数据挖掘论文8篇
无论是在学习还是在工作中,大家都有写论文的经历,对论文很是熟悉吧,通过论文写作可以培养我们独立思考和创新的能力。你知道论文怎样才能写的好吗?下面是小编辛苦为朋友们带来的8篇《数据挖掘论文》,希望能为您的思路提供一些参考。
数据挖掘论文 篇一
【摘要】由于我国的信息技术迅速发展,传统档案管理的技术已经不能满足现代的信息需求,数据挖掘技术的应用为档案管理工作效率的提升带来便利。本文通过说明数据挖掘技术的有关内容,阐明数据挖掘技术的相关知识,并对数据挖掘技术在档案管理工作中的实际运用来进行举例分析。
【关键词】数据挖掘技术;档案管理;分析运用
由于信息技术的迅速发展,现代的档案管理模式与过去相比,也有了很大的变化,也让如今的档案管理模式有了新的挑战。让人们对信息即时、大量地获取是目前档案管理工作和档案管理系统急切需要解决的问题。
一、数据挖掘概述
(一)数据挖掘技术。数据挖掘是指从大量的、不规则、乱序的数据中,进行分析归纳,得到隐藏的,未知的,但同时又含有较大价值的信息和知识。它主要对确定目标的有关信息,使用自动化和统计学等方法对信息进行预测、偏差分析和关联分析等,从而得到合理的结论。在档案管理中使用数据挖掘技术,能够充分地发挥档案管理的作用,从而达到良好的档案管理工作效果。(二)数据挖掘技术分析。数据挖掘技术分析的方法是多种多样的,其主要方法有以下几种:1.关联分析。指从已经知道的信息数据中,找到多次展现的信息数据,由信息的说明特征,从而得到具有相同属性的事物特征。2.分类分析。利用信息数据的特征,归纳总结相关信息数据的数据库,建立所需要的数据模型,从而来识别一些未知的信息数据。3.聚类分析。通过在确定的数据中,找寻信息的价值联系,得到相应的管理方案。4.序列分析。通过分析信息的前后因果关系,从而判断信息之间可能出现的联系。
二、数据挖掘的重要性
在进行现代档案信息处理时,传统的档案管理方法已经不能满足其管理的要求,数据挖掘技术在这方面确有着显著的优势。首先,档案是较为重要的信息记录,甚至有些档案的重要性大到无价,因此对于此类的珍贵档案,相关的档案管理人员也是希望档案本身及其价值一直保持下去。不过越是珍贵的档案,其使用率自然也就越高,所以其安全性就很难得到保障,在档案管理中运用数据挖掘技术,可以让档案的信息数据得到分析统计,归纳总结,不必次次实物查阅,这样就极大地提升了档案相关内容的安全性,降低档案的磨损率。并且可以对私密档案进行加密,进行授权查阅,进一步提高档案信息的安全性。其次,对档案进行鉴定与甄别,这也是档案工作中较困难的过程,过去做好这方面的工作主要依靠管理档案管理员自己的能力和水平,主观上的因素影响很大,但是数据挖掘技术可以及时对档案进行编码和收集,对档案进行数字化的管理和规划,解放人力资源,提升档案利用的服务水平。第三,数据挖掘技术可以减少档案的收集和保管成本,根据档案的特点和规律建立的数据模型能为之后的工作人员建立一种标准,提升了档案的鉴定效率。
三、档案管理的数据挖掘运用
(一)档案信息的收集。在实施档案管理工作时,首先需要对档案信息数据的收集。可以运用相关档案数据库的数据资料,进行科学的分析,制定科学的说明方案,对确定的数据集合类型和一些相关概念的模型进行科学说明,利用这些数据说明,建立准确的数据模型,并以此数据模型作为标准,为档案信息的快速分类以及整合奠定基础。例如,在体育局的相关网站上提供问卷,利用问卷来得到的所需要的信息数据,导入数据库中,让数据库模型中保有使用者的相关个人信息,通过对使用者的信息数据进行说明,从而判断使用者可能的类型,提升服务的准确性。因此,数据挖掘技术为档案信息的迅速有效收集,为档案分类以及后续工作的顺利展开,提供了有利条件,为个性化服务的实现提供了保证。(二)档案信息的分类。数据挖掘技术具有的属性分析能力,可以将数据库中的信息进行分门别类,将信息的对象通过不同的特征,规划为不同的分类。将数据挖掘技术运用到档案管理中时,可以简单快速地找到想要的档案数据,能根据数据中使用者的相关数据,找寻使用者在数据库中的信息,使用数据模型的分析能力,分析出使用者的相关特征。利如,在使用者上网使用网址时,数据挖掘技术可以充分利用使用者的搜索数据以及网站的访问记录,自动保存用户的搜索信息、搜索内容、下载次数、时间等,得到用户的偏好和特征,对用户可能存在的需求进行预测和分类,更加迅速和准确的,为用户提供个性化的服务。(三)档案信息的整合。数据挖掘技术可以对新旧档案的信息进行整合处理,可以较为简单地将“死档案”整合形成为“活档案”,提供良好的档案信息和有效的档案管理。例如,对于企事业单位而言,培训新员工的成本往往比聘请老员工的成本要高出很多。对老员工的档案信息情况进行全体整合,使档案资源充分发挥作用,将档案数据进行总结和规划,根据数据之间的联系确定老员工流失的原因,然后建立清晰、明白的数据库,这样可以防止人才流失,也能大大提高档案管理的效率。
四、结语
综上所述,在这个信息技术迅速跳跃发展的时代,将数据挖掘技术运用到档案管理工作中是时代发展的需求与必然结果。利用数据挖掘技术,可以使档案管理工作的效率大大提升,不仅减少了搜索档案信息的时间,节省人力物力,避免资源的浪费,还能帮助用户在海量的信息数据中,快速找到所需的档案数据信息。数据挖掘技术的运用,使静态的档案信息变成了可以“主动”为企事业单位的发展,提供有效的个性化服务的档案管家,推动了社会的快速发展。
【参考文献】
[1]栾立娟,卢健,刘佳,数据挖掘技术在档案管理系统中的应用[J].计算机光盘软件与应用,20xx:35-36.
[2]宇然,数据挖掘技术研究以及在档案计算机管理系统中的应用[D].沈阳工业大学,20xx.
[3]吴秀霞,关于档案管理方面的数据挖掘分析及应用探讨[J].经营管理者,20xx:338.
