首页 > 学生学习 > 毕业论文 >

材料成型论文(最新4篇)

众鼎号分享 15141

众鼎号 分享

从整体来看,材料成型及控制工程专业涉及面较广,涵盖了冶金、机械以及控制等不同学科,具有很强的理论性,同时有着浓厚的工程应用色彩。众鼎号为您带来了4篇《材料成型论文》,希望能够给您提供一些帮助。

关于材料成型的论文 篇一

浅谈新型金属材料成型加工技术

【摘 要】随着现代科学技术的发展以及新型金属材料的应用,新型金属材料成型加工技术也得到了相应的发展。在本文中,笔者将基于金属材料成型加工的实际工作经验,在对新型金属材料固有特性与加工特性深入分析的基础上,对当前的七种成型加工技术进行综合探究,以期促进新型金属材料成型加工技术的发展。

【关键词】新型金属材料;成型加工;加工技术;技术创新

当前,新型的金属复合材料已经得到了广泛的应用,复合型材料虽然成本与技术要求都较高,但其所具有的材料特性相较于普通的金属材料具有更高的性能优势,成为工程建设的重要材料。除此之外,更多的零部件制作采用新型金属材料,也催生了很多先进的成型加工技术。那么在新时代背景下,究竟如何才能进一步存进新型金属材料成型加工技术的发展与完善,是当前的材料工程师应该重点关注的问题。

1 关于新型金属材料的综述

1.1 新型金属材料的固有特性

新型金属材料的种类繁多,都涵盖在合金的范畴之内,金属材料的固有特性包括以下几点:新型金属材料具有更好的延展性;新型金属的化学性较为活泼;新型金属具有特有的光泽与色彩等。当前应用广泛的新型金属材料包括形状记忆合金、高温合金、贮氢合金以及非晶态合金等。

1.2 新型金属材料的加工特性

1.2.1 焊接性

焊接性是金属成型加工的基础特性之一,所指是金属材料通过焊接来完成二次成型并满足设计要求。新型金属材料的焊接性良好,在焊接时可以保证没有气孔、没有裂缝等。新型金属材料具有好的焊接性通常收缩小、导热性能好。

1.2.2 锻压性

锻压性对于金属的成型加工的关键因素,金属具有的锻压性能够使金属在锻压的过程中承受塑性变形,并有效缓解冲压。除此之外,金属的锻压性还会受到加工条件的影响。

1.2.3 铸造性

金属所具有的铸造性包括收缩性、流动性、偏析以及裂纹敏感性等具有相关性,由于新型金属材料均为合金,因此其中含有的高熔点元素会金属的流动性降低,给材料成型加工增加了一定的难度。

2 新型金属材料成型加工的原则分析

应用于工程施工以及企业产品中的新型金属材料通常具备耐磨性良好、硬度高的特性,具备这些特性的新型金属材料能够满足工程及产品的成型与质量要求,却也为成型加工带来了一定的难度。通常情况下,为了保障金属材料成型加工的质量,针对不同的金属会采用不同的加工技术。例如有些特殊的金属复合金属材料只有通过金属基复合材料的纤维性增强,才能实现成型加工。而其他特殊的新型金属材料在进行成型加工时需要更加复杂的技术,因此,在进行二次加工时要做到因材料的不同而采取有针对性的技术,做到具体问题具体分析,从而切实推进新型金属材料成型加工的实践进程。

当前,新型金属材料的成型加工通常会涉及到焊接、挤压、铸造、超塑成型以及切削加工等加工技术,笔者通在实际的工作中发现,加工过程中的任何一个小的失误或者纰漏,都会对材料的成型造成一定的影响,因此,在加工之前,一定要对金属材料的物理及化学属性进行深入的、透彻的了解,从而能够基于其可塑性实现成型加工,这也是当前选择复合材料的重要原则与指标之一。

