灰色关联模型的离职管理实证分析为例[J]。江苏商论。20xx(08):42—47
[3]马秦,张江、数据挖掘技术在企业人力资源管理中应用的研究[J]。中国新通信,20xx.20(15):232
[4]孙明标、基于大数据挖掘技术下的企业人力资源管理研究[J]。现代营销(下旬刊)。20xx(01):166
它山之石可以攻玉,以上就是众鼎号为大家带来的10篇《数据挖掘论文》,能够给予您一定的参考与启发,是众鼎号的价值所在。