北师大版六年级下册数学全册的教案设计(优秀8篇)
北师大版小学六年级下册数学教案 篇一
学习目标:
1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的图形。
2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。
学习重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。
学习难点:在方格纸上画出线段旋转90度后的图形
课前准备:钟表,课件,教具
学习过程
环节学案
回顾旧知1、物体的运动有¬¬()和()。
2、平移和旋转都只改变图形的(),不改变图形的()和()。
自主探索1、钟面上指针旋转的方向就是()方向;
相反的方向就是()方向。
2、钟表上旋转一周是()度,12个时刻将它12等份,所以每份是()度。
3、从8时到10时,时针绕旋转点()方向旋转()度,
从11时到15时,时针绕旋转点()方向旋转()度。
4、旋转三要素指()()()。
合作探究
当横杆升起时,横杆绕旋转点()时针旋转()度;
当横杆落下时,横杆绕旋转点()时针旋转()度。
达标检测
基础性作业:
课本29页练一练1、2题(看课件)。
一棵小树被扶起种好,这棵小树绕点O()方向旋转了()度。
提高性作业:
1、画出线段AB绕点B顺时针旋转90度后的图形;
画出线段AB绕点A逆时针旋转90度后的图形。
拓展性作业:
如图,点P是线段MN上一点,将线段MN绕点P顺时针旋转90度。
MPN
北师大六年级数学下册教案 篇二
第一课时
教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。
教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。 1126888.co 1126888.com m每位学生准备好制作圆柱的材料。
教学重点:使学生认识圆柱的特征。
教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。
教学过程:
一、复习
我们已经认识了长方体和正方体。
谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的两个长方形完全相同,长方体的高有无数条。)正方体呢?
谁能说一说我们学习了长方体和正方体的哪些知识?
二、 新授
教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、 初步印象
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)
2、 小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、 交流和汇报
(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。
(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、 举例说明进一步明确特征
教师:既然大家对圆柱已有了进一步的了解,那么在生活中那些物体是圆柱呢?
(学生举例,再让学生自己判断。当有一个学生说粉笔是圆柱时,教师可让学生进行讨论。)
5、 运用知识进行判断
下面哪些图形是圆柱?哪些不是?说明理由。
6、 制作圆柱
三、练习
1、 运用知识进行判断
下面哪些图形是圆柱?哪些不是?说明理由。
北师大六年级数学下册教案 篇三
教学目标
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是成反比例。
3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
教学重点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学难点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程
一、复习
1.什么是正比例的量?
2.判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课
1.情境(一)
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
2.情境(二)
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定。
3.情境(三)
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。
写出关系式:每杯果汁量杯数=果汗总量(一定)
以上两个情境中有什么共同点?
4.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
北师大六年级数学下册教案 篇四
设计说明
1.注重培养学生学习的自主性。
引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2.培养学生的解题能力。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
课前准备
多媒体课件
教学过程
⊙创设情境,提出问题
1.介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。
2.呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?
设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
⊙尝试解决,体会联系
1.想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2.说一说。
教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设
方法一 14÷4=3.5,3.5×10=35(本)。
方法二 10÷2=5,14÷2=7,5×7=35(本)。
方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。
方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。
⊙自主学习,探究新知
1.提出新的要求。
师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?
2.学生尝试列式。
预设
方法一 4∶10=14∶x。
方法二 10∶4=x∶14。
方法三 14∶4=x∶10。
方法四 4∶14=10∶x。
3.交流汇报写出比例的主要依据。
4.学生独立解比例。
5.汇报结果。
预设
生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。
生2:我是这样计算的:
4∶10=14∶x
解:4x=140
x=35
6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。
(师巡视,适时指导)
7.验算:把求出的结果代入比例验算一下,看等式是否成立。
(学生自主验算)
8.教师小结。
解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
北师大版小学六年级下册数学教案 篇五
教学目标
1、使学生巩固线段、射线和直线的概念,使学生巩固角的概念,进一步认识角的分类及各类角的特征,使学生进一步掌握垂线和平行线的概念。
2、使学生进一步认识学过的四边形的特征及其相互之间的联系,能正确地画出长方形和正方形。进一步认识圆的特征,能正确地画圃;巩固轴对称图形的特征,能判断一个图形是不是轴对称图形,并能找出轴对称图形的对称轴。
3、进一步培养学生的判断能力和空间观念。
教学重点
能够掌握平面图形的基本特征,并且理解相互之间的联系。
教学难点
根据平面的基本特征,能够理解平面图形的相互之间的联系。
教学过程
一、复习线段、射线和直线。
1、复习特征。【演示课件“平面几何图形的认识”】
(1)请你在本上分别画出5条不同的线,然后同桌互相说说你画的是什么线,有什么特点?他们之间又有什么不同?