数据挖掘论文 篇二
在当前的学校管理中,教学和教务管理工作中积累了大量的数据信息。但是,由于这些教学中的数据没有得到很好地运用,在一定程度上使数据挖掘没有得到重视。数据挖掘,从本质上看,就是从大量和模糊以及不完全的数据中提取出潜在信息的过程。并且,随着计算机教学改革的不断推进,计算机教学系统更加注重计算机网络无纸化考试,有效地改变传统教学评价手段。
1关联规则的数据挖掘分析方法在计算机教学中的作用
数据挖掘作为一种全新的计算机运用技术,在各个应用领域都发挥巨大的潜力。通常情况下,数据挖掘分析方法主要是有关联规则分析、序列模式分析以及分类分析等方法。笔者经过一些分析方法的对比,在系统开发过程中,选择关联规则算法进行相应的探讨。为了能够进一步说明关联规则的数据挖掘方法,同时有效地结合实践过程,通过对以下两个案例进行深入分析,希望能更好地了解数据挖掘方法的运用。例如,在“男同学-高分”的关联规则中,这种表示方法是在考试过程中,男同学和女同学相比得高分的几率更高,在一个具有一万条记录的事物数据库中,只有将近300条记录包括得到高分的男同学,说明这种关联支持度为3%,这个支持度相对来说较高。但是,也不能因此来做出这个关联的意义,若通过科学的统计发现其中有6000条的记录包含男同学,使可以计算出男同学的置信度为300/6000=5%,从此方面来看,这个关联规则的置信度并不是很高,同时也就不能做出这种关联的实际意义。但是,如果是此记录中只有600个是“男同学”,这样就可以知道有将近50%的人得到高分,值得关注。又如,可以针对不同类别教师所教学生的成绩进行统计。根据图中数据显示,可以假设,甲类教师-学生高分,设置为X-Y,可以知道,其支持度为50/310=16.13%,其置信度则为50/105=47.2%。因此,可以通过这种方法,以此来推导出其他的关联支持度以及置信度。
2教师因素对挖掘计算机学生成绩数据的促进作用
当前,我国计算机教学考试主要采用无纸化考试,其阅卷工作可以在计算机上自动完成,其成绩也可以由省教育厅逐一下发,通过这样的方式,可以更好地开展数据挖掘工作。例如,可以利用关联规则法研究学生A科成绩和B科成绩的关联:①在对可信度的运行过程中,学生在A科成绩为优秀时,B科也为优秀的概率;②在对支持度的运行过程中,可以描述学生A和B科目的成绩为优秀的概率;③在对期望可信度的运用过程中,可以在没有任何约束的情况下,加强对学生A和B科目成绩为优秀的概率分析;④在作用度的分析上,作为一种可信度和期望可信度的比值,当学生在A类成绩为优秀时,可以对B科目的优秀影响进行深入分析。从以上的分析中可以看出,可信度能够衡量关联规则的准确度,而且在关联规则中,支持度是当前关联规则中最为重要的衡量标准。
3关联规则推导技术的有效运用
数据挖掘所得出的关联规则只是作为数据库中的数据之间相关性的描述,同时也可以作为一种分析工具,通过历史数据来预测各种未来的行为。但是,数据挖掘所得出的结果只是作为一种概率,由于不同探究问题的类型和规模有所不同,只有灵活地运用数据挖掘技术才能进行补充。在划分方法上,可以将数据库中分成几个互不相干的模块,并且可以单独考虑到每个分块生成的所有的频集,之后可以通过所产生的频集合并生成所有可能的频集,计算出这些项集的支持度。可以针对分块规模的大小来选择被放入的主存,而且在每个阶段只需要被扫描一次,有效降低挖掘时间,提高挖掘效率。
4结语
从本质上看,数据挖掘作为一种全新的数据分析技术,在关联规则中不仅在检验评价数据可靠性方面发挥着非常重要的作用,而且更能够有效地帮助其进行科学预测。为了能够更好达到相应的计算机教学评价效果,就必须不断加强对教学评价调查,逐步积累大量数据,充分利用数据挖掘技术,挖掘一些科学有效的信息,以此来为教学知识构建提供相应的服务。
数据挖掘论文 篇三
随着互联网技术的快速发展,学术研究环境较以前更加开放,对传统的科技出版业提出了开放性、互动性和快速性的要求; 因此,以信息技术为基础的现代数字化出版方式对传统的科技出版业产生着深刻的影响。为了顺应这一趋势,不少科技期刊都进行了数字化建设,构建了符合自身情况、基于互联网B /S 结构的稿件处理系统。
以中华医学会杂志社为代表的部分科技期刊出版集团均开发使用了发行系统、广告登记系统、在线销售系统以及站。这些系统虽然积累了大量的原始用户业务数据; 但从工作系统来看,由于数据本身只属于编辑部的业务数据,因此一旦相关业务工作进行完毕,将很少再对这些数据进行分析使用。
随着目前人工智能和机器学习技术的发展,研究人员发现利用最新的数据挖掘方法可以对原始用户业务数据进行有效分析和学习,找出其中数据背后隐含的内在规律。这些有价值的规律和宝贵的经验将对后续科技期刊经营等工作提供巨大的帮助。
姚伟欣等指出,从STM 期刊出版平台的技术发展来看,利用数据存取、数据管理、关联数据分析、海量数据分析等数据挖掘技术将为科技期刊的出版和发行提供有力的帮助。通过使用数据挖掘( data mining) 等各种数据处理技术,人们可以很方便地从大量不完全且含有噪声或相对模糊的实际数据中,提取隐藏在其中有价值的信息,从而对后续科技期刊出版工作起到重要的知识发现和决策支持的作用。
1 数据挖掘在科技期刊中应用的现状
传统的数据库对数据的处理功能包括增、删、改、查等。这些技术均无法发现数据内在的关联和规则,更无法根据现有数据对未来发展的趋势进行预测。现有数据挖掘的任务可以分为对数据模型进行分类或预测、数据总结、数据聚类、关联规则发现、序列模式发现、依赖关系发现、异常或例外点检测以及趋势发现等,但目前国内科技期刊行业利用数据挖掘方法进行大规模数据处理仍处在起步阶段。张品纯等对中国科协所属的科技期刊出版单位的现状进行分析后发现,中国科协科技期刊出版单位多为单刊独立经营,单位的规模较小、实力较弱,多数出版单位不具备市场主体地位。这样就导致国内大部分科技期刊既没有能力进行数据挖掘,也没有相应的数据资源准备。以数据挖掘技术应用于期刊网站为例,为了进行深入的数据分析,期刊经营人员需要找到稿件与读者之间、读者群体之间隐藏的内在联系。目前,数据挖掘的基本步骤为: 1) 明确数据挖掘的对象与目标;2) 确定数据源; 3) 建立数据模型; 4) 建立数据仓库; 5)数据挖掘分析; 6) 对象与目标的数据应用和反馈。
2 期刊数据的资源整合
编辑部从稿件系统、发行系统、广告系统、站等各个系统中将相关数据进行清洗、转换和整理,然后加载到数据仓库中。进一步,根据业务应用的范围和紧密度,建立相关数据集市。期刊数据资源的整合过程从数据体系上可分为数据采集层、数据存储处理层和数据展现层。
要获得能够适合企业内部多部门均可使用、挖掘和分析的数据,可以从业务的关联性分析数据的准确性、一致性、有效性和数据的内在关联性。
3 期刊数据的信息挖掘
信息挖掘为了从不同种类和形式的业务进行抽取、变换、集成数据,最后将其存储到数据仓库,并要对数据的质量进行维护和管理。数据挖掘可以有效地识别读者的阅读行为,发现读者的阅读模式和趋势,对网站改进服务质量、取得更好的用户黏稠度和满意度、提高科技期刊经营能力有着重要的意义。作为一个分析推荐系统,我们将所分析的统计结果存储于服务器中,在用户或决策者需要查询时,只需输入要找寻的用户信息,系统将从数据库中抽取其个人信息,并处理返回到上网时间分布、兴趣点所在、适配业务及他对于哪些业务是有价值客户,甚至包括他在什么时段对哪类信息更感兴趣等。只有这些信息才是我们的使用对象所看重和需要的。
网站结构挖掘是挖掘网站中潜在的链接结构模式。通过分析一个网页的链接、链接数量以及链接对象,建立网站自身的链接结构模式。在此过程中,如果发现某一页面被较多链接所指向,则说明该页面信息是有价值的,值得期刊工作人员做更深层次的挖掘。网站结构挖掘在具体应用时采用的结构和技术各不相同; 但主要过程均包括预处理、模式发现和模式分析3 部分。为了反映读者兴趣取向,就需要对数据库中的数据按用户进行抽样分析,得到兴趣点的统计结果,而个人的兴趣分析也可基于此思路进行。下面以《中华医学杂志》为例做一介绍。
