首页 > 教师教学 > 教学设计 >

平均数教学设计(优秀5篇)

众鼎号分享 167322

众鼎号 分享

作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。那么什么样的教案才是好的呢?下面是众鼎号整理的5篇《平均数教学设计》,亲的肯定与分享是对我们最大的鼓励。

教学过程: 篇一

一、旧知回顾,谈话导入。

1、请学生说说统计表及条形统计图各有什么特点。

2、谈话:上学期期末考试,四(1)和四(2)班进行了一场数学小竞赛,最后四(2)班得了第一名。这两个班的人数和每人考的分数都不一样,怎么就知道哪个班考得好呢?老师们是怎么算的呢?(这个过程中可能有学生回答到用“平均分”来计算的。如果提到“平均分”教师可以抓住时机及时板书“平均”两字。)这节课我们就一起来解决这个问题。

【设计意图:通过复习旧知让学生掌握条形统计图的特点。引入两班考试的事例让学生想到“平均分”的概念,为后面平均数的。学习作铺垫。】

平均数 篇二

教学目标:

1、使学生理解的含义,初步学会简单的求平均数的方法。

2、理解平均数在统计学上的意义,感受数学与生活的联系。

3、发展学生解决问题的能力。

重点难点:使学生理解平均数的含义,初步学会简单的求平均数的方法。

教学过程:

一、理解平均数

1、周末,妈妈买了许多糖果,分给哥哥6颗,妹妹4颗,你对妈妈的做法有什么看法?你有什么办法让哥哥和妹妹分到的糖果一样多?是多少?

2、老师(出示两个笔筒分别装了27枝送给23个女同学,23枝送给23男同学,学生动手分:让女同学和男同学分的一样多。

3、引入“平均数”象哥哥和妹妹分得一样多的5颗就是哥哥和妹妹分到的糖果的平均数。25枝就是男同学和女同学分的笔的平均数。

4、学生讨论:你们喜欢刚才谁的方法?

二、学习计算平均数

1、出示情景图:说说老师和同学们在干什么?

2、出示统计图:引导学生收集信息。

3、引导学生运用“移多补少”的方法求平均每人收集了多少个:利用这个统计图,你们有什么办法,可以解决这个问题?学生独立思考后交流方法。

4、提出问题:生活中,大家分头收集了许多矿泉水瓶,大家是怎样集中过来的?如果没有这个统计图,只是每个人汇报自己收集了几个?你们有什么办法可以知道这个小组平均每个人收集了多少个?

5、小组讨论解决的方法并派代表交流,并说说13个就是平均数,那是不是说他们每个人都是收集13个呢?理解平均数是个虚的数。

6、小结求平均数的方法。

三、巩固训练

1、另外一个环保小组也收集了许多矿泉水瓶,小军收集15个,小伟收集16个,小朋收集12个,小新收集了13个,这个小组平均每个人收集了几个?

2、根据统计表算一算,三年段平均每班踢几下?

班级三(1)三(2)三(3)三(4)

踢的次数632654668646

四、小结:通过这节课的学习,你们有什么收获,还有什么问题?

五、布置作业:练习十一1、2、3

《平均数》 教案 篇三

教学目标:

1.经历用平均数刻画一组数据特征的过程,体会平均数的意义,掌握求简单平均数的方法。

2.经历移多补少、先合后分、估算等多样化算法的讨论,会利用图形直观估计平均数,能选择灵活的方法解决平均数问题。

3.体会平均数在现实生活中的广泛应用,激发参与热情,增强应用数学的意识。

教学重点:体会平均数的意义,掌握求平均数的方法。

教学难点:理解平均数的意义

教学具准备:套圈统计图(每组一个)、多媒体课件

教学过程:

一、设疑引欲,提出问题

看套圈比赛的录像,出示统计图。

1、这幅统计图表示他们套中的个数,从中你知道了些什么?

2、想一想,是男生套得准一些还是女生套得准一些呢?

二、解决问题,探求新知

1.产生求平均数的心理需求

(1)学生讨论交流哪一队套圈套得准一些。

(2)提问:怎样比才既合理又公平呢?

(3)揭示:要比男生套得准一些还是女生套得准一些,就是要比较男女生平均每人套中的个数,也就是平均数。

2.自主探索平均数的意义和计算方法

先求男生平均每人套中的个数,学生讨论交流。

(1)通过移多补少,直观揭示平均数的意义

(2)揭示“先求和再平均分”的求平均数的一般方法

列式计算:5+9+8+6=28(个)28÷4=7(个)

这里的28指的是什么?为什么要除以4?

求女生平均每人套中的个数。

(1)估一估

(2)算一算:11+4+8+2+5=30(个)30÷5=6(个)

这里的30指的是什么?为什么这里用总数除以的是5而不是4?

