首页 > 教师教学 > 教案模板 >

圆的面积教案【优秀10篇】

众鼎号分享 117508

众鼎号 分享

作为一名教学工作者,可能需要进行教案编写工作,教案有助于顺利而有效地开展教学活动。我们该怎么去写教案呢?下面是众鼎号为大伙儿带来的10篇《圆的面积教案》,希望能对您的写作有一定的参考作用。

圆的面积教案 篇一

教学目标:

1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2.使学生进一步体会转化方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

探索并掌握圆的面积公式,能正确计算圆的面积。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆的面积公式的推导图。

一、回顾旧知,引入新知

1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

学生回答,教师予以肯定。

2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

(板书:圆的面积)

设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

二、合作交流,探究新知

1.教学例7。

(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

(4)学生独立完成填空。

(5)猜测:圆的面积大约是正方形面积的几倍?

学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

(6)出示例7后两幅图,按照同样的方法进行计算并填表。

正方形的面积

圆的半径

圆的面积

圆面积大约是正方形面积的几倍

(精确到十分位)

2.交流归纳:观察上面的表格,你有什么发现?

通过交流,明确

圆的面积教案 篇二

教材分析

圆的面积是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,因为以后学习圆柱、圆锥的知识打下基础。学生已有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆现象、勇于实践。在操作中将圆转化为已学过的平面图形,从中找到圆的面积与半径、直径的关系。

学情分析

学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。

教学目标

1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确的计算圆的面积。

2、理解圆的面积公式的推导过程,理解转化的数学思想。

3、根据圆的半径或者圆的直径来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

教学重点和难点

重点:使学生知道圆的面积的含义,理解和掌握圆面积的计算公式,并能正确计算圆的面积。

难点:理解圆的面积公式的推导过程,掌握转化的数学思想。

圆的面积教案 篇三

教学目标

1、使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

2、学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

3、培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

教学重难点

1、教学重点

会利用圆和其他已学的相关知识解决实际问题。

2、教学难点

圆与其他图形计算公式的混合使用。

教学工具

PPT卡片

教学过程

1、复习巩固上节知识,导入新课

2、新知探究

2、1圆环面积

一、问题引入

同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

回答(略)。

今天我们就来做一做与光盘相关的数学问题。

二、圆环面积求解

例2、光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?

步骤:

师:求圆环面积需要先求什么?

生:内圆和外圆的面积

师:同学们可以自己做一做,分组交流一下自己的解法。

师:给出计算过程与结果:

三、知识应用

做一做第2题:

一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

2、2圆与正方形

一、问题引入

师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

二、知识点

例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

步骤:

师:题目中都告诉了我们什么?

生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m

师:分别要求的是什么?

生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

师:应该怎么计算呢?

归纳总结

如果两个圆的半径都是r,结果又是怎样的呢?

当r=1时,与前面的结果完全一致。

四、知识应用

70页做一做:

下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?

师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

解:铜镜的半径是300px

5、3随堂练习

若还有足够时间,课堂练习练习十五第5/6/7题。

(可以邀请同学板书解题过程)

6 小结

1、今天我们共同研究了什么?

今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

2、在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

圆的面积教案 篇四

教学目标:

1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

3、渗透转化的数学思想和极限思想。

教学重点:

正确计算圆的面积。

教学难点:

圆面积公式的推导。

教具准备:

多媒体课件二套,圆片。

一。情景导入

1、 师:(出示图)草地上长满了青草,一只羊被栓在草地的木桩上,请问:它能吃光全部青草吗?它最多能吃到哪个范围内的青草?请大家画出这只羊活动范围的示意图,两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)(动画演示)

师:这个范围的大小指圆的周长还是面积?为什么?谁画的正确,(圆的面积)。

(板书:圆的面积)

2、师:什么是圆的面积?先说,再看书,学生读,(教师用课件演示)

师:看到这个课题后,你们会想到什么?这堂课要解决什么问题呀?

生:这堂课我们要学习圆的面积是怎样求出来的。

生:学生圆的面积公式。

师:你们知道圆的面积公式后,你们还想到什么问题?

生:圆的面积公式根据什么推导出来的。

师:对!刚才这几位同学跟老师想的一样。这堂课我们要解决两个问题。

(通过创设情景,激发学生的学习兴趣,形成良好的学习动机。通过学生提出问题,明确学习目标。)

二、动手操作,探索新知

1、 猜测(每项用课件出示)

师:我们先用一个简单办法,猜想一下圆面积的公式。把一个圆4等分,用半径作边长画一个正方形。这个正方形的面积可用r2表示。在这个圆上可以画同样的4个正方形,它们的面积可以用4 r2 表示,你们观察一下这个圆的面积等不等于4 r2 ?

生:不等。

师:为什么?