预处理预处理是网站结构挖掘最关键的一个环节,其处理得到的数据质量直接关系到使用数据挖掘和模式分析方法进行分析的结果。预处理步骤包括数据清洗、用户识别、会话识别、路径补充和事件识别。以《中华医学杂志》网站www. nmjc. net. cn 的日志分析为例。首先给出一条已有的Log,其内容为“20xx-03-04 12: 13: 47 W3SVC80003692 172. 22. 4. 3GET /index. asp-80-123. 185. 247. 49Mozilla /5. 0 +( Windows + NT + 6. 1; + WOW64 ) + AppleWebKit /537. 36 + ( KHTML,+ like + Gecko) + Chrome /28. 0.1500. 95 + Safari /537. 36 + SE + 2. X + MetaSr + 1. 0200 0 0”。从Log 的内容,工作人员可以得到相关信息,如用户IP、用户访问页面事件、用户访问的页面、用户请求的方法、返回HTTP 状态以及用户浏览的上一页面等内容。
由于服务器同时部署了多个编辑部网站,这就要求工作人员必须对得到的访问www. nmjc. net. cn 日志,去除由爬虫软件产生的记录。这些记录一般都会在日志结尾包含“Spider”的字样。同时,还需要去除不是由GET 请求产生的日志以及请求资源不是页面类型的日志。最后,工作人员还需要去除访问错误的请求,可以根据日志中请求的状态进行判断。一般认为,请求状态在( 200, 300) 范围内是访问正确的日志,其他如403、400 和500 等都是访问错误的日志。用户识别可以根据用户的IP 地址和用户的系统信息来完成。只有在IP 地址和系统信息都完全一致的情况下,才识别为一个用户。会话识别是利用面向时间的探索法,根据超时技术来识别一个用户的多次会话。如果用户在一段时间内没有任何操作,则认为会话结束。用户在规定时间后重新访问,则被认为不属于此次会话,而是下次会话的开始。
利用WebLogExplore 分析日志、用户和网页信息在获得了有效的日志数据后,工作人员可以利用一些有效数据挖掘算法进行模式发现。目前,主要的数据挖掘方法有统计分析、关联规则、分类、聚类以及序列模式等技术。本文主要讨论利用Apriori 算法来发现科技期刊日志数据中的关联规则。本质上数据挖掘不是用来验证某个假定的模式的正确性,而是在数据库中自己寻找模型,本质是一个归纳的过程。支持度( Support) 的公式定义为: Support ( A≥B) = P( A ∪B) 。支持度可以用于度量事件A 与B 同时出现的概率。如果事件A 与B 同时出现的概率较小,说明事件A 与B 的关系不大; 如果事件A 与B 同时出现非常频繁,则说明事件A 与B 总是相关的。置信度( Confidence) 的公式定义为: Confidence( A≥B) = P( A | B) 。置信度揭示了事件A 出现时,事件B 是否也会出现或有多大概率出现。如果置信度为100%,则事件A 必然会导致事件B 出现。置信度太低,说明事件A 的出现与事件B 是否出现关系不大。
对所有的科技期刊日志数据进行预处理后,利用WebLogExplore 软件可得到日志汇总表。表中存储了所有用户访问网站页面的详细信息,工作人员可将其导入数据库中。以查看到所选择用户访问期刊页面的详细信息。
同样,在WebLogExplore 软件中选择感兴趣的页面,可以查看所有用户访问该页面的统计信息,如该页面的访问用户数量等。工作人员可以对用户访问排名较高的页面进行进一步的模式分析。
步骤1: 将图2 日志信息汇总表中的数据导入数据库中,建立日志总表。
步骤2: 在数据库中建立一个新表命名为tj。
步骤3: 通过查询程序得到日志总表中每一个用户访问的页面,同时做distinct 处理。
步骤4: 将查询得到的用户访问页面记录进行判断。如果用户访问过排名前20 位的某个页面,则在数据库中写入true,否则写入false。依次循环判断写入数据库中。
步骤5: 统计每个访问排名靠前页面的支持度,设置一维项目集的最小阀值( 10%) 。
步骤6: 统计大于一维阀值的页面,写入数组,并对数组内部页面进行两两组合,统计每个组合2 个页面值均为true 时的二维项目集的支持度。
步骤7: 设置二维项目集支持度的阀值,依次统计三维项目集支持度和置信度( A≥B) ,即当A 页面为true 时,统计B 页面为true 的数量,除以A 为true 的数量。设置相应的置信度阀值,找到访问排名靠前页面之间较强的关联规则。
4 数据挖掘技术应用的意义
1) 对频繁访问的用户,可以使用用户识别技术分析此用户的历史访问记录,得到他经常访问的页面。当该用户再次登录系统时,可以对其进行个性化提示或推荐。这样,既方便用户使用,也可将系统做得更加友好。很多OA 期刊网站,不具备历史浏览记录的功能; 但浏览记录对用户来讲其实十分重要,隐含了用户对文章的筛选过程,所以对用户经常访问的页面需要进行优化展示,不能仅仅提供链接地址,需要将文章题名、作者、关键词等信息以列表的方式予以显示。
2) 由数据挖掘技术而产生的频繁项目集的分析,可以对网站的结构进行改进。支持度很高的页面,说明该页面的用户访问量大。为了方便用户以及吸引更多的读者,可以将这些页面放置在更容易被访问的位置,科技期刊的网站内容一般以年、卷、期的形式展示。用户如果想查看某一篇影响因子很高的文章,也必须通过年卷期的方式来查看,非常不方便而且页面友好性不高。通过数据挖掘的分析,编辑部可以把经常被访问或者高影响因子的文章放在首页展示。
3) 对由数据挖掘技术产生的频繁项目集的分析,可以发现用户的关注热点。若某些页面或项目被用户频繁访问,则可以用这些数据对用户进行分析。一般来说科技期刊的读者,每个人的专业和研究方向都是不同的,编辑部可以通过数据挖掘技术来判断读者的研究方向和感兴趣的热点,对每一个用户进行有针对性的内容推送和消息发送。
4) 网站管理者可以根据在不同时间内频繁项目集的变化情况对科技期刊网站进行有针对性的调整,比如加入更多关于该热点的主题资源。目前大多数科技期刊网站首页的内容,均为编辑部工作人员后台添加、置顶、高亮来吸引用户的; 通过数据挖掘技术,完全可以摈弃这种展示方式。编辑部网站的用户访问哪些页面频繁,系统便会自动将这些页面的文章推向首页,不需要编辑部的人工干预,整个网站实现自动化运行。
5 后记
本文重点讨论了数据挖掘技术与科技期刊网站页面之间的关系。其实我们还可以从很多方面进行数据挖掘,比如可以对网站的用户和内容进行数据挖掘,通过分析可以为后期的期刊经营做好铺垫。
有一点很重要,没有一种数据挖掘的分析方法可以应付所有的需求。对于某一种问题,数据本身的特性会影响你的选择,需要用到许多不同的数据挖掘方法以及技术从数据中找到最佳的模型。
在目前深化文化体制改革,推动社会主义文化大发展、大繁荣的政治形势下,利用数据挖掘技术从中进行提取、分析和应用,能有效地帮助企业了解客户、改进系统、制订合理的市场策略、提高企业的销售水平和利润。通过利用数据挖掘技术准确定位优质客户,向客户提供更精确、更有价值的个性化服务。这将成为未来科技期刊经营十分重要的突破点和增长点。
数据挖掘论文 篇四
摘要:数据挖掘是一种特殊的数据分析过程,其不仅在功能上具有多样性,同时还具有着自动化、智能化处理以及抽象化分析判断的特点,对于计算机犯罪案件中的信息取证有着非常大的帮助。本文结合数据挖掘技术的概念与功能,对其在计算机犯罪取证中的应用进行了分析。
关键词:数据挖掘技术;计算机;犯罪取证
随着信息技术与互联网的不断普及,计算机犯罪案件变得越来越多,同时由于计算机犯罪的隐蔽性、复杂性特点,案件侦破工作也具有着相当的难度,而数据挖掘技术不仅能够对计算机犯罪案件中的原始数据进行分析并提取出有效信息,同时还能够实现与其他案件的对比,而这些对于计算机犯罪案件的侦破都是十分有利的。
1数据挖掘技术的功能与应用分析
1.1数据挖掘技术的概念
数据挖掘技术是针对当前信息时代下海量的网络数据信息而言的,简单来说,就是从大量的、不完全的、有噪声的、模糊的随机数据中对潜在的有效知识进行自动提取,从而为判断决策提供有利的信息支持。同时,从数据挖掘所能够的得到的知识来看,主要可以分为广义型知识、分类型知识、关联性知识、预测性知识以及离型知识几种。