3 新型金属材料成型加工的技术

3.1 粉末冶金成型加工技术

粉末冶金法是应用于新型金属材料成型加工中的最早的技术之一,主要用于制造复合材料零件、颗粒制造以及金属基复合材料中的晶须增强等,且以上成型加工可以通过这一方法直接完成。粉末冶金加工技术的适用范围主要是针对尺寸较小、形状不复杂以及较为精密的零件,因为粉末冶金技术的优势在于成型制作过程中能够根据实际中的需求来进行增强相含量的调节,即颗粒含量在半数以上;制作中的增强相较为精密,且组织更加细密,除此之外,粉末冶金法还具有界面反应少的优势,有效提升了工作效率。例如,美国的DWA公司在设备支撑架以及自行车架等的制作方面就充分应用了这一方法。

3.2 铸造成型技术法

铸造成型技术法已经经过了实践的检验,成为当前最为成熟的铸造技术。铸造成型法能够满足笔者在上文中所提及的加工原则,还被广泛应用于复合材料零件的生产与制作之中。当前,随着实际加工情况复杂性的增加,使得铸造成型法滞后性明显,具体的参数设置以及工艺方法选择等都必须进行改进,在成型加工的过程中,流动性的增加以及熔体的粘度等都会受到材料中颗粒增加的影响,除此之外,高温也会使材料的化学属性发生变化。针对以上出现的问题,具体有效的解决方法在于针对不同的材料成型加工采取熔模铸造、压铸、金属型铸造以及砂型铸造等方法。

3.3 机械加工铸造法

机械加工铸造法通常利用铣、车、以及钻等方法进行金属基复合材料的加工,与其他金属的加工相同的是在精加工铝基复合材料中采用金刚石道具来进行成型加工。具体的方法有以下几种:首先是铣削的方法,具体的材料包括l5%~20%的粘结剂、聚金刚石刀具以及端面铣刀,在进行铣削时需要先利用切削液来实现冷却,并增加铣削颗粒;其次是车削的方法,利用乳化液进行冷却,刀具为硬质合金刀具;最后则是钻削的方法,利用外切削液进行冷却,通常采用PCD镶片麻花钻头。

3.4 电切割技术法

电切割法是指在成型加工过程中根据零件形状的负极来决定采取怎样的几何切割形状,在材料切割时利用正极溶解的基本方式来实现材料的切割。对于零件成型加工中存在的残屑以及未溶解的纤维等,可以利用零件与负极之间的间隙来实现清洗。与传统的放电加工法相比,显著优势在于在介电流液中浸入移动的电极线,从而能够通过液体压力冲刷以及局部高温实现对零件的成型加工。利用电切割法进行成型加工时,非导体复合材料通常会由于放电效果差而产生一定的影响。如在铝基复合材料加工时,由于切割速度慢以及切口粗糙等问题,就不能沿用传统的切割参数。

3.5 焊接技术法

焊接技术法作为成型加工的重要方法之一,通常被应用于金属及复合材料成型构建中,例如航天飞机、汽车传动轴以及自行车等。焊接熔池的流动性以及粘度等易发生变化,并受到增加物的影响。成型加工中,金属的化学反应通常发生在基体金属与增强物之间,对焊接速度造成了一定的限制,面对这一问题,通常的解决办法有以下几种:首先是基于惯性摩擦,将其中一个部件进行轴对称旋转;其次是熔化焊的基本处理方法;除此之外,还可以利用扩散焊的方法进行焊接。

3.6 模锻塑性成型法

模锻塑性成型法在镁基复合材料与铝基础复合材料中有广泛的应用,成型法涉及到超速成型、模锻以及挤压等方法。利用此方法生产出来的零器件性能好、组织更加细密。但是在应用的过程中需要注意以下几方面:第一方面是通过挤压温度的适度提高,可以对应提高金属材料的塑性;第二方面是在模具表面进行涂层或者使用润滑剂等实现摩擦条件的改善,降低材料成型的难度;第三方面则是挤压速度受到增加物的影响,为了防止零件产生横向裂纹,一定要控制好挤压速度。

