首页 > 教师教学 > 教学设计 >

初三年级数学教学设计【优秀6篇】

众鼎号分享 171544

众鼎号 分享

作为一位杰出的老师,编写教案是必不可少的,教案有利于教学水平的提高,有助于教研活动的开展。那么你有了解过教案吗?下面是众鼎号为大伙儿带来的6篇《初三年级数学教学设计》,希望能够给您提供一些帮助。

初三数学教学设计 篇一

图形的旋转

1、了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题。

2、通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题。

3、旋转的基本性质。

重点

旋转及对应点的有关概念及其应用。

难点

旋转的基本性质。

一、复习引入

(学生活动)请同学们完成下面各题。

1、将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形。

2、如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′。

3、圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质。

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质。

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究。

1、请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心。从现在到下课时针转了________度,分针转了________度,秒针转了________度。

2、再看我自制的好像风车风轮的玩具,它可以不停地转动。如何转到新的位置?(老师点评略)

3、第1,2两题有什么共同特点呢?

共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度。

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。

下面我们来运用这些概念来解决一些问题。

例1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A,B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角。

(2)经过旋转,点A和点B分别移动到点E和点F的位置。

自主探究:

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板。

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1、线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2、∠AOA′,∠BOB′,∠COC′有什么关系?

3、△ABC与△A′B′C′的形状和大小有什么关系?

老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等。

2、∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角。

3、△ABC和△A′B′C′形状相同和大小相等,即全等。

综合以上的实验操作得出:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等。

例2 如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形。

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示。

解:(1)连接CD;

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;

(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;

(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形。

三、课堂小结

(学生总结,老师点评)

本节课应掌握:

1、对应点到旋转中心的距离相等;

2、对应点与旋转中心所连线段的夹角等于旋转角;

3、旋转前、后的图形全等及其它们的应用。

四、作业布置

教材第62~63页 习题4,5,6.

初三数学教学设计 篇二

二次根式

教材内容

1、本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式。

2、本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础。

教学目标

1、知识与技能

(1)理解二次根式的概念。

(2)理解 (a≥0)是一个非负数,( )2=a(a≥0), =a(a≥0)。

(3)掌握 • = (a≥0,b≥0), = • ;

= (a≥0,b>0), = (a≥0,b>0)。

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减。

2、过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念。再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简。

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算。

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简。

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念。利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的。

3、情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力。

教学重点

1、二次根式 (a≥0)的内涵。 (a≥0)是一个非负数;( )2=a(a≥0); =a(a≥0)及其运用。

2、二次根式乘除法的规定及其运用。

3、最简二次根式的概念。

4、二次根式的加减运算。

教学难点

1、对 (a≥0)是一个非负数的理解;对等式( )2=a(a≥0)及 =a(a≥0)的理解及应用。

2、二次根式的乘法、除法的条件限制。

3、利用最简二次根式的概念把一个二次根式化成最简二次根式。

教学关键

1、潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点。

2、培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神。

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1 二次根式 3课时

21.2 二次根式的乘法 3课时

21.3 二次根式的加减 3课时

教学活动、习题课、小结 2课时

关于九年级数学教案 篇三

1、正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点。

2、能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形。

重点

中心对称的概念及性质。

难点

中心对称性质的推导及理解。

复习引入

问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:

1、以O为旋转中心,旋转180°后两个图形是否重合?

2、各对应点绕O旋转180°后,这三点是否在一条直线上?

老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合。

像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。

这两个图形中的对应点叫做关于中心的对称点。

探索新知

(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:

(1)作△ABC一顶点为对称中心的对称图形;

(2)作关于一定点O为对称中心的对称图形。

第一步,画出△ABC.

第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示。

从图(1)中可以得出△ABC与△A′B′C是全等三角形;

分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段。

下面,我们就以图(2)为例来证明这两个结论。

证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;

(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点。

同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点。

因此,我们就得到

1、关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。

2、关于中心对称的两个图形是全等图形。

例题精讲

例1 如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称。

分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到。

解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示。

(2)同样画出点B和点C的对称点E和F.