小结:通过比较,我们发现在这次比赛中,男生套得准一些。

3.理解平均数的范围

(1)比较

男生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

女生中哪些人套中的个数比平均数多?哪些人套中的个数比平均数少?

(2)提问:平均数会比这里最大的数大吗?会比最小的数小吗?

(3)小结:平均数是通过把多的部分移给少的部分,使大家都相等而得到的数,所以平均数在最大数与最小数之间。

三、拓展练习,深入理解

1.练习用“求和再平均分”的方法求平均数

(1)出示校运动队三年级学生肺活量情况统计图(三名学生)

提问:你能算出他们的平均肺活量吗?

交流:把你的想法与同学们交流交流。

(2)出示三年级部分学生肺活量情况统计图(四名学生)

提问:算算他们的平均肺活量。

比较:经常参加体育锻炼的学生平均肺活量比一般学生要大。

2.加深对平均数意义的理解

(1)出示游泳馆录像并配音:一天小明去学游泳,这个游泳池的平均水深130厘米。小明心想:我身高145厘米,下水学游泳不会有危险。同学们,你们觉得他想得对吗?

(2)学生交流

3.利用平均数在最大值和最小值之间的特点判断平均数的计算结果是否正确

(1)出示并配音:《中小学生体育锻炼运动负荷卫生标准》规定:心跳次数平均每分钟在120~200次为运动量适宜,低于120次为运动量过小,高于200次为运动量过大。

我们对小明在游泳过程中的心跳情况进行了统计。(出示:心率情况统计表)

次数第一次第二次第三次第四次第五次心率(次/分)150160180170140

(2)提问:从表中你知道些什么?

(3)他平均每分钟的心跳次数不可能是下面哪个答案?为什么?

①130次②160次③190次

(4)根据平均数的这个特点,你能说出这个平均数的范围吗?

(5)小明的运动量适宜吗?

4.进一步理解平均数的意义

(1)出示一高一矮两名学生

指一指:他们俩的平均身高大概在什么位置?

(2)出示郭晶晶的照片和她与另一位体坛明星的平均身高的虚线(虚线比郭晶晶矮)

指一指:另一位体坛明星大概有多高?

(3)出示郭晶晶的照片和她与另一位运动员的平均身高的虚线(虚线比郭晶晶高)

指一指:这位运动员的身高大概在哪里?

猜一猜:他是谁?

(4)出示新浪网上的NBA排行榜

找一找:有平均数吗?

想一想:姚明的总得分比特里要高,为什么他们的均分却相等呢?

四、全课总结,提升认识

《平均数》教案 篇四

教学内容

小学数学第六册第92~94页。

教学目标:

知识与技能:

1、从生活实际中体会平均数的意义,建立平均数的概念。

2、在理解平均数意义的基础上,理解和掌握求平均数的方法。

3、初步感受求平均数的作用。

过程与方法:

联系学生实际,培养学生选择信息、利用信息的能力;培养学数学、用数学的意识及自主探索、合作交流的意识和能力。

情感态度价值观:

激发学生主动参与的热情,培养学生主动探究、合作交流的精神。

教学重点、难点:

理解平均数的意义;掌握求平均数的方法;体会求平均数的作用。

教学过程:

一、创设情境,提出问题

昨天的作业,张康、朱星宇、施逸婷做得最好。今天老师带来些铅笔想奖给他们。(三人上台领奖,并告诉同学各自得到的铅笔的支数。)板书:张康11支、朱星宇7支、施逸婷6支。

你们觉得公平吗?怎样才能公平?

学生讨论,指名汇报。

(从1张康手中拿2支给施逸婷,再从张康手中拿1支给朱星宇。这样每人都是8支。)

很好。谁能给这种方法取个名字?(“移多补少法”。)

(先把三个人的铅笔全合起来有24支,再平均分给这3个人,这样每个人都是8支。

这种方法也很好!我们也给它取个名字。(“先合再分”)。

刚才我们用不同的方法,都能使这三个人铅笔的支数相等,都是8。

教师指出:这里的“8”就是“11、7、6”这三个数的平均数。板书课题:平均数。

昨天蔡裕杰同学的作业也很有进步,现在我想也奖给他铅笔,怎样才能让他们四个人得到的铅笔支数相等?(学生上台演示,每人得到6支。)

提问:这里的“6”就是“11、7、6、0”这四个数的什么?

通过我们刚才的讨论,你觉得什么是平均数?

小结:已知几个大小不等的数,在总和不变的条件下,通过把多的移给少的或者先把它们合起来再平均分,使它们成为几个相等的数,这个相等的数就是这几个数的平均数。

二、寻找方法,解决问题

说到平均数,老师想起前不久学校举行篮球赛的时候,五(2)班女男生之间发生的一次争执。

为了备战篮球赛,五(2)班男子篮球队和女子篮球队之间先进行了一次投篮比赛。每人投15个球。这是他们投中个数的统计图。出示两幅条形统计图。

(略)

这两幅统计图能看得懂吗?从这两幅统计图上你能知道些什么信息?