4 结语

新型金属材料作为一种现代化的先进材料,拥有更为广泛的实际应用价值,而其所具有的高模量、高韧性以及高强度的特性使其更具生命力。成型加工作为二次加工,涵盖了金属学、物理学、传热学等多个学科,这就使得在在成型加工时需要进行更加深入的、广泛的探究。笔者相信,在现代科学技术迅速发展的今天,通过对新型金属材料成型加工技术的探究,能够为金属材料的广泛应用提供可能,同时为金属产业结构的调整与优化奠定基础。

【参考文献】

[1]候立强,郭秋颖。新型金属材料成型加工技术分析[J]。科技研究,2014(5):124.

[2]张利民。新型金属材料成型加工技术研究[J]。科技咨询,2012(16):113-114.

猜你喜欢:

材料成型论文范文二:材料成型控制工程论文 篇二

1、加工材料技术成型的前景

市场竞争越来越剧烈当下,过时的理论成果正在一次又一次地经受着实践的冲击和实际情景的考验,对精益求精材料加工技术孜孜不倦的追求一直是各大生产供应者的目标,在社会和时代快速发展的同时,此类技术也正不断地在改进中成长成熟,现如今,不管是国内还是国外,在材料加工方面都被精确材料加工所取代,而广泛的应用范围内,诸如汽车制造业这种全球热门的经济产业,也离不开这种技术,甚至于说是渗透到细致入微的细节处,可以说使用到无处不在。经济高速发展的全球化经济模式广泛覆盖下,伴随的是市场竞争的与日俱增,世界各地的材料供应商正在绞尽脑汁地跟上同行业者脚步,并将产品研发视为企业安身立命之本,人们绞尽脑汁地寻求着一种更为高效完善的材料加工技术,纷纷聚焦在具有自由成型快速特点的加工技术上。是否能跟上时代的发展速度是检验企业韧性的最好标尺,实验性的理论成果如果不在实际操作中应用实践的话,无异于是纸上谈兵,因此,科研人员更注重在生产制作过程中拉近与真实环境的距离,基于现实意义的研究才能有效地启发促进企业技术的更新换代。

2、非金属材料的初步制作和控制工程模具再次加工工艺

(1)制作非金属的材料和控制技术并不是一蹴而就的

究其分门别类就有好几种,有一种是由其注射成型的,专用的注射机器升温加热,使里面预留的基础坯料发生形态变化,致使其成为液态,然后以一种具有高压性的材料做辅助,助力融化后的坯料注入模具塑形的整体型腔之内,等待片刻,直到其发凉后冷却,就可以由此得到需求的相关元器件。这样一种看似倒来倒去的技术方法,实则在产量高效率的同时,还有快速生产的突出特点,尤其适用于低人力消耗的自动化操作,可以生产制作结构内部复杂的零部件,对于大型厂房内的流水线生产再合适不过了。

(2)还有一种方法是通过物理方式的挤出成型

旋塞和螺杆在此起到了至关重要的作用,旋塞的挤压效用以及螺杆的切割效用,它们一起作用在形态固定的坯料上,并对其经行融化和再次融合的过程,施加相应压力穿过模具,等待其冷却凝固以后,就能够获取所需元件,这种方式可以简称为挤出成型,而它与众不同的是可以连续不断地提供生产动力,生产的效率也高于普通技术,更为难得的一点在于在“量”的满足上还可以保证“质”,可以说是一种保质保量的方法,其使用的覆盖面也不单一,对设备器材没有太多严苛的限制,如果企业从事相关产业,这种技艺是一种投资相对较少,而成效立竿见影的选择,“性价比”不俗。

