高二数学必修5知识点总结【优秀5篇】
我们在学习当中认真预习好新的课程,上课专心听讲;不懂的及时请教老师或者同学。放学回来要认真把老师布置的作业完成,并且把课堂上学过的知识好好温习一遍;这样才能把学过的内容牢牢地记在脑子里。下面是众鼎号整理的5篇《高二数学必修5知识点总结》,希望能够给您提供一些帮助。
高二数学必修五知识点总结 篇一
排列组合
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法。"排列"
把5本书分给3个人,有几种分法"组合"
1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号
c(n,m)表示。
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!_2!_.._k!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________
从N倒数r个,表达式应该为n_n-1)_n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
高二年级数学必修五知识点总结 篇二
基本初等函数有哪些
基本初等☆www.1126888.com☆函数包括以下几种:
(1)常数函数y=c(c为常数)
(2)幂函数y=x^a(a为常数)
(3)指数函数y=a^x(a>0,a≠1)
(4)对数函数y=log(a)x(a>0,a≠1,真数x>0)
(5)三角函数以及反三角函数(如正弦函数:y=sinx反正弦函数:y=arcsinx等)
基本初等函数性质是什么
幂函数
形如y=x^a的函数,式中a为实常数。
指数函数
形如y=a^x的函数,式中a为不等于1的正常数。
对数函数
指数函数的反函数,记作y=logaax,式中a为不等于1的正常数。指数函数与对数函数之间成立关系式,logaax=x。
三角函数
即正弦函数y=sinx,余弦函数y=cosx,正切函数y=tanx,余切函数y=cotx,正割函数y=secx,余割函数y=cscx(见三角学)。
高二数学必修五知识点总结 篇三
【一元二次不等式及其解法】
★知识梳理★
一、解不等式的有关理论
(1)若两个不等式的解集相同,则称它们是同解不等式;
(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的同解变形;
(3)解不等式时应进行同解变形;
(4)解不等式的结果,原则上要用集合表示。
二、一元二次不等式的解集
三、解一元二次不等式的基本步骤:
(1)整理系数,使次项的系数为正数;
(2)尝试用十字相乘法分解因式;
(3)计算
(4)结合二次函数的图象特征写出解集。
四、高次不等式解法:
尽可能进行因式分解,分解成一次因式后,再利用数轴标根法求解
(注意每个因式的次项的系数要求为正数)
五、分式不等式的解法:
分子分母因式分解,转化为相异一次因式的积和商的形式,再利用数轴标根法求解;
★重难点突破★
1、重点:从实际情境中抽象出一元二次不等式模型;熟练掌握一元二次不等式的解法。
2、难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。求解简单的分式不等式和高次不等式以及简单的含参数的'不等式
3、重难点:掌握一元二次不等式的解法,利用不等式的性质解简单的简单的分式不等式和高次不等式以及简单的含参数的不等式,会解简单的指数不等式和对数不等式。
高二数学必修五知识点总结 篇四
【不等关系及不等式】
一、不等关系及不等式知识点
1.不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式。
2.比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba
3.不等式的性质
(1)对称性:ab
(2)传递性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可开方:a0
(nN,n2).
注意:
一个技巧
作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方。
一种方法
待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围。
高二年级数学必修五知识点总结 篇五
空间直线与直线之间的位置关系
(1)异面直线定义:不同在任何一个平面内的两条直线
(2)异面直线性质:既不平行,又不相交。
(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
(4)求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角
C、利用三角形来求角
(5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(6)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点。
三种位置关系的符号表示:aαa∩α=Aaα
(7)平面与平面之间的位置关系:
平行——没有公共点;αβ
相交——有一条公共直线。α∩β=b
以上就是众鼎号为大家整理的5篇《高二数学必修5知识点总结》,希望对您有一些参考价值。