(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形。

例2 (学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法)。

课堂小结(学生总结,老师点评)

本节课应掌握:

中心对称的两条基本性质:

1、关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;

2、关于中心对称的两个图形是全等图形及其它们的应用。

作业布置

教材第66页 练习

初三数学教学设计 篇四

一元二次方程

【1.1建立一元二次方程模型】

教学目标

1、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性认识。

2、理解一元二次方程的定义,能识别一元二次方程。

3、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。

重点难点

重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。

难点:把实际问题转化为一元二次方程的模型。

教学过程

(一)创设情境

前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将继续进行建立方程模型的探究。

1、展示课本P.2问题一

引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。

(35-2x)2=900①

2、展示课本P.2问题二

引导思考:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时间表示他们各自行驶的路程?

通过思考上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程

2t+×0.01t2=3t②

3、能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:

4x2-140x+32③

0.01t2-2t=0④

(二)探究新知

1、观察上述方程③和④,启发学生归纳得出:

如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:

ax2+bx+c=0,(a,b,c是已知数且a≠0),

其中a,b,c分别叫作二次项系数、一次项系数、常数项。

2、让学生指出方程③,④中的二次项系数、一次项系数和常数项。

(三)讲解例题

例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。

[解]去括号,得3x2+5x-12=x2+4x+4,

化简,得2x2+x-16=0。

二次项系数是2,一次项系数是1,常数项是-16。

点评:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。

例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?

(1)2x+3=5x-2;(2)x2=25;

(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。

(四)应用新知

课本P.4,练习第3题,

(五)课堂小结

1、一元二次方程的显著特征是:只有一个未知数,并且未知数的次数是2。

2、一元二次方程的一般形式为:ax2+bx+c=0(a≠0),一元二次方程的二次项系数、一次项系数、常数项都是根据一般形式确定的。

3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。

(六)思考与拓展

当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?

当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。

布置作业

课本习题1.1中A组第1,2,3题。

教学后记:

关于九年级数学教案 篇五

一、教学目标

1、通过观察、猜想、比较、具体操作等数学活动,学会用计算器求一个锐角的三角函数值。

2、经历利用三角函数知识解决实际问题的过程,促进观察、分析、归纳、交流等能力的发展。

3、感受数学与生活的密切联系,丰富数学学习的成功体验,激发学生继续学习的好奇心,培养学生与他人合作交流的意识。

二、教材分析

在生活中,我们会经常遇到这样的问题,如测量建筑物的高度、测量江河的宽度、船舶的定位等,要解决这样的问题,往往要应用到三角函数知识。在上节课中已经学习了30°,45°,60°角的三角函数值,可以进行一些特定情况下的计算,但是生活中的问题,仅仅依靠这三个特殊角度的三角函数值来解决是不可能的。本节课让学生使用计算器求三角函数值,让他们从繁重的计算中解脱出来,体验发现并提出问题、分析问题、探究解决方法直至最终解决问题的过程。

三、学校及学生状况分析

九年级的。学生年龄一般在15岁左右,在这个阶段,学生以抽象逻辑思维为主要发展趋势,但在很大程度上,学生仍然要依靠具体的经验材料和操作活动来理解抽象的逻辑关系。另外,计算器的使用可以极大减轻学生的负担。因此,依据教材中提供的背景材料,辅以计算器的使用,可以使学生更好地解决问题。

学生自小学起就开始使用计算器,对计算器的操作比较熟悉。同时,在前面的课程中学生已经学习了锐角三角函数的定义,30°,45°,60°角的三角函数值以及与它们相关的简单计算,具备了学习本节课的知识和技能。

四、教学设计

(一)复习提问

1、梯子靠在墙上,如果梯子与地面的夹角为60°,梯子的长度为3米,那么梯子底端到墙的距离有几米?

学生活动:根据题意,求出数值。

2、在生活中,梯子与地面的夹角总是60°吗?

不是,可以出现各种角度,60°只是一种特殊现象。

图1(二)创设情境引入课题

1?如图1,当登山缆车的吊箱经过点A到达点B时,它走过了200m。已知缆车的路线与平面的夹角为∠A=16°,那么缆车垂直上升的距离是多少?

哪条线段代表缆车上升的垂直距离?

线段BC。

利用哪个直角三角形可以求出BC?

在Rt△ABC中,BC=ABsin16°,所以BC=200sin16°。

你知道sin16°是多少吗?我们可以借助科学计算器求锐角三角形的三角函数值。那么,怎样用科学计算器求三角函数呢?