(3)还有一种不同于以上两种技术的方式

是把需要的材料放置在密封关闭的模型器具环境里,在压强的增加过程中,再辅以固体化的技术,遂材料完整成型。这种方法可以一个工作流程下完成制作若干数量的元器件,生产出来的成品形态较为固定,有效地克服了收缩性这个元件顽疾,还攻克了以往元器件变形的通病,性能较为优良,即使有如此不可取代的优势,缺陷也十分明显,生产制作的相对周期较之同类型技术而言,周期拉长了许多,生产的效率自然而言地有所降低。

3、结语

在时代发展日新月异的今天,科学技术正不断发展,科学生产力在人类社会竞争激烈的背景下,成为一个不得不让人重视的因素。科学技术在生活中体现得淋漓尽致,促使社会稳步向前,人们生活水平提高,选择广泛的同时带来市场竞争加剧,高度重视科学技术的研发是企业适应社会发展的不二法门。材料成形技术在度过一个蜕变的过程,如何有效地提升生产效率,改良升级加工工艺不仅是企业发展的动力,更是社会前进的需要。

关于材料成型的论文 篇三

浅析pc材料特性及成型工艺

【摘要】PC虽有很多优点,但其的一些特点限制了其在工程塑料方面的应用。文章利用相容剂,采用两步试验合成工艺,经过试验确定了ABS含量以及增容剂对合金材料的影响,合成了高性能的PC/ABS合金材料。

【关键词】聚碳酸酯;成型条件;工程塑料

聚碳酸酯(PC)以良好的尺寸稳定性、耐热耐化学性,以及较好的机电性能,被广泛的应用于汽车、飞机、电子、电气、家用电器、信息、机械等领域。但由于脂肪族和脂肪族-芳香族聚碳酸酯的机械性能较低,流动性差,使得其加工困难,难于制成大型制品,且制品残余应力大,易发生应力开裂。除此之外,PC的耐溶剂性和耐磨损性较差,且价格偏高,从而限制了其在工程塑料方面的应用。因此,对PC进行改性已成为业内急需解决的问题。PC的共混合金化法是目前常用的PC改性方法之一,它能够有效的改善PC的性能,使得PC能够在工程塑料方面领域更为广泛的应用。

一、PC 聚碳酸酯化学和物理特性

聚碳酸酯 (PC) 树脂是一种性能优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变和尺寸稳定性好,耐热、吸水率低、无毒、介电性能优良,是五大工程塑料中唯一具有良好透明性的产品,也是近年来增长速度最快的通用工程塑料。目前广泛应用于汽车、电子电气、建筑、办公设备、包装、运动器材、医疗保健等领域,随着改性研究的不断深入,正迅速拓展到航空航天、计算机、光盘等高科技领域。

PC是一种非晶体工程材料,具有特别好的抗冲击强度、热稳定性、光泽度、抑制细菌特性、阻燃特性以及抗污染性。PC的缺口伊估德冲击强度(otched Izod impact stregth)非常高,并且收缩率很低,一般为0.1%~0.2%。 PC有很好的机械特性,但流动特性较差,因此这种材料的注塑过程较困难。在选用何种品质的 PC材料时,要以产品的最终期望为基准。如果塑件要求有较高的抗冲击性,那么就使用低流动率的PC材(TodayHot)料;反之,可以使用高流动率的PC材料,这样可以优化注塑过程。

二、PC注塑选材

PC有很好的机械特性,但流动特性较差,因此这种材料的注塑过程较困难。在选用何种品质的PC材料时,要以产品的最终期望为基准。如果塑件要求有较高的抗冲击性,那么就使用低流动率的PC材料;反之,可以使用高流动率的PC材料,这样可以优化注塑过程。PC的最大特征是非晶型透明塑料,成型后的尺寸稳定性好,从低温到高温均能保持稳定的机械强度,它的拉伸与形变特性比较接近金属材料,存在着明显的弹性极限。因此PC作为结构材料应用时的强度计算可以参照金属材料的公式,在PC的开发初期曾大量用作代替金属的轻量化透明材料。