1.2数据挖掘技术的功能
根据数据挖掘技术所能够提取的不同类型知识,数据挖掘技术也可以在此基础上进行功能分类,如关联分析、聚类分析、孤立点分析、时间序列分析以及分类预测等都是数据挖掘技术的重要功能之一,而其中又以关联分析与分类预测最为主要。大量的数据中存在着多个项集,各个项集之间的取值往往存在着一定的规律性,而关联分析则正是利用这一点,对各项集之间的关联关系进行挖掘,找到数据间隐藏的关联网,主要算法有FP-Growth算法、Apriori算法等。在计算机犯罪取证中,可以先对犯罪案件中的特征与行为进行深度的挖掘,从而明确其中所存在的联系,同时,在获得审计数据后,就可以对其中的审计信息进行整理并中存入到数据库中进行再次分析,从而达到案件树立的效果,这样,就能够清晰的判断出案件中的行为是否具有犯罪特征[1]。而分类分析则是对现有数据进行分类整理,以明确所获得数据中的相关性的一种数据挖掘功能。在分类分析的过程中,已知数据会被分为不同的数据组,并按照具体的数据属性进行明确分类,之后再通过对分组中数据属性的具体分析,最终就可以得到数据属性模型。在计算机犯罪案件中,可以将按照这种数据分类、分析的方法得到案件的数据属性模型,之后将这一数据属性模型与其他案件的数据属性模型进行对比,这样就能够判断嫌疑人是否在作案动机、发生规律以及具体特征等方面与其他案件模型相符,也就是说,一旦这一案件的数据模型属性与其他案件的数据模型属性大多相符,那么这些数据就可以被确定为犯罪证据。此外,在不同案件间的共性与差异的基础上,分类分析还可以实现对于未知数据信息或类似数据信息的有效预测,这对于计算机犯罪案件的处理也是很有帮助的。此外,数据挖掘分类预测功能的实现主要依赖决策树、支持向量机、VSM、Logisitic回归、朴素贝叶斯等几种,这些算法各有优劣,在实际应用中需要根据案件的实际情况进行选择,例如支持向量机具有很高的分类正确率,因此适合用于特征为线性不可分的案件,而决策树更容易理解与解释。
2数据挖掘技术在计算机犯罪取证中的具体应用思路
对于数据挖掘技术,目前的计算机犯罪取证工作并未形成一个明确而统一的应用步骤,因此,我们可以根据数据挖掘技术的特征与具体功能,对数据挖掘技术在计算机犯罪取证中的应用提供一个较为可行的具体思路[2]。首先,当案件发生后,一般能够获取到海量的原始数据,面对这些数据,可以利用FP-Growth算法、Apriori算法等算法进行关联分析,找到案件相关的潜在有用信息,如犯罪嫌疑人的犯罪动机、案发时间、作案嫌疑人的基本信息等等。在获取这些基本信息后,虽然能够对案件的基本特征有一定的了解,但犯罪嫌疑人却难以通过这些简单的信息进行确定,因此还需利用决策树、支持向量机等算法进行分类预测分析,通过对原始信息的准确分类,可以得到案件的犯罪行为模式(数据属性模型),而通过与其他案件犯罪行为模式的对比,就能够对犯罪嫌疑人的具体特征进行进一步的预测,如经常活动的场所、行为习惯、分布区域等,从而缩小犯罪嫌疑人的锁定范围,为案件侦破工作带来巨大帮助。此外,在计算机犯罪案件处理完毕后,所建立的嫌疑人犯罪行为模式以及通过关联分析、分类预测分析得到的案件信息仍具有着很高的利用价值,因此不仅需要将这些信息存入到专门的数据库中,同时还要根据案件的结果对数据进行再次分析与修正,并做好犯罪行为模式的分类与标记工作,为之后的案件侦破工作提供更加丰富、详细的数据参考。
3结束语
总而言之,数据挖掘技术自计算机犯罪取证中的应用是借助以各种算法为基础的关联、分类预测功能来实现的,而随着技术的不断提升以及数据库中的犯罪行为模式会不断得到完善,在未来数据挖掘技术所能够起到的作用也必将越来越大。
参考文献
[1]李艳花。数据挖掘在计算机动态取证技术中的应用[J]。信息与电脑(理论版),20xx(02):174-176.
作者:周永杰 单位:河南警察学院信息安全系
数据挖掘论文 篇五
摘要:随着科学技术的不断发展,计算机的使用也愈来愈广泛,他已经发展到各个行业,现如今保险行业也就相应的业务引进了计算机业务系统,而在20xx年8月,我国也出台了《国务院关于加快发展现代保险服务业的若干意见》这一举措的有效实施,从政策上为保险行业的快速发展提供相应了保障。而如何在这些被积累下来的宝贵数据中,分析挖掘出新的商机及财富,就成为了我国当前保险行业发展的重要突破口。本篇文章就从数据挖掘技术的应用方面、概念、必要性,以及方法手段进行了深入探讨与分析其对财产保险应用的意义。
关键词:数据挖掘技术;财产保险;应用;分析
在最近几年中,我国对于保险行业给予了高度的关注与重视并出台了许多与之相对应的相关政策,这些政策的发行对于我国的保险行业带来的极大程度的发展空间。而我国的保险行业也开始了转型,正在从粗放型经营向集约化经营管理进行过度,最明显的改变就是之前只注重新客户的开发而忘记顾忌老客户的需求与发展,但是现在是同时注重新老客户的需求与发展,从根本上实现“两手抓”的政策,所以这种新的形式背景下,计算机中保险行业所留的数据就成为极为重要的挖掘资源。
一、解析数据挖掘技术在财产保险分析中的应用
(一)提升财险客户服务能力
对于任何一个公司来说没有客户所有的产品经营都是纸上谈兵,这对于服务行业的财产保险公司更是如此,所以对此所以财产保险行业就面临着转型升级的事情财产行业的转型就意味着面临着面向客户的服务质量的提升。在现如今的经济情况下,保险消费者对于保险行业知识的了解日益增加,保险意识也是越发的加强。客户对于保险行业也出现了个性化与差异化的需求。从这里就要求保险公司通过数据挖掘技术对客户的需求进行更深一层的分析与探索,通过探究与分析的结果明确而客户的需要,并为有更高需求的客户提供更适合他的保险产品,从而提高业务服务水平,吸引更多的优质客源,来增强市场的竞争力。例如,在对客户进行细分的时候,可以通过数据挖掘技术中的“二八定律”,对客户进行细分。通过细分得出结果,参照数据根据每个客户群体的风险偏好、特点以及需求为他们量身定制适合他们自身的新产品,并制定对应适合的费照新差旅费管理办法正确规范填写市内交通补助、伙食补助、城市间交通费、和住宿费金额。并填写上合计金额,不得出现多报的行为,从而提高差旅费报销工作的质量。
(二)风险管理和合规经营
每个保险公司的生命底线就是合规经营以及对风险的管理,所以每个保险公司必须在运营生产中严格的遵守国家的法律法规,不许做出违反法律底线的事情,而风险管理对于保险公司来说具有两层含义,其实并不简单,一方面是需要对于企业自身的风险进行管理;另一方面是对于客户所带来的风险进行管理。对于保险公司来说这两方面的风险是相互作用、相辅相成的,第一个方面的风险管理出现问题后者的风险管理就会成为空谈,反之第二方面的风险管理没有得到很好的管理,极大可能会引起前者管理出现问题。而恰恰数据挖掘技术的应用,就可以为财产保险企业规避风险起到很大的帮助。保险公司可以以计算机为使用的工具,通过数据挖掘的技术,可以对数据内大量的信息进行查找并比对分析,高效的识别出在计算机内不符合正常业务逻辑的数据,这样管理者就可以及时就这些风险数据和业务漏洞进行监测与管控,以减少违法乱纪的事情发生,逐步消除或减少隐藏的风险。保障保险业健康有序的发展,为市场经济持续健康的进一步发展保驾护航。
(三)开发新产品
新的保险产品的开发对于增强保险公司的公司收益、内容、满足消费者的需求以及竞争力等方面起着重要的作用,这也是经营保险公司的首要内容。新产品的开发是指保险公司针对当前市场的需求、想要达到的效果与自身情况相结合的产物,而在原有的产品上加以重新的组合与设计的创造与改良,来满足市场的需求,进而提高公司自身的竞争力的过程与行为。后者自不必说,基于我国财产保险公司数据库信息方面已经积累了很多,而后通过对信息的数据进行发掘,使实现新产品的开发成为可能。譬如,通过数据挖掘技术,我们可以使用现有产品进行进一步的完善、修正或者拆分、组合的,使其变成一全新的保险产品,他会更接近客户的需求,满足客户的真实所需,同时也能够增加市场的销量,增强市场竞争力。就以原有的普通财产保险为例子,在保险有效期内未出现任何对客户的产才造成损失的情况下,客户所缴纳的保险费用是不予以退还的,在财产保险的有效期过后,客户所缴纳的保险费是由保险公司所拥有的。这样的保险产品是不被大多数客户所看好与接受的,即使有客户在第一次购买了此保险,但之后是不会在对本产品进行第二次的投资的。而现在通过数据挖掘的技术,保险公司可以根据对客户信息的了解进行分析,保险公司推出了一款新的家庭财产两全保险保险,这是一种全新的保险类别。全新的家庭财产保险,他所需要交纳的是保险储备金,比如每份保险金额为50000元的家庭财产两全保险,则保险储金为5000元,投保人必须根据保险金额一次性交纳保险储备金,保险人可以将保险储备金的利息作为保险费。在保险期满后,无论是不是在保险期内发生赔付的情况,保险公司都会将保险人的全部的保险储金如数退还。自从出现了这种投保方式,客户的接受度得到了大大的提高,全新的家庭财产保险,一方面使保险人保险中得到了应得的利益,另一方面投保人的财产也得到了保险,从而在市场的销售份额上面也得到了迅速提升。