生:因为,这个圆面积还要加上外面的4小块,才是4 r2 。

师: 这个圆的面积比4 r2 小,我们再在圆内画一个最大的正方形,这个正方形的面积怎么求出来?

生:这个正方形是由四个同样大小的三角形组成,每个面积1/2r2,总面积2r2。

师:圆的面积和正方形比较谁的面积大?

生:圆的面积大

师:可以观察出圆的面积范围在2r2-4r2

(这里让学生了解解决问题时要善于观察、敢于猜想。渗透无限等数学思想,)

2、 回忆旧知,

师:圆能不能直接用面积单位支量呢?为什么?

生: 因为圆是由曲线围成的,用面积单位直接量是有困难的。

师:该怎么办呢?(教室沉默)

师: 请同学们看屏幕,(师播放课件)边看边回忆:以前我们研究过平行四边形、三角形和梯形面积的求法,那时我们是怎样处理的?(用投影机放出几种图形的转化图解,边出示,边讨论)

师:这些图形面积公式的'推导方法对我们研究圆的面积有什么启示呢?

生:我们可以用图形转化的方法,求圆的面积。(把未知的转化为已知的)

师:这个办法很好。那么把圆形转化成什么图形呢?

[评:启发学生运用转化的数学思想解决问题。这种设计既复习了旧知识,又为学生新知识作好铺垫,能够促进学生充分运用迁移规律把新旧知识联系起来组成一个新的知识结构。]

3、动手操作

(1)师:请同学们动手剪拼一下,看到底能拼成什么图形。(学生动手操作。)

师:谁能向大家汇报一下,你把圆拼成了什么图形?(生答:拼成了。请把你拼好的图形放在实物投影上展示给大家看。一个同学用8等份的圆片摆成近似平行四边形,一个用不着16等份的圆片摆成近似长方形)

(2)师::请看大屏幕,16等份的和8等份谁拼成更接近长方形?

生:16等份拼成的图形就会越接近于长方形。如果分的份数越多,每一份就会越细,)

师:对。这就是说,分的份数是无限的。你们可以闭上眼睛想一想,如果分的份数越多,长边就越接近直线,这个图形就越接近于长方形。课件演示

(3)看拼成的长方形与圆有什么联系?你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。 (教师要求学生观察自己在课桌上拼出的图形,一边讨论,一边逐步写出推导的过程。)

学生汇报讨论结果。生答师继续演示课件。

生答:能,因为拼成的长方形 m.jiaoxuela.com 的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长宽

所以圆的面积=周长的一半半径

S=r

S=r2

师:结合公式S=r2,说说圆的面积是怎样推导出来的?

(4)师:这个面积公式是不是正确,我们可以通过其它图形来验证一下。有的同学把圆拼成了三角形我们用三角形来验证一下,你能根据三角形计算公式推导圆的面积计算公式吗?(课件演示)

生答:三角形的底相当于圆周长的,高相当于圆半径的4倍。

因为 三角形的面积=底高2

所以 圆的面积=周长的半径的4倍

S=4r2

S=r2

师:我们用三角形也推出了圆的面积公式 S=r2 。同学们还有其它图形来验证吗?

(5)生:我们把圆转化成梯形来验证。(课件演示)

生:梯形的上底与下底的和相当于圆周长的一半,高相当于半径的2倍。

因为梯形的面积=(上底+下底)高2

所以圆的面积=周长的一半半径的2倍

S=2r2

S=r2 用梯形的面积

3、小结:刚才你们把圆转化成为哪些图形,分别推导出圆的面积计算公式?(S=r2)

我们根据拼成的近似平行四边形、长方形、三角形、梯形都推导出了同样的公式:S圆=r2。

唉!我们刚才猜的圆面积是多少?你们真了不起!与r2很接近啊!

圆的面积必需要具备哪些条件?

[评:打破了过去教师演示教具学生看的框框,而是要求每个学生动手操作,并渗透转化、无限等数学思想,让学生自己从尝试中推导圆面积的公式。]

(三)课后巩固

1、 现在你可以求出小羊大约最多能吃到多少面积的青草吗?为什么?请你给它补个条件。

(照应了开头,又学练习了面积的计算。)

2、 根据下面条件求出圆的面积

r =5分米 d =3米

3同学们怎么计算树的横截面的面积,是不是一定把树木锯断?(同学们讨论答出测出周长后师再出题)树的周长是非曲直18.84平方米,求树的横截面的面积?

(用学到的知识来解决生活中的问题,培养学生的应用能力)

(四)师:这堂课大家学到了什么?有什么收获?