三、PC树脂的成型工艺

PC树脂的工艺流程比较繁琐,下面就PC树脂的工艺特点和流程及影响因素进行相关介绍:

(一)PC树脂的工艺特点

1、聚集态特性属于无定型非结晶性塑料,无明显熔点,熔体黏度较高。玻璃化温度140°~150℃,熔融温度215℃~225℃,成型温度250℃~320℃。2、在正常加工温度范围内热稳定性较好,300℃长时停留基本不分解,超过340℃开始分解,粘度受剪切速率影响较小。3、流变性接近牛顿性液体,表观黏度受温度的影响较大,受剪切速率的影响较小,相对分子质量的增大而增大。PC分子链中有苯环,所以分子链刚性大。4、PC的抗蠕变性好,尺寸稳定性好;但内应力不易消除。5、PC高温下遇水易降解,成型时要求水分含量在0.02%以下。6、制品易开裂。

(二)PC树脂的工艺流程及影响:PC树脂的成型工艺控制在成型加工上,水分控制及成型加工条件之选择是影响成型品质最重要的两个因素,兹分述如下:

1、水分控制 PC类塑胶即使用遇到非常低之水分亦会产生水解而断键、分子量降低和物性强度降低之现象,因此在成型加工前应严格地控制PC树脂之水分在0.02%以下,以避免成型品的机械强度降低或表面产生气泡、银纹等异常外观。为避免水分所产生异常之情况,聚碳酸酯在加工前,应先经热风干燥3~5h以上,温度定为120℃,或者用除湿干燥机来处理水分。2、原料选择 为满足各种成型工艺的需求,PC树脂有不同熔体流动速率的规格。

通常熔体流动速率介于5~25g/10min都可适用于注塑成型。但是其最佳加工条件因注塑机种类、成型品之形状以及PC树脂规格不同而有相当之差异,应根据实际情况加以调整。3、注塑机选择要点 锁模压力:以成品投影面积每cm2*0.47~0.48T(或每平方寸*3~5T)机台大小:成品重量约为注塑机容量的40~60%为最佳,如机台以PS来表示容量(盎司)时,需减少10%,始为使用PC之容量,(1盎司=28.3公克)。螺杆:螺杆长度最少应有15个直径长,其L/D为20:1最佳,压缩比宜1.5:1至30:1。螺杆前端之止流阀应采用滑动环式,其树脂流动间隙最少应有3.2mm。喷嘴:尖端开口最少有4.5mm直径。

若成品重量为5.5kg以上,则喷嘴直径应为9.5mm以上,另外,尖端开口需比浇口直径少0.5~1mm,且段道愈短愈好,约为5mm。4、成型条件要点:熔融温度与模温:最佳的成型温度设定与很多因素有关,如注塑机大小,螺杆组态、模具及成型品的设计和成型周期等。一般而言,为了让塑料渐渐在熔融,在料管后断/进料区设定较低的温度,而在料管前段设定较高的温度。但若螺杆设计不当或L/D值过小。

逆向式的温度设定亦可。模温方面,高模温可提供较佳的表面外观,残留应力也会较小,且对较薄或较长的成型品也较填满;而低模温则能缩短成型周期。螺杆回转速度:在40~70rpm较佳,但需视机台与螺杆设计而调整。注射压力:根据制品壁厚程度可采取85~140kg/cm2。背压:一般设定愈低愈好,便为求进料均匀,建议使用3~14kg/cm2。注射速度:射速度浇口设计有很大关系。使用直接浇口或边缘浇口时,为防止日晖现象和波流痕现象,则应用较慢这射速,另外,如成品厚度在5mm以上,为避免气泡或凹陷慢速射出会有帮助。一般而言,射速原则为薄者快,厚者慢。从注塑切换到保压,保压要尽量低。以免成型品发生残留应力。而残留应力可用退火方式来解除或减轻,条件是120~130℃约三十分钟至一小时。