二、保险业数据挖掘技术及应用的必要性
(一)保险业数据挖掘技术的含义
什么是保险行业的数据挖掘技术,就是从客户管理的角度出发,针对保险行业数据库系统内大量的保险单,对客户的信用数据进行属性变量提取,进而采用自动化或半自动化等多种挖掘技巧和方法来对客户的数据进行分析,找到潜在的有价值的信息。
(二)数据挖掘的过程及方法
数据挖掘是一个跨越多种学科的交叉技术,主要的用途是利用各种数据为商业上存在的问题提供切实可行的方法与数据。数据挖掘的过程有以下几个步骤:业务理解→数据准备→数据理解→构建模型→测试设计→做出评价→实施应用。在数据挖掘方面有三个常用的方法:DM、SEMMA以及CRISP等分析方法。同时我们需要根据实际情况来运用数据挖掘技术,选择最适当的方法,要想将数据挖掘技术达到最佳的效果必须针对具体的流程做出相应的调节。
(三)保险行业应用数据挖掘技术的必要性
在保险行业的运营中,常常会出现一下的几个问题:例如,细分客户的问题:对于不同的社会收入阶层、不同年龄段、不同的行业的客户,该怎么样去确定其的保险金额呢?客户的成长问题:如何把握时机对客户进行交叉销售;险种关联分析问题:在对购买某种保险的客户进行分析与探查,观察其是否在同一时间购买另一种保险产品,客户的获取问题:如何在付出最小的成本获得最有价值的客户的挽留及索赔优化的问题:如何对索赔受理的过程进行优化,挽留住有价值的投保人。保险公司在完成数据的汇总后,所获取的业务及大量客户信息,不过是对公司当前所处的市场环境、企业经营情况及客户基本资料的记录及反映。而进行数据集中的信息系统,也只能是对数据库中的这部分数据进行简单的操作处理,并不能从中发现并提取这些数据中蕴含的具有深层次价值的信息。所以,如若想在决策层面给出解决答案,是不可能实现的。而如果采用数据挖掘技术来对数据库中所存在的大量的数据进行高水平而深层次的分析,就能够为实现保险公司的决策及科学经营提供切实可行的依据,因此此技术的出现从而得到了许多保险公司的应用与重视。
三、结论
我国经济的发展正在向新常态的方向进行转变,而我国财产保险市场的竞争也日益激烈。为了面对这些挑战,各个保险公司都复出了努力在积极的面向转型,由传统的粗放式经营向集约化经营的方式进行过度,面向客户的营销模式也是在这之中产生出来的。在这种转型过度的过程中,财产保险公司对于数据挖掘技术进行充分的利用,使公司的风险管理能力、产品创新能力经营能力、盈利能力、客户服务能力、和业务发展潜力都得到了全面的大幅度提升。在对我国经济建设的繁荣以及促进财产保险公司自身的长远发展,都做出了不可磨灭的贡献,也是对国家的号召积极的响应,进而对市场经济持续发展也做出了不少的贡献。
参考文献:
[1]高文文。数据挖掘技术在财产保险分析中的应用[D]。河北科技大学,20xx.
[2]杨杉,何跃。数据仓库和数据挖掘技术在保险公司中的应用[J]。计算机技术与发展,20xx.
[3]葛春燕。数据挖掘技术在保险公司客户评估中的应用研究[J]。软件,20xx.
[4]陈庆文。数据挖掘在财产保险公司应用研究——以人保财险公司为例[D]。对外经济贸易大学,20xx.
数据挖掘论文 篇六
网络的发展带动了电子商务市场的繁华,大量的商品、信息在现有的网络平台上患上以交易,大大简化了传统的交易方式,节俭了时间,提高了效力,但电子市场繁华违后暗藏的问题,同样成为人们关注的焦点,凸起表现在海量信息的有效应用上,如何更为有效的管理应用潜伏信息,使他们的最大功效患上以施展,成为人们现在钻研的重点,数据发掘技术的发生,在必定程度上解决了这个问题,但它也存在着问题,需要不断改善。
数据发掘(Data Mining)就是从大量的、不完整的、有噪声的、隐约的、随机的原始数据中,提取隐含在其中的、人们事前不知道的、但又是潜伏有用的信息以及知识的进程。或者者说是从数据库中发现有用的知识(KDD),并进行数据分析、数据融会(Data Fusion)和决策支撑的进程。数据发掘是1门广义的交叉学科,它汇聚了不同领域的钻研者,特别是数据库、人工智能、数理统计、可视化、并行计算等方面的学者以及工程技术人员。
数据发掘技术在电子商务的利用
一 找到潜伏客户
在对于 Web 的客户走访信息的发掘中, 应用分类技术可以在Internet 上找到未来的潜伏客户。使用者可以先对于已经经存在的走访者依据其行动进行分类,并依此分析老客户的1些公共属性, 抉择他们分类的症结属性及互相间瓜葛。对于于1个新的走访者, 通过在Web 上的分类发现, 辨认出这个客户与已经经分类的老客户的1些公共的描写, 从而对于这个新客户进行正确的分类。然后从它的分类判断这个新客户是有益可图的客户群仍是无利可图的客户群,抉择是不是要把这个新客户作为潜伏的客户来对于待。客户的类型肯定后, 可以对于客户动态地展现 Web 页面, 页面的内容取决于客户与销售商提供的产品以及服务之间的关联。若为潜伏客户, 就能够向这个客户展现1些特殊的、个性化的页面内容。
二 实现客户驻留
在电子商务中, 传统客户与销售商之间的空间距离已经经不存在, 在 Internet 上, 每一1个销售商对于于客户来讲都是1样的, 那末使客户在自己的销售站点上驻留更长的时间, 对于销售商来讲则是1个挑战。为了使客户在自己的网站上驻留更长的时间, 就应当全面掌握客户的阅读行动, 知道客户的兴致及需求所在, 并依据需求动态地向客户做页面举荐, 调剂 Web 页面, 提供独有的1些商品信息以及广告, 以使客户满意, 从而延长客户在自己的网站上的驻留的时间。
三 改良站点的设计
数据发掘技术可提高站点的效力, Web 设计者再也不完整依托专家的定性指点来设计网站, 而是依据走访者的信息特征来修改以及设计网站结构以及外观。站点上页面内容的支配以及连接就如超级市场中物品的货架左右1样, 把拥有必定支撑度以及信任度的相干联的物品摆放在1起有助于销售。网站尽量做到让客户等闲地走访到想走访的页面, 给客户留下好的印象, 增添下次走访的机率。
四 进行市场预测
通过 Web 数据发掘, 企业可以分析顾客的将来行动, 容易评测市场投资回报率, 患上到可靠的市场反馈信息。不但大大降低公司的运营本钱, 而且便于经营决策的制订。
数据发掘在利用中面临的问题
一数据发掘分析变量的选择
数据发掘的基本问题就在于数据的数量以及维数,数据结构显的无比繁杂,数据分析变量即是在数据发掘中技术利用中发生的,选择适合的分析变量,将提高数据发掘的效力,尤其合用于电子商务中大量商品和用户信息的处理。
针对于这1问题,咱们完整可以用分类的法子,分析出不同信息的属性和呈现频率进而抽象出变量,运用到所选模型中,进行分析。
二数据抽取的法子的选择
数据抽取的目的是对于数据进行浓缩,给出它的紧凑描写,如乞降值、平均值、方差值、等统计值、或者者用直方图、饼状图等图形方式表示,更主要的是他从数据泛化的角度来讨论数据总结。数据泛化是1种把最原始、最基本的信息数据从低层次抽象到高层次上的进程。可采取多维数据分析法子以及面向属性的归纳法子。
在电子商务流动中,采取维数据分析法子进行数据抽取,他针对于的是电子商务流动中的客户数据仓库。在数据分析中时常要用到诸如乞降、共计、平均、最大、最小等汇集操作,这种操作的计算量尤其大,可把汇集操作结果预先计算并存储起来,以便用于决策支撑系统使用
三数据趋势的。预测
