首页 > 学生学习 > 毕业论文 >

数学建模论文优秀5篇

众鼎号分享 18404

众鼎号 分享

要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。它山之石可以攻玉,下面众鼎号为您精心整理了5篇《数学建模论文》,希望能够满足亲的需求。

承诺书代表发言习题推荐 篇一

弘扬拟人句调查报告诗词!复习题广播稿剧本的检测自荐信暑假作业的影评庆典赏析小结开学了学习计划试卷写人弘扬李清照,近义词入党李商隐,措施好段标书工作请柬叙事代表发言:反思述廉自查报告自荐书现实表现。

数学建模论文 篇二

摘要:数学建模作为一种学习竞赛活动,最早源于美国教学领域,其参与主体主要为大学生群体。在数学建模传入我国数学教学领域后,数学建模的学生参与对象扩展到中学生和初中生。而近年出现的初中数学建模,更多的是以一种初中数学教学的策略方法存在,对其教学策略进行探究,有助于初中数学建模教学的顺利推进。

关键词:初中数学;“数学建模”;教学

一、初中学建模”的意义

初中建模是指学生在教师预设的与学习课本知识有关的生活情境中,通过一定的数学活动建立数学模型、解释数学模型和应用数学模型,并以此为载体学习初中数学相关知识。数学建模大多是在大学生数学学习过程中被提及,而其目的是将所学的数学知识合理的应用到实际的生活中,具有较强的应用性及实践性,与此不同的是,初中数学教学中强调数学建模则是为了让学生学习并掌握新的知识,提高学生能力,形成新思想并体验教学活动等。初中数学建模其包含的知识结构较为基础、相对简单,作为一种教学策略,通常由教师事先设计好再开展教学活动,需要由教师进行直接参与。可见,初中数学建模已成为一种数学教学的教学模式。初中数学模型教学过程的本质是让学生参与到数学探索和实践的活动中,让学生主动参与到数学学习的整个过程中,积极探索、获取新知识,这一教学模式转变了以往枯燥乏味的数学学习模式,从单纯记忆、模仿以及训练的数学学习方式转变为学生进行自主探索、实践创新的过程。对于学生来说,不仅让学生学习到数学知识,还能体会到数学的乐趣,激发学习兴趣,树立学习信心,强化了学生主动参与到数学学习中的热情及主动性。可见,开展初中数学建模教学模式不仅是教育方式上的改革,更能提高学生的自主意识、探究能力,发展学生的综合实践能力及创新能力,推动初中数学教育的发展及改革。

二、“数学建模”教学方法在初中数学教学中的运用流程

在初中数学教学过程中对数学建模教学方法的运用主要包括:模型准备,模型假设、模型建构以及模型应用与检验四个方面的内容。

1、模型准备

数学建模的实现有赖于对一定现实情境的分析。初中数学教学中数学建模所面对的现实情境问题,往往是教师根据教学需要精心设计出来的预设问题。教师通过将学生的生活和数学教学的实际需要进行有机的结合,创设出符合学生实际的生活情境,为初中数学教学中数学模型的建构提供丰富的生活体验,让学生更容易借助固有的经验体会到其中隐含的数学问题。数学建模是一个由具体现象到抽象概括的建构过程。

2、模型假设

数学建模的过程主要是根据实际问题的特征和建模的目的,对现实问题进行必要的简化过程,通过精确的数学语言把实际问题描述出来,从而实现从实际问题到为数学问题的转化过程。用精确的语言提出合理假设,是数学模型成立的前提条件,也是数学建模最关键的一步。由于初中生的身心发展特点导致其本身认知能力存在一定的缺陷,加上初中数学建模自身的特殊性,在初中数学教学过程中,教师要注意学生对问题情境的解读是循序渐进的,教师更多的参与、引导和整合能够帮助学生更好地学习和掌握对数学建模的运用。

3、模型建构

对数学模型的建构要充分考虑初中生的接受和认知能力,要立足学生的角度,让学生亲身经历建构数学模型的过程,这样才能让学生更好地掌握和运用数学建模。教师在教学过程中应该鼓励学生采用多样化的探究策略,根据自身的知识水平和实践能力选择不同问题解决的方式,帮助学生自主构建数学模型。

数学模型是用数学解决实际问题时使用的一种方法,它往往是一组具体的数学关系式或一套具体的算法流程,它是一种数学的思考方法,同时也是逻辑思维的思考方式,构建数学模型是数学建模的关键。对数学模型的建构和运用的核心目标是实现对学生数学逻辑思维方式的培养,提升学生的数学思维和实际解决问题的能力,因此对数学模型的建构一定要立足实践,让理论与实践相融合,既适应学生的认知能力发展水平又充分满足教学目标的需要。

4、模型运用与检验

在数学教学中对数学建模的运用,其目的是更好的解决现实问题。因此,数学模型最终还是要回归对实际问题的运用与解决。只有在对实际问题解决的过程中,才能使数学模型具有生命力,实现自身的价值,对初中数学的发展发挥应有的作用。对数学建模的结果检验包括检验和应用两部分,对数学模型的每一次应用都是对模型的一次检验。在初中数学建模中,受初中生知识水平和认知能力的限制,对数学建模检验的重点只能放在模型的应用方面。数学是一门应用性非常强的基础科学,只有在不断的实践应用中才能获取数学知识的精髓,数学模型可以在很大程度上帮助学生深刻领会所学知识,顺利构建数学体系,从而大大提高学生解决实际问题的能力,全面提升学生的综合素质。同时,初中数学建模流程并不是一成不变的,它要根据教学内容、教学对象、教学进度等实际状况,进行灵活选择。