四、PC合金的应用

(一)PC/ABS合金:PC与ABS共混物可以综合PC和ABS的优良性能,提高ABS的耐热性、抗冲击和拉伸强度,降低PC成本和熔体粘度,改善加工性能,减少制品内应力和冲击强度对制品厚度的敏感性。目前PC/ABS合金发展迅速,全球产量约为80万吨/年左右,世界各大公司纷纷开发推出PC/ABS合金新品种,如阻燃、玻纤增强、电镀、耐紫外线等品种,尤其是在汽车工业中得到广泛应用,另外还广泛应用于计算机、复印机和电子电气部件等。

(二)PC/PBT合金:PBT具有优异的力学性能、耐化学腐蚀及易成型等特点,将PBT与PC共混制得合金材料可以提高PC流动性、改善了加工性能和耐化学药品性。由于PBT是结晶聚合物,与PC共混时易发生相分离,界面粘结不好,因而其冲击韧性不理想,通常加入一定量弹性体以提高共混物的冲击强度。如热塑弹性体乙烯/甲基丙烯酸酯共聚物的锌盐,对PC/PBT共混体系起到增容增韧作用。

(三)PC/PET合金:PET具有较好的力学性能和耐化学药品性,PC/PET既有PC的刚性和耐热性,又有PET的耐溶剂性,而且PET的加入还能改善PC的加工流动性。在PC/PET共混体系中,加入弹性体如聚丙烯酸丁酯,可以提高合金的韧性和抗冲击强度。

五、结语

目前关于PC材料的研究与开发日新月异,还有多种PC合金不断被开发并推向市场,可以明显提高PC弯曲弹性模量、拉伸强度等;随着PC材料的研究不断进展,PC的应用范围将不断扩大。

材料成型论文范文一:工科高校材料成型控制工程论文 篇四

一、设计性实验选题的“五个原则”

此外,设计性实验选题时,在把握综合性、创造性、应用性、自主性和灵活性这五个原则外,还要合理掌控学生专业知识结构、专业知识掌握程度及学生自主实验的可操作性等方面。

二、设计性实验选题的“四个方向”

材料成型与控制工程专业设计性实验选题在把握“五个原则”的前提下,通常可通过“四个方向”来进行选题设立,即验证性实验转化为设计性实验、科研项目转化为设计性实验、生产项目转化为设计性实验和学生兴趣转化为设计性实验。

(一)验证性实验转化为设计性实验

验证性实验是为促使学生掌握并加深对专业基本理论、知识的理解,而按照实验教材的要求,由学生进行实验操作,并从实验结果验证所学的理论知识。由于实验结果在理论授课时已经涉及,因此学生实验的兴趣不浓,热情不高。但不要因为这些就抹杀验证性实验验证理论知识,加深学生对基本理论知识理解的独特作用。完全可以通过合理安排,将一些验证性实验转换为设计性实验。这样就可以激发学生的实验兴趣,提高学生的实验学习主动性、自主性。例如,对长杆型坯料进行局部镦粗是模锻生产中经常采用的变形工序之一。因此,在《锻压工艺及模具设计》专业实验课中设立了“局部镦粗规则的验证”这项验证性实验。该实验通过对不同长度试件,使用局部镦粗模进行镦粗,验证局部镦粗规则的正确性,观察和分析由于局部镦粗长度与直径比值的影响而出现的正常和不正常现象。由于是验证性实验,学生兴趣不高,往往抱着看热闹的心态参加实验,不能达到良好的教学效果,但该实验涉及内容是比较典型且在生产中常用到的。怎样保留并将其转换为学生感兴趣的设计性实验呢?这就需要转换思路,可将该实验内容转换为首先要求学生根据给定尺寸的不同试件,进行局部镦粗积聚工步计算,并绘制镦粗模模具图。当然,由于实验经费及加工时间的限制,学生设计的镦粗模并不需要制作出来,因为给定尺寸的试件,其局部镦粗模主要模具尺寸及工步是唯一的,可以采用原有的局部镦粗模进行实验和鉴定学生设计结果的准确性,这些需要教师在实验过程中灵活掌握。这样,通过对原有实验内容转换为设计性实验,可使学生根据给定的实验目的,自行设计实验方案并予以实施,对实验结果进行分析论证,一方面有力地提升学生的实验热情,巩固所学理论知识,提高解决本专业有关加工工艺问题的能力;另一方面增加的镦粗模设计又锻炼了学生的工程制图能力。验证性实验转换为设计性实验,不但可以保留一些经过长期教学积淀总结的经典、原理性强的验证性实验内容,而且节约实验经费,还能提高学生的实验热情,达到良好的实验教学效果,有着“一举三得”的益处。当然,并不是所有验证性实验都能转换为设计性实验,对于这类实验项目,如果确实是经典、原理性强的验证实验项目,只要集思广益,通过合理安排,完全可以将验证性实验穿插在设计性实验项目中,以增加学生的学习主动性。这些都需要在设计性实验选题中拓宽思路,灵活安排。