(2)全班汇报。
指出:线段、射线和直线都是直的,线段是直线的一部分;线段有两个端点,是有限长的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
2、判断反馈。
(1)一条射线长5厘米。()
(2)通过一点可以画无数条直线。()
(3)通过两点可以画一条直线。()
(4)通过一点可以画一条射线。()
二、复习角。【继续演示课件“平面几何图形的认识”】
1、什么叫做角?请你自己画一个任意角。
提问:根据你画的角说—说,怎样的图形是角?(板书:角)
2、复习各部分名称。
学生填写各部分名称。
教师提问:(1)角的大小与什么有关?
(角的大小与两边叉开的大小有关,与边画的长短无关)
(2)角的大小的计量单位是什么?
3、复习角的分类。
教师说明:根据角的度数,可以把角分类。
教师提问:我们学习过哪几类角?每种角的特征是什么吗?
(板书:锐角直角钝角平角)
三、复习垂线和平行线。【继续演示课件“平面几何图形的认识”】
1、教师提问:在什么情况下可以说两条直线互相垂直?
你能举出日常生活里的例子吗?
在什么情况下可以说两条直线平行?
谁来举出平行线的例子?
2、画图。
让学生在练习本上画一组垂线和一组平行线。
四、复习了平面图形。
(一)复习三角形的概念。【继续演示课件“平面几何图形的认识”】
1、提问:什么叫做三角形?你能够画出几种不同的三角形?
老师板书分类:a.按照边分类;b.按照角分类
2、教师口述,学生作图。
(1)等腰三角形
(2)等腰直角三角形
3、判断。
出示一组三角形,让学生说说各是什么三角形。
4、复习三角形的内角和。
提问:三角形的三个内角的和是多少度?我们是怎样发现的?
(二)复习四边形。【继续演示课件“平面几何图形的认识”】
教师提问:四边形是怎样的图形?我们曾经学习过哪些四边形?
1、复习图形特征。
出示:
请你说说图里学过的四边形的名称、特征和字母表示的意义。
小组共同回忆:
(1)长方形有什么特征?
(2)正方形有什么特征?
(3)平行四边形有什么特征?
(4)梯形有什么特征?
2、从图上看,我们学过的四边形可以分为哪几类?正方形,长方形和平行四边形之间有什么关系?为什么?
教师小结:由于长方形、正方形两组对边都分别平行,所以长方形、正方形都是特殊的平行四边形,而正方形又是特殊的长方形。
板书:(完善四边形的关系)
(三)复习圆。【继续演示课件“平面几何图形的认识”】
1、复习圆的特征。
(1)画圆,并用字母表示圆心、半径和直径。
(2)提问:圆是怎样的一个图形?
同一个圆中直径和半径有什么关系?
2、复习轴对称图形。
(1)请同学们把圆对折。
提问:你发现圆对折后有什么特点?
再把等腰三角形、等边三角形对折,使折痕两边完全重合。
(2)提问:你认为刚才对折的图形都有什么特点,是什么图形?
(板书:轴对称图形)
这里对折的折痕就是什么?
(板书:对称轴)
怎样的图形是轴对称图形,什么叫对称轴?
等边三角形有几条对称轴?圆有多少条对称轴?
我们学过的其他图形里,哪些是轴对称图形?
你还能说出哪些见过的轴对称图形?