(学生热烈发言,最后教师总结,解答了课一开始提出的两个问题。)

[评:课堂小结时间虽短,但能使学生认识升华一步,同时做到前后呼应,使整堂课结构严谨,层次清楚。这堂课最大的特点,是能充分调动学生的主动性和积极性,学生既学得生动活泼,又能充分发展思维。]

圆的面积教案 篇五

教材分析:

初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

学情分析:

学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

教学目标:

1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。

4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

教学重点:

通过观察操作,推导出圆面积公式及其应用。

教学难点:

极限思想的渗透与圆面积公式的推导过程。

教学过程:备注:

活动一:创设情景,提出问题

1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?

2、圆的面积--含义:圆所占平面的大小叫做圆的面积。

3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?

活动二:猜想比较:

出示图

师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?

活动三:自主探究,验证猜想

1、引导转化:

师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?

以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?

2、动手操作:

(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。

操作引导:A、剪--怎样剪?剪成几份?B、拼--怎样拼?拼成什么?

(2)展示交流并介绍,选出最合理的剪法。

(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?

想象一下,平均分成64份、128份、256份。.。.。.会是什么情形?(课件演示)

(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。

3、自主推导

(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。

(2)学生展示、介绍自己的推导过程

(3)教师板演圆面积的推导过程

4、情景延续:

(1)如果绳长为5米,计算圆的面积和周长。

(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?

5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)

活动四:实践运用,体验生活

1、量出自己带来的圆形物体的直径,并计算出面积。

2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。

活动五:全课小结

通过本节课的学习你有哪些收获?

板书设计

圆的面积教案 篇六

【教学内容】

《义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。

【教学目标】

1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。

2.能够利用公式进行简单的面积计算。

3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

【教、学具准备】

1.CAI课件;

2.把圆8等分、16等分和32等分的硬纸板若干个;

3.剪刀若干把。

【教学过程】

一、尝试转化,推导公式

1.确定“转化”的策略。

师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

预设:

引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

2.尝试“转化”。

师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

请大家看屏幕(利用课件演示),老师先给大家一点提示。

圆的面积教案 篇七

教学内容:

教科书第107页练习十九第2-5题

教学目标:

1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

教学重点:

进一步掌握圆的面积公式,能正确计算圆的面积

教学难点:

能正确计算圆的面积,并能应用公式解决相关的简单实际问题

教学流程:

一、基本练习:

1、计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

2、引入谈话。师:今天我们继续学习圆的面积计算。

二、综合练习

1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

2、完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:意义上有什么不同?

三、课堂总结

师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

圆的面积教案 篇八

教学目标:

1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确计算圆的面积。

2、理解圆的面积公式的推导过程,感受转化的数学思想。

3、根据圆的半径、直径或周长来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

教学重难点:

重点:理解和掌握圆面积的计算方法。

难点:圆面积公式的推导。

准备:圆形纸片

一. 创设情境。

S:同学们,请看这里?(展示课件动画)

S:现在小马有一个问题:我的这个活动范围是一个什么形状? X:是圆形。(板书:圆)

S:小马还有一个问题,我的活动范围占地多大?这个多大指的是圆

的什么量呢?

X:是圆的面积。

S:对了,就是圆的面积,我们现在就来一起学习:圆的面积。(板书课题)

二. 探索交流,学习新知。

1、 出示电子课本。

S:请大家请大家翻到课本67页的彩图,有一个问题:这个圆形草坪的占地面积是多少平方米?怎样计算一个圆的面积呢?你认为怎么做,大胆来说一说。

X1:公式。

X2:转化成学过的图形来计算。

S:(好,转化成学过的图形来计算,看来这位同学预习的非常好,一下子就抓住了问题的重点。)要转化成学过的图形,这个方法不错,那咱们来回想一下,咱们以前学过哪些图形的面积?(单击课件)

X:长方形,正方形,三角形,平行四边形,梯形等等。

(单击课件)

S:但是这么多学过的图形,转化成哪一个比较好呢?大家来选一选。 X:长方形,正方形,平行四边形。

S:喔,这三个图形比较简单,所以我们应该尽量转化成简单的图形来做。请大家看黑板上的电子课本(电子课本)

S读:在硬纸上画一个圆。大家附页1中的圆都准备好了

吗?

X:准备好了。

S:请大家举起来展示一下。好的请放下,老师想问大家,通过剪纸拼图,你发现了什么?

X:(学生自由回答)

S:同学们回答的都很好,现在我来演示一下,大家看看还有没有新的发现。

(课件演示)

2、 讲解课件。

4份时S问:这个像是咱们以前学过的图形吗?

X:不像。

S:不像没关系,咱们继续分,再分成8份,这次呢?