(二)科研项目转化为设计性实验

科研项目转化为设计性实验,就是将专业教师的科研课题或科研成果转化为设计性实验。随着科学技术的快速发展,新材料、新技术和新知识不断出现,而且高校材料成型与控制工程的教师学历较高,多为博士毕业,且积累了具有一定水平的科研成果。把科研课题或科研成果涉及的新技术和新知识转化为设计性实验,是培养学生创新意识、创新精神和创新能力的最佳途径。根据调查,学生大多数对专业课老师所从事的科研项目及内容具有极大的兴趣和关注,此举能够有力地提高学生实验学习的积极性和兴趣,利于实现加强学生专业素质与实践应用能力培养的教学目的。例如,教师科研项目涉及到的过共晶Al-Mg2Si合金在航空航天、军工、汽车等领域中应用前景广阔,已成为国内外十分重视研究开发的先进复合材料,但铸态过共晶Al-Mg2Si合金的力学性能较差。因此,可将该科研项目涉及内容转化为“原位自生Al-Mg2Si复合材料力学性能的改善”设计性实验,要求学生针对铸态原位自生过共晶Al-Mg2Si复合材料力学性能差的特点,设计并实施改善力学性能的方法,并撰写分析报告。该设计性实验所涉及的Al-Mg2Si在专业课中虽未能涉及,但铝硅合金熔炼等相关知识在理论课和实验课上已涉及并掌握,因此学生进行该项实验有一定的理论和实践基础。学生首先要查找相关资料,理解并掌握“原位自生过共晶Al-Mg2Si复合材料”的相关知识,在保证合金成分为过共晶Mg2Si的条件下,自主选择、计算合金成分配比。然后根据计算结果进行配料、熔炼、除气,并根据前期选择的不同方法对合金熔液或浇注试件进行处理,最后进行拉伸测试及金相观察,检验设计方案的正确性,并对结果进行理论分析。该设计性实验虽然由科研课题转化,但涉及材料成型与控制工程专业知识中应掌握的合金设计、合金配料、合金熔炼、合金处理及热处理工艺等,较好地将专业知识系统、综合地链接在一起,使学生能够接受系统的工程实训,不仅能够培养学生的创新能力,而且加深其对所学专业的认识和提高解决所学专业涉及工艺问题的能力,树立正确的思维方法及严谨的科学态度和工作方法等。科研项目转化为设计性实验时,不可盲目地将科研内容或部分内容一成不变地照搬过来,必须要考虑学生的所学专业知识和专业能力,如果研究内容过于狭窄、难度较大或实验内容过于生僻,不仅达不到提高学生实验兴趣和教学效果的目的,反而会使学生产生抵触情绪,这就从根本上违背了开展设计性实验的初衷。因此,采用科研项目转化为设计性实验时,一定要密切结合学生专业知识、实验能力等方面,保证学生能够以饱满的热情投入到设计性实验的工作中。