五、综合练习。
1、判断。
(1)小于180度的角叫做钝角。()
(2)平角是一条直线。()
(3)两条直线相交组成的四个角中,如果有一个角是直角,那么其他的三个角也是直角。()
(4)不相交的两条线叫做平行线。()
(5)等边三角形一定是等腰三角形。()
(6)任何两个等底等高的梯形都能够拼成一个平行四边形。()
2、选择题。
(1)直角的两条边是()
①直线②射线③线段
(2)等边三角形是()
①锐角三角形②直角三角形③钝角三角形
3、下面这个图中有多少个长方形?多少个三角形?多少个梯形?
六、小结。
通过这堂课的学习,你能够说出哪些包含关系的图形?
北师大版六年级下册数学优秀教案 篇六
[教学目标]:
1、结合具体情境,体会生活中存在着大量互相依赖的变量。
2、在具体情境中,尝试用自己的语言描述两个变量之间的关系。
[教材分析]:
教材通过让学生观察表格、图像、关系式,尝试用自己的语言描述两个变量之间的变化,为后面学习正比例、反比例打下基础,同时体会函数思想。
教材呈现了三个具体情境,鼓励学生在观察、思考、讨论和交流中,体会在生活情境中,存在着大量互相依赖的变量:一个量变化,另一个量也会随着发生变化,两个变量之间存在着关系。这三个情境分别用表格、图像和关系式呈现变量之间的关系,以使学生体会表示变量之间关系的多种形式。
[学校及学生状况分析]:
我校是一所民办实验小学,学校的数学的课堂教学中以学生为本,突显人文性,这样学生喜爱学习数学,敢于在课堂上表现自我,学生有较好的思维能力,探索能力和合作能力。
[教学过程]:
一、创设情境,导入新课。
1、用手势表示出自己从出生到现在身高的变化。
2、用手势表示出自己从出生到现在体重的变化。
3、师:身高、体重都会变化,这些都是变化的量。(板书课题)
二、观察表格,感知变量。
1、出示小明的体重变化情况表。
师:这是小明的体重变化情况表。
(1)从表中你知道了什么信息?
(2)上表中哪些量在发生变化?
(3)师生共同画一画小明的体重变化情况折线统计图。
(4)说一说小明10周岁前的体重是如何随年龄增长而变化的。
2、说一说。
(1)我发现( )随( )的增加而增加。
(2)我发现( )随( )的减少而减少。
3、师:通过你们举的例子,可以发现什么?
三、通过读图,感受变量。
1、师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
2、出示骆驼体温随时间的变化统计图。
3、读懂统计图。
(1)从图中你知道了什么信息?
(2)一天中,骆驼体温是多少?最低是多少?
4、感受量的周期变化。
(1)一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
(2)第二天8时骆驼的体温与前一天8时的体温有什么关系?
(3)第二天,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?第三天呢?第十天呢?
(4)师:每天骆驼的体温总是怎样变化的?
四、建立模型,感悟变量。
1、出示叫的蟋蟀叫的次数与气温之间关系的情境。
2、你能用式子表示这个近似关系吗?
即气温h=t÷7+3。
3、理解式子中量的变化。
师:如果蟋蟀叫了7次,这时的气温大约是多少?
如果蟋蟀叫了14次,这时的气温大约是多少?
如果蟋蟀叫了28次呢?
你能发现蟋蟀叫的次数与气温之间是怎样变化的?
4、举出而变化的例子。
5、通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。
五、课堂巩固,加深理解。
1、连一连,把相互变化的量连起来。
路程 正方形周长
边长 购卖数量
总价 行驶时间
2、说一说,一个量怎样随另一个量变化。
(1)一种故事书每本3元,买书的总价与书的本数。
(2)一个长方形的面积是24平方厘米,长方形的长与宽。
六、全课小结,谈谈收获。
北师大六年级数学下册教案 篇七
教学过程
⊙创设情境,复习导入
师:听老师提几个问题,想一想是我们学过的哪些知识。XX同学的左面是谁?我们教室的后面是什么?学校在邮局的什么方向?