数据是海量的,那末数据中就会隐含必定的变化趋势,在电子商务中对于数据趋势的预测尤为首要,尤其是对于客户信息和商品信息公道的预测,有益于企业有效的决策,取得更多地利润。但如何对于这1趋势做出公道的预测,现在尚无统1标准可寻,而且在进行数据发掘进程中大量数据构成文本后格式的非标准化,也给数据的有效发掘带来了难题。
针对于这1问题的发生,咱们在电子商务中可以利用聚类分析的法子,把拥有类似阅读模式的用户集中起来,对于其进行详细的分析,从而提供更合适、更令用户满意的服务。聚类分析法子的优势在于便于用户在查看日志时对于商品及客户信息有全面及清晰的把握,便于开发以及执行未来的市场战略,包含自动给1个特定的顾客聚类发送销售邮件,为1个顾客聚类动态地扭转1个特殊的站点等,这不管对于客户以及销售商来讲都是成心义。
四数据模型的可靠性
数据模型包含概念数据模型、逻辑数据模型、物理模型。数据发掘的模型目前也有多种,包含采集模型、处理模型及其他模型,但不管哪一种模型都不是很成熟存在缺点,对于数据模型不同采取不同的方式利用。可能发生不同的结果,乃至差异很大,因而这就触及到数据可靠性的问题。数据的可靠性对于于电子商务来讲尤为首要作用。
针对于这1问题,咱们要保障数据在发掘进程中的可靠性,保证它的准确性与实时性,进而使其在最后的结果中的准确度到达最高,同时在利用模型进程中要尽可能全面的分析问题,防止片面,而且分析结果要由多人进行评价,从而最大限度的保证数据的可靠性。
五数据发掘触及到数据的私有性以及安全性
大量的数据存在着私有性与安全性的问题,尤其是电子商务中的各种信息,这就给数据发掘造成为了必定的阻碍,如何解决这1问题成了技术在利用中的症结。
为此相干人员在进行数据发掘进程中必定要遵照职业道德,保障信息的秘要性。
六数据发掘结果的不肯定性
数据发掘结果拥有不肯定性的特征,由于发掘的目的不同所以最后发掘的结果自然也会千差万别,以因而这就需要咱们与所要发掘的目的相结合,做出公道判断,患上出企业所需要的信息,便于企业的决策选择。进而到达提高企业经济效益,取得更多利润的目的。
数据发掘可以发现1些潜伏的用户,对于于电子商务来讲是1个不可或者缺的技术支撑,数据发掘的胜利请求使用者对于指望解决问题的领域有深入的了解,数据发掘技术在必定程度上解决了电子商务信息不能有效应用的问题,但它在运用进程中呈现的问题也亟待人们去解决。相信数据发掘技术的改良将推动电子商务的深刻发展。
参考文献:
[一]胡迎松,宁海霞。 1种新型的Web发掘数据采集模型[J]。计算机工程与科学,二00七
[二] 章寒雁,杨瑞珍。数据发掘技术在电子商务中的钻研与利用[J]。计算机与网络,二00七
[三]董德民。 面向电子商务的Web使用发掘及其利用钻研[J]。中国管理信息化,二00六
[四] 尹中强。电子商务中的 Web 数据发掘技术利用[J]。计算机与信息技术,二00七
数据挖掘论文 篇七
题目:大数据挖掘在智游应用中的探究
摘要:大数据和智游都是当下的热点, 没有大数据的智游无从谈“智慧”, 数据挖掘是大数据应用于智游的核心, 文章探究了在智游应用中, 目前大数据挖掘存在的几个问题。
关键词:大数据; 智游; 数据挖掘;
1引言
随着人民生活水平的进一步提高, 旅游消费的需求进一步上升, 在云计算、互联网、物联网以及移动智能终端等信息通讯技术的飞速发展下, 智游应运而生。大数据作为当下的热点已经成了智游发展的有力支撑, 没有大数据提供的有利信息, 智游无法变得“智慧”。
2大数据与智游
旅游业是信息密、综合性强、信息依存度高的产业[1], 这让其与大数据自然产生了交汇。2010年, 江苏省镇江市首先提出“智游”的概念, 虽然至今国内外对于智游还没有一个统一的学术定义, 但在与大数据相关的描述中, 有学者从大数据挖掘在智游中的作用出发, 把智游描述为:通过充分收集和管理所有类型和来源的旅游数据, 并深入挖掘这些数据的潜在重要价值信息, 然后利用这些信息为相关部门或对象提供服务[2]。这一定义充分肯定了在发展智游中, 大数据挖掘所起的至关重要的作用, 指出了在智游的过程中, 数据的收集、储存、管理都是为数据挖掘服务, 智游最终所需要的是利用挖掘所得的有用信息。
3大数据挖掘在智游中存在的问题
2011年, 我国提出用十年时间基本实现智游的目标[3], 过去几年, 国家旅游局的相关动作均为了实现这一目标。但是, 在借助大数据推动智游的可持续性发展中, 大数据所产生的价值却亟待提高, 原因之一就是在收集、储存了大量数据后, 对它们深入挖掘不够, 没有发掘出数据更多的价值。
3.1 信息化建设
智游的发展离不开移动网络、物联网、云平台。随着大数据的不断发展, 国内许多景区已经实现Wi-Fi覆盖, 部分景区也已实现人与人、人与物、人与景点之间的实时互动, 多省市已建有旅游产业监测平台或旅游大数据中心以及数据可视化平台, 从中进行数据统计、行为分析、监控预警、服务质量监督等。通过这些平台, 已基本能掌握跟游客和景点相关的数据, 可以实现更好旅游监控、产业宏观监控, 对该地的旅游管理和推广都能发挥重要作用。
但从智慧化的发展来看, 我国的信息化建设还需加强。虽然通讯网络已基本能保证, 但是大部分景区还无法实现对景区全面、透彻、及时的感知, 更为困难的是对平台的建设。在数据共享平台的建设上, 除了必备的硬件设施, 大数据实验平台还涉及大量部门, 如政府管理部门、气象部门、交通、电子商务、旅行社、旅游网站等。如此多的部门相关联, 要想建立一个完整全面的大数据实验平台, 难度可想而知。
3.2 大数据挖掘方法
大数据时代缺的不是数据, 而是方法。大数据在旅游行业的应用前景非常广阔, 但是面对大量的数据, 不懂如何收集有用的数据、不懂如何对数据进行挖掘和利用, 那么“大数据”犹如矿山之中的废石。旅游行业所涉及的结构化与非结构化数据, 通过云计算技术, 对数据的收集、存储都较为容易, 但对数据的挖掘分析则还在不断探索中。大数据的挖掘常用的方法有关联分析, 相似度分析, 距离分析, 聚类分析等等, 这些方法从不同的角度对数据进行挖掘。其中, 相关性分析方法通过关联多个数据来源, 挖掘数据价值。但针对旅游数据, 采用这些方法挖掘数据的价值信息, 难度也很大, 因为旅游数据中冗余数据很多, 数据存在形式很复杂。在旅游非结构化数据中, 一张图片、一个天气变化、一次舆情评价等都将会对游客的旅行计划带来影响。对这些数据完全挖掘分析, 对游客“行前、行中、行后”大数据的实时性挖掘都是很大的挑战。
3.3 数据安全
2017年, 数据安全事件屡见不鲜, 伴着大数据而来的数据安全问题日益凸显出来。在大数据时代, 无处不在的数据收集技术使我们的个人信息在所关联的数据中心留下痕迹, 如何保证这些信息被合法合理使用, 让数据“可用不可见”[4], 这是亟待解决的问题。同时, 在大数据资源的开放性和共享性下, 个人隐私和公民权益受到严重威胁。这一矛盾的存在使数据共享程度与数据挖掘程度成反比。此外, 经过大数据技术的分析、挖掘, 个人隐私更易被发现和暴露, 从而可能引发一系列社会问题。
大数据背景下的旅游数据当然也避免不了数据的安全问题。如果游客“吃、住、行、游、娱、购”的数据被放入数据库, 被完全共享、挖掘、分析, 那游客的人身财产安全将会受到严重影响, 最终降低旅游体验。所以, 数据的安全管理是进行大数据挖掘的前提。
3.4 大数据人才
大数据背景下的智游离不开人才的创新活动及技术支持, 然而与专业相衔接的大数据人才培养未能及时跟上行业需求, 加之创新型人才的外流, 以及数据统计未来3~5年大数据行业将面临全球性的人才荒, 国内智游的构建还缺乏大量人才。
4解决思路
在信息化建设上, 加大政府投入, 加强基础设施建设, 整合结构化数据, 抓取非结构化数据, 打通各数据壁垒, 建设旅游大数据实验平台;在挖掘方法上, 对旅游大数据实时性数据的挖掘应该被放在重要位置;在数据安全上, 从加强大数据安全立法、监管执法及强化技术手段建设等几个方面着手, 提升大数据环境下数据安全保护水平。加强人才的培养与引进, 加强产学研合作, 培养智游大数据人才。
参考文献
[1]翁凯。大数据在智游中的应用研究[J]。信息技术, 2015, 24:86-87.