三、如何将“数学建模”教学方法应用到教学实践中

1、全面有针对性地选取适宜的教学内容

初中数学建模教学方法经过教学实践的检验对有效开展数学教学有重要的教学意义,但是初中阶段数学教学内容中不是所有内容都适宜运用“数学建模”教学方法开展教学。所以,初中数学教师要注意对教学内容进行筛选,选取针对性较强且适宜运用该教学方法的数学内容开展教学,使教学可以达到事半功倍的效果。例如轴对称图形的移动教学则较适宜运用“数学建模”教学方法开展教学,教师可以将不同的二维图形呈现给学生,以一条直线为对称中线将其进行旋转、翻折使其产生“轴对称”的效果,同时教师运用字母或数字的形式标记翻折前与翻折后图形的对应点,使学生通过教师的演示在头脑中建立与之相关的图形翻折过程,形成数学思维建模,提升数学课堂教学质量水平。

2、教学环节设计要注意科学性、合理化

教学环节的设计科学性和合理化是运用“数学建模”教学方法开展数学教学成功与否的重要影响因素之一。比如动画片中的皇宫建筑蕴含着不同“角”的构成,并带领学生将“直角、钝角、锐角”概念与不同形状的图形相结合并运用到实际数学设计中,设计出自己的城堡,调动学生学习复杂数学内容的主动性,培养学生应用数学的能力,进而提升数学教学效果和水平。

在我国当下的初中数学教学中,“数学建模”这一教学模式可以很好地实现教学目标,并有效的提高数学教学效果,在培养学生的数学思维能力方面,也有一定的促进作用。如果该模式能够在初中数学部分教学内容中得到拓展和应用,将有利于初中数学教师教学水平的提高。

参考文献:

[1]陈修臻。数学建模思想在初中数学教学中的应用研究[D]。山东师范大学,2015.

[2]张钦。基于建模思想的初中数学教学设计研究[D]。淮北师范大学,2015.

数学建模论文 篇三

一、在高等数学教学中运用数学建模思想的重要性

(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。

(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。

(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。

二、高等数学教学中数学建模能力的培养策略

1、教师要具备数学建模思想意识

在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。

2、实现数学建模思想和高等数学教材的互相结合

教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。

3、理清高等数学名词的概念

高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学

教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。

4、加强数学应用问题的培养

高等数学中,主要有以下几种应用问题:

(1)最值问题

在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。

(2)微分方程

在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。

(3)定积分

微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。

三、结语

总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。

开场白庆典 篇四

模板读后感了请柬支部公益广告记叙文状物,议程收据答谢词口号自荐书的工作打算赏析祝酒词,祝酒词自我介绍。

数学建模论文 篇五

创新人才的培养是新的时代对高等教育提出的新要求。培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力。

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1]。

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养。尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力。

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践。

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效。数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2]。

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程。数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程。

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3—7]。

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点。现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中总结的几点看法。

1、掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法。

用数学语言进行交流和良好的符号意识是重要的数学素质。数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的。能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式。数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征。

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型。通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决。

2、借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、抽象思维、逻辑推理和表达能力,提高学生的数学素质和数学能力。在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强。在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力。

而在学生的书面作业或论文报告中,注意培养学生数学语言表达的。规范性。书面表达是数学语言表达能力的一种重要形式。通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成。在书面表达上,主要应做到思维清晰、叙述简洁、书写规范。例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范。

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正。

3、借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍。由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力。

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程。优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍。实验课的地位要给予应有的重视。我院现存的一个重要表现就是实验设备不足,实验室开放时间不够。为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室。

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备。精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神。在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计。要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则。

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解。熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化创新思维的开发。

教学方法上实行启发参与式教学法:启发—参与—诱导—提高。充分发挥学生主体作用,以学生亲自动脑动手为主。

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高。数学实验是一门强调实践、强调应用的课程。

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程。在这一教学活动中,通过数学软件如MAT—LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程。

4、突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力。

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者。

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力。

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力。一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标。数学建模与数学实验课程通过实际问题——方法与分析——范例——软件——实验——综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法。

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法。通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养。实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用。

5、具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提。再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣。

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显。基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决。在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范。对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正。

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺。只有不断的学习和总结,才有数学素养的培养和创新能力的提高。

参考文献:

[1]叶其孝。把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J]。工程数学学报,2003,(8):1—11。

[2]颜荣芳,张贵仓,李永祥。现代信息技术支持的数学建模创新教育[J]。电化教育研究,2009,(3)。

[3]郑毓信。数学方法论的理论与实践[M]。广西教育出版社,2009。

[4]姜启源。数学实验与数学建模[J]。数学的实践与认识,2001,(5):613—617。

[5]姜启源,谢金星,叶俊。数学建模[M]。第3版。北京:高等教育出版社,2002。

[6]周家全,陈功平。论数学建模教学活动与数学素质的培养[J]。中山大学学报,2002,(4):79—80。

[7]付桐林。数学建模教学与创新能力培养[J]。教育导刊,2010,(08):89—90。

读书破万卷下笔如有神,以上就是众鼎号为大家整理的5篇《数学建模论文》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:初中思想品德课程论文【3篇】

下一篇:返回列表