首页 > 教师教学 > 教学设计 >

初一初二数学重点知识点总结最新4篇

众鼎号分享 69370

众鼎号 分享

上学期间,大家最不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。还在为没有系统的知识点而发愁吗?这次众鼎号为您整理了4篇《初一初二数学重点知识点总结》,希望能够给您提供一些帮助。

初一初二数学重点知识点总结 篇一

两条平行线之间的距离:

是指从两条平行直线中的一条直线上的一点作另一条直线的垂线段的长;

注:

①能表示两条平行线之间的距离的线段与这两条平行线都垂直;

②平行线的位置确定之后,它们之间的距离是定值,它不随垂线段位置的改变而改变;

③平行线间的距离处处相等。

三种距离定义:

1、两点间的距离——连接两点的线段的长度;

2、点到直线的距离——直线外一点到这条直线的垂线段的长度;

3、两平行线的距离——两天平行线中,一条直线上的点到另一条直线的垂线段长度。

两直线间的距离公式:

设两条直线方程为

Ax+By+C1=0

Ax+By+C2=0

则其距离公式为|C1-C2|/√(A2+B2)

推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,

则满足Aa+Bb+C1=0,即Ab+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为

d=|Aa+Bb+C2|/√(A+B)=|-C1+C2|/√(A+B)

=|C1-C2|/√(A+B)

初一初二数学重点知识点总结 篇二

中心对称图形

正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆,平行四边形。

中心对称图形并不只有一个对称点,比如直线,再比如正弦曲线。

只是中心对称的图形需要满足不是轴对称图形。比如平行四边形。也有很多六边形、八边形等等只是中心对称而不是轴对称图形。

既不是轴对称图形又不是中心对称图形

等腰三角形,直角梯形等。

普通四边形有的是轴对称图形。

中心对称的性质

①关于中心对称的两个图形是全等形。

②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心。二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

初一初二数学重点知识点总结 篇三

分式的基本性质:

分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为A/B=(A-C)/(B-C);A/B=(A-C)/(B-C)(C不等于0),其中A、B、C是整式

注意:(1)“C是一个不等于0的整式”是分式基本性质的一个制约条件;

(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;

(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;

(4)分式的基本性质是分式进行约分、通分和符号变化的依据。

初一初二数学重点知识点总结 篇四

1、边:两组对边分别平行;四条边都相等;相邻边互相垂直。

2、内角:四个角都是90°;

3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;

4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。

5、正方形具有平行四边形、菱形、矩形的一切性质。

6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。

7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。

以上就是众鼎号为大家整理的4篇《初一初二数学重点知识点总结》,希望对您的写作有所帮助,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:老师节祝福语优秀8篇

下一篇:返回列表