[2]梁昌勇, 马银超, 路彩虹。大数据挖掘, 智游的核心[J]。开发研究, 2015, 5 (180) :134-139.
[3]张建涛, 王洋, 刘力刚。大数据背景下智游应用模型体系构建[J]。企业经济, 2017, 5 (441) :116-123.
[4]王竹欣, 陈湉。保障大数据, 从哪里入手?[N]。人民邮电究, 2017-11-30.
数据挖掘论文的参考文献 篇八
[1]刘莹。基于数据挖掘的商品销售预测分析[J].科技通报。2014(07)
[2]姜晓娟,郭一娜。基于改进聚类的电信客户流失预测分析[J].太原理工大学学报。2014(04)
[3]李欣海。随机森林模型在分类与回归分析中的应用[J].应用昆虫学报。2013(04)
[4]朱志勇,徐长梅,刘志兵,胡晨刚。基于贝叶斯网络的客户流失分析研究[J].计算机工程与科学。2013(03)
[5]翟健宏,李伟,葛瑞海,杨茹。基于聚类与贝叶斯分类器的网络节点分组算法及评价模型[J].电信科学。2013(02)
[6]王曼,施念,花琳琳,杨永利。成组删除法和多重填补法对随机缺失的二分类变量资料处理效果的比较[J].郑州大学学报(医学版).2012(05)
[7]黄杰晟,曹永锋。挖掘类改进决策树[J].现代计算机(专业版).2010(01)
[8]李净,张范,张智江。数据挖掘技术与电信客户分析[J].信息通信技术。2009(05)
[9]武晓岩,李康。基因表达数据判别分析的随机森林方法[J].中国卫生统计。2006(06)
[10]张璐。论信息与企业竞争力[J].现代情报。2003(01)
[11]杨毅超。基于Web数据挖掘的作物商务平台分析与研究[D].湖南农业大学2008
[12]徐进华。基于灰色系统理论的数据挖掘及其模型研究[D].北京交通大学2009
[13]俞驰。基于网络数据挖掘的客户获取系统研究[D].西安电子科技大学2009
[14]冯军。数据挖掘在自动外呼系统中的应用[D].北京邮电大学2009
[15]于宝华。基于数据挖掘的高考数据分析[D].天津大学2009
[16]王仁彦。数据挖掘与网站运营管理[D].华东师范大学2010
[17]彭智军。数据挖掘的若干新方法及其在我国证券市场中应用[D].重庆大学2005
[18]涂继亮。基于数据挖掘的智能客户关系管理系统研究[D].哈尔滨理工大学2005
[19]贾治国。数据挖掘在高考填报志愿上的应用[D].内蒙古大学2005
[20]马飞。基于数据挖掘的航运市场预测系统设计及研究[D].大连海事大学2006
[21]周霞。基于云计算的太阳风大数据挖掘分类算法的研究[D].成都理工大学2014
[22]阮伟玲。面向生鲜农产品溯源的基层数据库建设[D].成都理工大学2015
[23]明慧。复合材料加工工艺数据库构建及数据集成[D].大连理工大学2014
[24]陈鹏程。齿轮数控加工工艺数据库开发与数据挖掘研究[D].合肥工业大学2014
[25]岳雪。基于海量数据挖掘关联测度工具的设计[D].西安财经学院2014
[26]丁翔飞。基于组合变量与重叠区域的SVM—RFE方法研究[D].大连理工大学2014
[27]刘士佳。基于MapReduce框架的频繁项集挖掘算法研究[D].哈尔滨理工大学2015
[28]张晓东。全序模块模式下范式分解问题研究[D].哈尔滨理工大学2015
[29]尚丹丹。基于虚拟机的Hadoop分布式聚类挖掘方法研究与应用[D].哈尔滨理工大学2015
[30]王化楠。一种新的混合遗传的基因聚类方法[D].大连理工大学2014
拓展阅读
什么是大数据?
“大数据”到底有多大?根据研究机构统计,仅在2011年,全球数据增量就达到了1.8ZB(即1.8万亿GB),相当于全世界每个人产生200GB以上的数据。这种增长趋势仍在加速,据保守预计,接下来几年中,数据将始终保持每年50%的增长速度。
纵观人类历史,每一次划时代的变革都是以新工具的出现和应用为标志的。蒸汽机把人们从农业时代带入了工业时代,计算机和互联网把人们从工业时代带入了信息时代,而如今大数据时代已经到来,它源自信息时代,又是信息时代全方位的深化应用与延伸。大数据时代的生产原材料是数据,生产工具则是大数据技术,是对信息时代所产生的海量数据的挖掘和分析,从而快速地获取有价值信息的技术和应用。
概括来讲,大数据有三个特征,可总结归纳为“3V”,即量(Volume)、类(Variety)、时(Velocity)。量,数据容量大,现在数据单位已经跃升至ZB级别。类,数据种类多,主要来自业务系统,例如社交网络、电子商务和物联网应用。时,处理速度快,时效性要求高,从传统的事务性数据到实时或准实时数据。
什么是数据挖掘?