投篮比赛结束了,男子篮球队队员说男生投篮准,女子篮球队队员说女生投篮投得准,争执不下。现在,我想请大家做一个公平的裁判,你们觉得,是男子篮球队整体水平高一些,还是女子篮球队整体水平高一些?。

指名汇报,说明理由。

(有3名男生都投中得比女生少,所以女生投得准一些)

这是你的意见,有不同的意见吗?

(女生一共投中28个,男生一共投中30个,男生投得准一些)

可是男生有5个人,女生只有4个人啊!还有不同的意见吗?

(去掉一个男生。)

去谁合理呢?能去吗?

(应该求出女男生投中个数的平均数,然后再进行比较)

有道理,他们两个队的人数不同,所以我们不能一个人一个人的比较,分别求出他们投中个数的平均数,用平均数来体现他们投篮命中的整体水平,好办法!掌声鼓励。

那我们应该怎么求他们的平均数呢?先来求女生投中个数的平均数。

观察女生投篮成绩统计图,小组讨论,代表汇报。

(将徐丹多投中的两个分一个给王戈,分一个给赵越,这样,她们每个人都是投中了7个,也就是女生投中个数的平均数是7个。)

不错,方法很简洁,移多补少法。有不同的方法吗?

(先求出四个人投中的总个数,再求出平均每人投中的个数。)

半数:6+9+7+6=28(个)

28÷4=7(个)

他用的方法就是——先合再分法。

看来,大家都非常聪明,男生平均投中的个数会求吗?

你们觉得这时我们求平均数用哪种方法比较合适?为什么?

小结:求平均数的方法很多,要根据实际情况来定。人数少,差距小,用移多补少简单;人数多,差距大,用先合再分的方法比较简单。

学生在练习本上计算,指名板演,集体订正。

为什么这里求得的总数除以的是5而不是4?

现在你能帮五(8)班的同学解决他们争论的问题了吗?

(女生平均每人投中7个,男生平均每人投中6个,所以女生投得更准一些。)

观察统计图,女生平均每人投中7个,(用直线画出7的水平位置),提问:平均数7比哪个数大,比哪个数小?我们再来看看男生投中的平均数6是不是也有这样的特点?(用直线画出6的水平位置。)

小结:平均数的大小应该在最大的数和最小的数之间。此外,一组数的平均数是我们计算出的结果,表示的是这组数的平均水平,并不一定这一组数都等于平均数,有些可能比平均数大,有些可能比平均数小。

三、应用方法,解决问题

刚才我们一起认识了平均数,也知道了如何求平均数,接下来我们要遇到的是生活中有关平均数的问题,一起来看一看。

请大家轻声地把问题读一读,思考之后,可以和同座交流自己的看法。

挑战第一关:“明辨是非”

(1)一条小河平均水深1米,小强身高1、2米,他不会游泳,但他下河玩耍池肯定安全。( )

(2)城南小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。()

(3)学校排球队队员的平均身高是160厘米,李强是学校排球队队员,他的身高不可能是155厘米。( )

学校篮球队可能有身高超过160厘米的队员。( )

(4)四(3)班同学做好事,第一天做好事30件,第二天上午做好事12件,下午做好事15件,四(3)班同学平均每天做好事的件数是(30+12+15)÷3=19(件)。( )

挑战第二关:“合情推测”

四(2)班第一小组同学身高情况统计表

学号 12 3 4 56

身高(厘米)131 136 138 140 141142

明明算了他们的平均身高是143厘米,不计算,你能不能知道他算得对不对?

平均数的大小应该在最大的数和最小的数之间,这里最大的数就是142,平均数不可能超过142,所以平均身高143厘米是错误的。

那么我们应该怎么求他们的平均数呢?

指名列式,老师告诉答案为138厘米。

由此,你能不能猜测一下,四(2)班全班同学的平均身高大约是多少?

你想了解我国四年级同学的平均身高吗?

出示:根据健康网的报道,全国四年级小学生的平均身高约是139厘米。看到全国四年级小学生的平均身高,结合自己的身高,你有什么想法?

四、学生看书,质疑问难

五、全课总结,交流收获

通过今天这节课的学习,你有什么收获?

六、布置作业,检查反馈

教学方法: 篇五

创设情景法、启发谈话法、尝试法、启发讲解法等。

读书破万卷下笔如有神,以上就是众鼎号为大家整理的5篇《平均数教学设计》,希望可以对您的写作有一定的参考作用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:《郑成功收复台湾》教学设计【优秀5篇】

下一篇:返回列表