(三)生产项目转化为设计性实验

材料成型与控制工程是实践性较强的专业,因此在设计性实验选题时要力求接近、结合实际生产项目,将其合理转化为设计性实验内容。通过这种设计性实验的训练,能够有针对性地促使学生在解决实际生产问题时应用、加强、拓展所学的专业理论知识。这种实际生产项目转化的设计性实验,不但能培养学生的工程设计意识和实践能力,而且能显著提高学生的专业综合能力。例如,以W18Cr4V为代表的高速钢广泛应用于实际生产中的切削工具和冷变形模具中,其内部的合金元素与碳形成复杂的碳化物,分布在基体金属上,降低了材料的机械性能。而锻造是实际生产中改变高速钢中碳化物分布状态的重要方法。因此,可将该生产项目转化为设计性实验“改善高速钢铸件中碳化物分布的锻造工艺设计与实施”。该实验内容包括铸造和锻造两大部分,铸造部分要求学生自主选择、设计高速钢铸件成分,并根据设计成分采用中频炉进行熔炼、浇注小型铸件,然后对铸件进行碳化物偏析分析,根据偏析分析结果,合理设计锻造工艺并利用自由锻机实施,最后再进行偏析检测,以检验设计的锻造方案是否正确。这个设计性实验有机地将铸造和锻压两个专业方向结合,符合实际生产流程,使学生能够系统地学习、实践和掌握企业所需要的知识,有利于应用型人才的培养。

(四)学生兴趣转化为设计性实验

学生的兴趣是实验教学达到预期目标和效果的动力,因此,如将学生普遍感兴趣的问题转化为设计性实验,就能激发学生对设计性实验的关注和探索,从而促使学生在实验中运用已学的知识、技术去自主发现、探索和总结规律,达到培养学生熟练运用所学专业知识,提高专业素质、创新意识和实践能力的目的。例如,精密铸造是用精密造型方法获得精确铸件的工艺,是铸造行业在高新领域的代表,很多铸造企业对精密铸造工艺的应用需求很大。如果开设精密铸造相关的设计性实验,要求学生采用精密铸造法制备小型零件,学生并不是普遍感兴趣,达不到预期的教学效果。怎样才能使学生都感兴趣呢?这里可以将精密铸造制备小型零件变为艺术铸造,因为艺术铸造采用的熔模铸造、陶瓷型铸造、消失模铸造等的工艺与工厂生产的精密铸造零件工艺及原理是相通的,而要求学生采用精密铸造技术设计并制作小型铸造工艺品,会极大地调动学生的兴趣和参与实验的热情,学生会在实验过程中潜移默化地掌握、提高精密铸造相关知识及工艺。

三、结语

随着教学改革的深入,材料成型与控制工程专业的设计性实验越来越受到重视。实际教学中,我们本着“五个原则,四个方向”来制定设计性实验项目的选题,同时力求使实验内容、实验形式不断更新、完善,充分调动了学生的实验学习积极性,为培养学生科技、工程能力的应用与创新创造良好的前提条件,取得了良好的教学效果。在以“五个原则,四个方向”制定的设计性实验项目中,学生能够真正地综合运用多门学科的知识、方法和技能来设计实验方案,并在实验过程中运用所掌握的知识去发现、分析和解决问题,提高了专业技术水平,积累了在企事业单位和生产一线解决实际问题的知识、素质和能力。

它山之石可以攻玉,以上就是众鼎号为大家带来的4篇《材料成型论文》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:国际经济与贸易专业考研方向有哪些【最新3篇】

下一篇:返回列表