用科学计算器求三角函数值,要用sincos和tan键。教师活动:(1)展示下表;(2)按表口述,让学生学会求sin16°的值。按键顺序显示结果sin16°sin16=sin16°=0?275637355

学生活动:按表中所列顺序求出sin16°的值。

你能求出cos42°,tan85°和sin72°38′25″的值吗?

学生活动:类比求sin16°的方法,通过猜想、讨论、相互学习,利用计算器求相应的三角函数值(操作程序如下表):

按键顺序显示结果cos42°cos42=cos42°=0?743144825tan85°tan85=tan85°=11?4300523sin72°38′25″sin72D′M′S

38D′M′S2

5D′M′S=sin72°38′25″→

0?954450321

师:利用科学计算器解决本节一开始的问题。

生:BC=200sin16°≈52?12(m)。

说明:利用学生的学习兴趣,巩固用计算器求三角函数值的操作方法。

(三)想一想

师:在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到达点D的行驶路线与水平面的夹角为∠β=42°,由此你还能计算什么?

学生活动:(1)可以求出第二次上升的垂直距离DE,两次上升的垂直距离之和,两次经过的水平距离,等等。(2)互相补充并在这个过程中加深对三角函数的认识。

(四)随堂练习

1、一个人由山底爬到山顶,需先爬40°的山坡300m,再爬30°的山坡100m,求山高(结果精确到0.1m)。

2、如图2,∠DAB=56°,∠CAB=50°,AB=20m,求图中避雷针CD的长度(结果精确到0.01m)。

图2图3

(五)检测

如图3,物华大厦离小伟家60m,小伟从自家的窗中眺望大厦,并测得大厦顶部的仰角是45°,而大厦底部的俯角是37°,求大厦的高度(结果精确到0?1m)。

说明:在学生练习的同时,教师要巡视指导,观察学生的学习情况,并针对学生的困难给予及时的指导。

(六)小结

学生谈学习本节的感受,如本节课学习了哪些新知识,学习过程中遇到哪些困难,如何解决困难,等等。

(七)作业

1、用计算器求下列各式的值:

(1)tan32°;(2)cos24?53°;(3)sin62°11′;(4)tan39°39′39″。

图42?如图4,为了测量一条河流的宽度,一测量员在河岸边相距180m的P,Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河宽(结果精确到1m)。

五、教学反思

1、本节是学习用计算器求三角函数值并加以实际应用的内容,通过本节的学习,可以使学生充分认识到三角函数知识在现实世界中有着广泛的应用。本节课的知识点不是很多,但是学生通过积极参与课堂,提高了分析问题和解决问题的能力,并且在意志力、自信心和理性精神等方面得到了良好的发展。

初三数学教案 篇六

一、教学目标:

1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。

3、结合实例体会反证法的含义。

二、教学重点:

了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。

教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。

三、教学方法:

观察法。

四、教学过程:

复习:

1、什么是等腰三角形?

2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。

3、试用折纸的办法回忆等腰三角形有哪些性质?

新课讲解:

在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。

同学们和我一起来回忆上学期学过的公理

本套教材选用如下命题作为公理:

1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;

2、两条平行线被第三条直线所截,同位角相等;

3、两边夹角对应相等的两个三角形全等;(SAS)

4、两角及其夹边对应相等的两个三角形全等;(ASA)

5、三边对应相等的两个三角形全等;(SSS)

6、全等三角形的对应边相等,对应角相等。

由公理5、3、4、6可容易证明下面的推论:

推论两角及其中一角的对边对应相等的两个三角形全等。(AAS)证明过程:

已知:∠A=∠D,∠B=∠E,BC=EF

求证:△ABC≌△DEF

证明:∵∠A+∠B+∠C=180°,

∠D+∠E+∠F=180°

(三角形内角和等于180°)

∴∠C=180°-(∠A+∠B)

∠F=180°-(∠D+∠E)

又∵∠A=∠D,∠B=∠E(已知)

∴∠C=∠F

又∵BC=EF(已知)

∴△ABC≌△DEF(ASA)

定理:等腰三角形的两个底角相等。

这一定理可以简单叙述为:等边对等角。已知:如图,在ABC中,AB=AC。

以上内容就是众鼎号为您提供的6篇《初三年级数学教学设计》,希望对您的写作有所帮助,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:牧童教学设计精选10篇

下一篇:《江南》优秀教学设计【优秀9篇】