X:有点像平行四边形了。

S:继续分。(演示到32份)

S:这下更像一个平行四边形了,但是,这还没完,咱们来回顾一下刚才我们的拼图过程。(单击课件)

S:咱们从圆开始,先是4份,它完全是一个不规则的四不像,再分成8份,还是不像,然后依次16份,32份,还可以继续往下分的份数越来越多。最后,它会无限地接近一个什么形状呢? X:平行四边形。

X:长方形。

S:到底是长方形还是平行四边形。

S:启发:平行四边形和长方形的区别在哪里?平行四边形的这两条边是斜的,而长方形是竖的。大家从这个4份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?

X:长方形。

(板书:长方形)

S:它不是真正的长方形,而是一个无限接近于长方形的近似长方形。 正如课本68页最上面的这句话。

3、 电子课本P68

S:如果分的长方形。同时我们的小精灵又给我们提出了一个问题:拼成的关系?

S:请大家注意看我的课件演示。(讲解)

板书:长方形的面积= 长 *宽 圆的面积=圆周长的一半 * 半径 =C*r 2

=2π

2r*r

=πr*r

2 =πr

2即 S=πr

S:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?

X:半径。

S:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?

S:来看一下咱们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?

X:半径。

学生先做题,再用课件演示答案。

三. 拓展练习。

1、 回答(尽量不要动笔)。

2、 计算(78.5 m2)

S= πr2

2 = 3.14×5

= 3.14×5×5

=3.14×25

=78.5 (m2)

四. 回顾总结。

谁愿意和大家分享你的学习成果?(学生自己总结)

老师补充:1.化圆为方。

2、 S= πr2

3、计算圆面积的必要条件是什么(半径)

板书:

1、 化圆为方。

圆的面积教案 篇九

教学目的:

1、通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

2、能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

教学重点:

理解和掌握圆面积的计算公式的推导过程

教学难点:

圆面积计算公式的推导

教学过程:

一 、创设情境,提出问题

( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

二、引导探究,构建模型

A:启发猜想

师:羊吃到草的最大面积最大是圆形:

1、这个圆的面积有多大猜猜看;

2、试想圆的面积和哪些条件有关?

3、怎样推导圆的面积公式?(生试说)

B:分组实验,发现模型

学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:

1、你摆的是什么图形?

2、你摆的图形与圆的面积有什么关系?

3、图形各部分相当于圆的什么?

4、你如何推导出圆的面积?

请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况。

三、 应用知识,拓展思维

1师:要求圆的面积必须知道什么?

2 运用公式计算面积

A完成羊吃草的面积

B完成课后“做一做”

C一个圆的直径是10厘米,它的面积是多少平方厘米?

D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物直径(厘米)半径(厘米)面积(平方厘米)

3应用知识解决身边的实际问题(知识应用)

下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

四 归纳总结,完善认知

今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教学设计活动教案 篇十

教学目标:

1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

2、使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

3、体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

教学重点:

探索并掌握圆的面积公式,能正确计算圆的面积。

教学难点:

理解圆的面积公式的推导过程。

教学准备:

圆的面积公式的推导图。

一、回顾旧知,引入新知

1、师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

学生回答,教师予以肯定。

2、提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

3、引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

(板书:圆的面积)

设计意图通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

二、合作交流,探究新知

1、教学例7。

(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。

(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

(4)学生独立完成填空。

(5)猜测:圆的面积大约是正方形面积的几倍?

学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

(6)出示例7后两幅图,按照同样的方法进行计算并填表。

正方形的面积/

圆的半径/

圆的面积/

圆面积大约是正方形面积的几倍

(精确到十分位)

2、交流归纳:观察上面的表格,你有什么发现?

通过交流,明确

(1)圆的面积是它的半径平方的3倍多一些。

(2)圆的面积可能是半径平方的兀倍。

3、教学例8。

(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?

(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。

(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?

初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?

(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?

(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。

(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。

(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?

(8)根据学生的回答,教师板书

长方形的面积一长×宽

圆的面积=

(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?

4、教学例9。

(1)出示例9,提问:有没有在生活中见过自动旋转X器?

(2)想象一下自动X器旋转一周后喷灌的地方是什么图形,X的最远的距离是什么意思。

(3)学生独立完成计算。

(4)集体交流。

5、教学例10。

(1)请同学读题,解读题意。

(2)找出题中的已知条件。

(3)分析解题过程。

(4)明确各个量之间的转化关系。

三、巩固练习,加深理解

1、完成“练一练”。

(1)学生独立解答。

(2)集体交流。

2、完成练习十五第1题。

(l)学生独立解答。

(2)集体交流。

3、完成练习十五第3题。

(1)学生列式后用计算器计算。

(2)集体交流。

4、完成练习十五第4题。

(1)学生独立解答。

(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。

5、作业:练习十五第2、5题。

四、课堂小结

师:通过今天的学习,你有什么收获?

学生发言,教师点评。

上面内容就是众鼎号为您整理出来的10篇《圆的面积教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:胡同文化教案优秀7篇

下一篇:返回列表