数据挖掘,又称为知识发现(Knowledge Discovery),是通过分析每个数据,从大量数据中寻找其规律的技术。知识发现过程通常由数据准备、规律寻找和规律表示3个阶段组成。数据准备是从数据中心存储的数据中选取所需数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含规律找出来;规律表示则是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。
“数据海量、信息缺乏”是相当多企业在数据大集中之后面临的尴尬问题。目前,大多数事物型数据库仅实现了数据录入、查询和统计等较低层次的功能,无法发现数据中存在的有用信息,更无法进一步通过数据分析发现更高的价值。如果能够对这些数据进行分析,探寻其数据模式及特征,进而发现某个客户、群体或组织的兴趣和行为规律,专业人员就可以预测到未来可能发生的变化趋势。这样的数据挖掘过程,将极大拓展企业核心竞争力。例如,在网上购物时遇到的提示“浏览了该商品的人还浏览了如下商品”,就是在对大量的购买者“行为轨迹”数据进行记录和挖掘分析的基础上,捕捉总结购买者共性习惯行为,并针对性地利用每一次购买机会而推出的销售策略。
数据挖掘在供电企业的应用前景
随着社会的进步和信息通信技术的发展,信息系统在各行业、各领域快速拓展。这些系统采集、处理、积累的数据越来越多,数据量增速越来越快,以至用“海量、爆炸性增长”等词汇已无法形容数据的增长速度。
2011年5月,全球知名咨询公司麦肯锡全球研究院发布了一份题为《大数据:创新、竞争和生产力的。下一个新领域》的报告。报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于大数据的运用预示着新一波生产率增长和消费者盈余浪潮的到来。2012年3月29日,美国政府在白宫网站上发布了《大数据研究和发展倡议》,表示将投资2亿美元启动“大数据研究和发展计划”,增强从大数据中分析萃取信息的能力。
在电力行业,坚强智能电网的迅速发展使信息通信技术正以前所未有的广度、深度与电网生产、企业管理快速融合,信息通信系统已经成为智能电网的“中枢神经”,支撑新一代电网生产和管理发展。目前,国家电网公司已初步建成了国内领先、国际一流的信息集成平台。随着三地集中式数据中心的陆续投运,一级部署业务应用范围的拓展,结构化和非结构化数据中心的上线运行,电网业务数据从总量和种类上都已初具规模。随着后续智能电表的逐步普及,电网业务数据将从时效性层面进一步丰富和拓展。大数据的“量类时”特性,已在海量、实时的电网业务数据中进一步凸显,电力大数据分析迫在眉睫。
当前,电网业务数据大致分为三类:一是电力企业生产数据,如发电量、电压稳定性等方面的数据;二是电力企业运营数据,如交易电价、售电量、用电客户等方面的数据;三是电力企业管理数据,如ERP、一体化平台、协同办公等方面的数据。如能充分利用这些基于电网实际的数据,对其进行深入分析,便可以提供大量的高附加值服务。这些增值服务将有利于电网安全检测与控制(包括大灾难预警与处理、供电与电力调度决策支持和更准确的用电量预测),客户用电行为分析与客户细分,电力企业精细化运营管理等等,实现更科学的需求侧管理。
例如,在电力营销环节,针对“大营销”体系建设,以客户和市场为导向,省级集中的95598客户服务、计量检定配送业务属地化管理的营销管理体系和24小时面向客户的营销服务系统,可通过数据分析改善服务模式,提高营销能力和服务质量;以分析型数据为基础,优化现有营销组织模式,科学配置计量、收费和服务资源,构建营销稽查数据监控分析模型;建立各种针对营销的系统性算法模型库,发现数据中存在的隐藏关系, 为各级决策者提供多维的、直观的、全面的、深入的分析预测性数据, 进而主动把握市场动态,采取适当的营销策略,获得更大的企业效益,更好地服务于社会和经济发展。此外,还可以考虑在电力生产环节,利用数据挖掘技术,在线计算输送功率极限,并考虑电压等因素对功率极限的影响,从而合理设置系统输出功率,有效平衡系统的安全性和经济性。
公司具备非常好的从数据运维角度实现更大程度信息、知识发现的条件和基础,完全可以立足数据运维服务,创造数据增值价值,提供并衍生多种服务。以数据中心为纽带,新型数据运维的成果将有可能作为一种新的消费形态与交付方式,给客户带来全新的使用体验,打破传统业务系统间各自为阵的局面,进一步推动电网生产和企业管理,从数据运维角度对企业生产经营、管理以及坚强智能电网建设提供更有力、更长远、更深入的支撑。
数据挖掘专业就业方向
1.数据挖掘主要是做算法还是做应用?分别都要求什么?
这个问题太笼统,基本上算法和应用是两个人来做的,可能是数据挖掘职位。做算法的比较少,也比较高级。
其实所谓做算法大多数时候都不是设计新的算法(这个可以写论文了),更多的是技术选型,特征工程抽取,最多是实现一些已经有论文但是还没有开源模块的算法等,还是要求扎实的算法和数据结构功底,以及丰富的分布式计算的知识的,以及不错的英文阅读和写作能力。但即使是这样也是百里挑一的,很难找到。
绝大读书数据挖掘岗位都是做应用,数据清洗,用现成的库建模,如果你自己不往算法或者架构方面继续提升,和其他的开发岗位的性质基本没什么不同,只要会编程都是很容易入门的。
2.北上广以外的普通公司用的多吗?待遇如何?
实际情况不太清楚,由于数据挖掘和大数据这个概念太火了,肯定到处都有人招聘响应的岗位,但是二线城市可能仅仅是停留在概念上,很多实际的工作并没有接触到足够大的数据,都是生搬硬套框架(从我面试的人的工作经验上看即使是在北上广深这种情况也比较多见)。
只是在北上广深,可能接触到大数据的机会多一些。而且做数据挖掘现在热点的技术比如Python,Spark,Scala,R这些技术除了在一线城市之外基本上没有足够的市场(因为会的人太少了,二线城市的公司找不到掌握这些技术的人,不招也没人学)。
所以我推测二线城市最多的还是用JAVA+Hadoop,或者用JAVA写一些Spark程序。北上广深和二线城市程序员比待遇是欺负人,就不讨论了。
3.和前端后端程序员比有什么区别?有什么优缺点?
和传统的前后端程序员相比,最主要的去别就是对编程水平的要求。从我招聘的情况来看,做数据挖掘的人编程水平要求可以降低一个档次,甚至都不用掌握面向对象。
但是要求技术全面,编程、SQL,Linux,正则表达式,Hadoop,Spark,爬虫,机器学习模型等技术都要掌握一些。前后端可能是要求精深,数据挖掘更强调广博,有架构能力更好。
4.目前在学习机器学习,如果想找数据挖掘方面的工作应该学习哪些内容?
打基础是最重要的,学习一门数据挖掘常用的语言,比如Python,Scala,R;学习足够的Linux经验,能够通过awk,grep等Linux命令快速的处理文本文件。掌握SQL,MySQL或者PostgreSQL都是比较常用的关系型数据库,搞数据的别跟我说不会用数据库。
补充的一些技能,比如NoSQL的使用,Elasticsearch的使用,分词(jieba等模块的使用),算法的数据结构的知识。
5.hadoop,hive之类的需要学习吗?
我觉得应当学习,首先Hadoop和Hive很简单(如果你用AWS的话你可以开一台EMR,上面直接就有Hadoop和Hive,可以直接从使用学起)。
我觉得如果不折腾安装和部署,还有Linux和MySQL的经验,只要半天到一天就能熟悉Hadoop和Hive的使用(当然你得有Linux和MySQL的基础,如果没有就先老老实实的学Linux和MySQL,这两个都可以在自己的PC上安装,自己折腾)。
Spark对很多人来说才是需要学习的,如果你有JAVA经验大可以从JAVA入门。如果没有那么还是建议从Scala入门,但是实际上如果没有JAVA经验,Scala入门也会有一定难度,但是可以慢慢补。
所以总的来说Spark才足够难,以至于需要学习。
最后的最后我有一些建议。第一要对自己有一个系统的认知,自己的编程水平够么,SQL会用么,Linux会用么,能流畅的看英文文档么?
如果上面任何一个问题的答案是No,我都不建议直接转行或者申请高级的数据挖掘职位(因为你很难找到一个正经的数据挖掘岗位,顶多是一些打擦边球的岗位,无论是实际干的工作还是未来的成长可能对你的帮助都不大)。
无论你现在是学生还是已经再做一些前段后端、运维之类的工作你都有足够的时间补齐这些基础知识。
补齐了这些知识之后,第一件事就是了解大数据生态,Hadoop生态圈,Spark生态圈,机器学习,深度学习(后两者需要高等数学和线性代数基础,如果你的大学专业学这些不要混)。
它山之石可以攻玉,以上就是众鼎号为大家整理的8篇《数据挖掘论文》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。