生:方向与位置。
师:同学们说得很好,现在请同学们回忆一下,描述方向与位置的词语都有哪些?如何确定位置?这节课我们就来复习根据不同的参照物确定物体的位置。(板书课题:确定位置)
⊙回顾整理,构建网络
1.整理复习学过的方位词。
(1)学生小组交流学过的方位词。
(2)学生汇报交流。
学过的方位词有上、下、前、后、左、右、东、南、西、北、东南、西南、东北、西北。东北方向也叫北偏东,西北方向也叫北偏西,东南方向也叫南偏东,西南方向也叫南偏西。
(3)请大家观察所在学校和学校周围的物体,用方位词来指明物体的方向和位置。
(4)刚才大家用上、下、前、后、左、右和东、南、西、北来表示物体所在的大概位置以及方向,如果我们要准确地表示物体所在的位置,还可以用数对来表示,大家还记得用数对的表示方法吗?
2.梳理用数对表示物体位置的方法。
用数对来表示物体准确位置的步骤和方法:
(1)确定位置:选定参照点(原点),建立直角坐标。(竖排叫作列,横排叫作行。确定第几列一般从左往右数,确定第几行一般从前往后数)
(2)数对的写法:第一个数表示第几列,第二个数表示第几行,两个数用逗号隔开,外面加上小括号。
3.梳理用方向加距离表示物体位置的方法。
用方向和距离来表示物体准确位置的步骤:
(1)选定参照点(原点),建立直角坐标。
(2)确定方向和角度。
(3)确定比例尺,算出实际距离。
4.课件出示教材99页情境图。
星期日,奇思去动物园游玩,在大门口看到了动物园的示意图。他想先去百鸟园,你能帮他确定百鸟园相对大门的位置吗?
(1)学生探究确定百鸟园位置的方法。
(2)小组汇报。
北师大六年级数学下册教案 篇八
教学过程:
一、引入变量的概念
师:老师买了10个苹果,吃了2个,还剩?个吃了4个,还剩?个吃了7个,还剩?个
问:在老师刚才叙述的吃苹果这件事中有几个量?其中哪些量是变化的?怎样变化?
(有三个量;吃的个数与剩下的个数是变化的;一个增加,一个减少。)
师:一个量变化,另一个量也随着发生变化,可以看出,这两个量是互相依赖的变量,也可以说是相关联的量。
二、新授
师:好,下面我们一起看书P18。
1. 看第一个例子,说说这个统计表的内容是什么?
(是小明体重变化的情况)
年龄出生时6个月1周岁2周岁6周岁10周岁体重/千克3.57.010.514.021.031.5问:表中的哪些量在发生变化?
年龄在变,体重也在发生变化:年龄增加,体重也在增加。
问:我们能不能用一个图象来表示这两个量之间的变化关系呢?用一个什么图表示合适呢?(折线统计图)
2. 看第二个例子。骆驼被称为沙漠之舟,这就是反映骆驼体温随时间的变化而变化的图象。请你认真观察图象,图象中反映了哪些变量之间的关系?
(时间、体温)
指导学生读懂图意:
(1) 一天中,骆驼体温最高是多少?(400C)最低是多少?(350C)
(2) 一天中,在什么时间范围内骆驼的体温在上升?(4时到16时)在什么时间范围内骆驼的体温在下降?(0时到4时,16时到24时)
师:骆驼的体温是随时间而呈周期性的变化。
(3) 第二天8时骆驼的体温与前一天8时的体温有什么关系?
师:次日8时指第2天8时,与第一天8时相比,增加了24小时,应是图中的32时。
3. 看第三个例子。是蟋蟀叫的次数与气温之间的近似关系。
问:你认为它们之间的这种关系能不能用一个含有字母的式子来表示呢?
h=t7+3
三、引导学生举出生活中一个量随另一个量变化的例子。
如:一天的气温随时间的变化而变化;汽车行使的路程随时间的变化而变化等。
问:你能举出生活中一个量随另一个量变化的例子吗?
(学生举例,只要合理,老师就要给予肯定。)
四、课堂小结。
同学们,在我们的生活中存在着大量互相依赖的变量,其中一个量变化,另一个量也会随着发生变化,我们就称这两个量是两个相关联的量。
读书破万卷下笔如有神,以上就是众鼎号为大家整理的8篇《北师大版六年级下册数学全册的教案设计》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。