首页 > 教师教学 > 教案模板 >

初一数学【优秀7篇】

众鼎号分享 149776

众鼎号 分享

初中一年级是小学升中学的一个重要转折阶点!因此打好数学基础是十分重要的。读书破万卷下笔如有神,下面众鼎号为您精心整理了7篇《初一数学》,如果对您有一些参考与帮助,请分享给最好的朋友。

初一数学 篇一

一、1、b 2、b 3、(1)> (2)< (3)< 4、3 5、(1)x-6>2 (2)a+b≥0

二、1、x≥3 2、x>1.5 3、x<-8/3 4、2x<-4 5、c 6、c 7、(1)x>6 数轴表示略(2)x>-2 数轴表示略

8、(1)x>2 数轴表示略 (2)x>-2.5 数轴表示略 9、2≤x<3 数轴表示略 10、x>3/11

三、操作探究(1)当x=2时,y=15,当x=-2时,y=3 (2)-17/8≤x<-1.5 (3)x≤-17/8 1、x≤1/2 2、(1)4000元 (2)5种:①甲6,乙9;②甲7乙8;③甲8乙7;④甲9乙8;⑤甲10乙5 (3)a=300,甲6乙9更有利

四、1、x≤280 2、137/18>x>137/19 3、4.5km 操作探究(1)c>a>b (2)r>s>p>q 创新舞台

当m>n时,不答应;当m=n时,无所谓;当m

五、1、b 2、d 3、(1)a+ab (2)x+y (3)1 (4)ac 4、(1)36a4^4b(注:4^4即4的4次方,以后不解释) (2)x(x-9)

5、(1)5x-10y/2x-40 (2)x-20/130x+24 6、(1)1/3x=4y/12xy,5/12xy=5x/12xy (2)y/x(x-y)=y-xy/x(y-x) x/(y-x)=x/x(y-x) 创新舞台 -7,-7

六、1、-1 2、3 3、x 4-6 dac 7、(1)2/xz (2)10/3a(a+2) 操作探究 略

七、1、(1)x=0 (3)x=0 (第2问呢- -) 2、1/7 3、34 4、(1)③ (2)不正确 应保留分母 (3)-2x-6/(x+1)(x-1) 创新舞台 原式=x+4 ∵(-根号3)=(根号3),∴正确

八、1、m>-6 2、5元 感悟体验 略

九、1、y=50/x 2、略 3、>2/3 4、m>1/2 5、d 6、b 7、(1)y=-18/x (2)x=-6 创新舞台 略

十、1-3 aad 4、(1)s=100000/d (2)200m (3)6666.67m

十一、1、二 四 2、c 3、长10m 宽6m 创新展台 (1)30min (2)无效

十二、1、c 2、d 3、(1)1:10000000 (2)1:10000000 (3)单位换算 4、(1)1/2,1/4,1/2 (2)ac,db,cd,ab 5、(1)5/2 (2)5/2 6、(1)8 (2)略(提示:db/ab=2/5,ec/ac=2/5 db/ab=ec/ac) 创新舞台 32cm(不清楚2cm和0.5cm算不算,这题不同人不同理解,多写应该也没事- -)

十三、基础展现(1)盲区 (2)不能。盲区 (3)ab范围内 (4)略 感悟体验 7.6m 操作探究 略

十四、1-3 ccd 4、2:1 1:2 5、12 6、1 7、(1)135 根号8 (2)相似,理由略 操作探究 略

十五、1-3 cbc 4、∠acp=∠abc 5、2/5 6、(1)de=ad,be=ae=ce (2)△ade∽△aec (3)2 创新舞台 略

十六、1、a 2、d 3、图1 灯光 中心投影 ;图2 阳光 平行投影 4、6.40m 操作探究 (1)1.25 (2)1.5625 (3)y=d/4(4)0.4m

十七、全部作图说理类题,略

十八、1、(1)√ (2) (3)√ 2、b 3、a 4、略 操作探究 (1)提示:做pq平行ac (2)不成立 (3) ∠pac=∠apb+∠pbd

十九、1、c 2、c 3、= 4、不合理 5、不行 6、(1)正确 (2)正确 操作探究 (1)180°(2)相等 三角形的外角等于不相邻两个内角和 三角形三个内角和为180°创新舞台 e d f

二十、1、c 2、cd 3、略(提示:连接ad) 操作探究 平行 理由略 创新舞台 略(如:已知(1)、(2)、(4),求证(3))

初一数学 篇二

初一数学(第3周)

【教学内容】

第二章 2.1 正数与负数  2.2 数轴

【教学目标】

1、会判断一个数是正数还是负数,理解负数的意义。

2、会把已知数在数轴上表示,能说出已知点所表示的数。

3、了解数轴的原点、正方向、单位长度,能画出数轴。

4、会比较数轴上数的大小。

【知识讲解】

一、本讲主要学习内容

1、负数的意义及表示             2、零的位置和地位

3、有理数的分类                  4、数轴概念及三要素

5、数轴上数与点的对应关系        6、数轴上数的比较大小

其中,负数的概念,数轴的概念及其三要素以及数轴上数的比较大小是重点。负数的意义是难点。

下面概述一下这六点的主要内容

1、负数的意义及表示

把大于0的数叫正数如5,3,+3等。在正数前加上“-”号的数叫做负数如-5,-3,- 等。负数是表示相反意义的量,如:低于海平面-155米表示为-155m,亏损50元表示-50元。

2、零的位置和地位

零既不是正数,也不是负数,但它是自然数。它可以表示没有,也可以在数轴上分隔正数和分数,甚至可以表示始点,表示缺位,这将在下面详细介绍。

3、有理数的分类

正整数、零、负整数统称为整数,正分数、负分数统称为分数,整数和分数统称为有理数。

正整数

整数     零                              正有理数

有理数            负整数            或 有理数     零

分数      正分数                          负有理数

负分数

4、数轴的概念及三要素

规定了原点、正方向和单位长度的直线叫数轴,数轴的三要素分别为原点,正方向,单位长度,缺少任何一个都不能构成数轴。

①数轴一般取向右为正,单位长度要一致。

②每个单位长度可以表示1,也可表示为5,10,100等等。

③数轴上的数一般写在数轴的下方。

5、数轴上数与点的对应关系

每个有理数都可以表示在数轴上。

6、数轴上数比较大小

数轴上数比较大小遵照“在数轴上表示的两个数,右边的数总比左边的的大”的原则。由此可以得到:正数都大于0,负数都小于0,正数大于一切负数。

二、典型例题

例1、如果赢余100元记作+100元,那么亏损50元如何表示?

-150元又表示什么?赢余-70元又表示什么?

分析:负数经常表示相反意义的量,那么亏损就是赢余的相反意义,故亏损50元表示为-50元,同样可得-150元表示亏损150元,赢余-70元,其中-70元表示亏损70元,赢余亏损70元表示的意义就是亏损70元。

答:亏损50元表示为:-50元。

-150元表示为;亏损150元。

赢余-70元表示为:亏损70元。

例2、将下列各数填入相应的大括号里

正数集合:{      …}          非负数集合:{      …}

整数集合:{      …}          非负整数集合:{      …}

有理数集合:{      …}

解:负数集合:{0.7, ,371.4,13,…}

非负数集合:{0.7, ,371.4,13,…}

整数集合:{-0,13,…}

非负整数集合:{0,2000,…}

有理数集合:{-1,0.7, ,-0.031,0,371.4,…}

说明:我们把某一特征的一类事物的全体称为集合。其中每一个数叫做这个集合的一个元素。

要注意:零是非负数集合,整数集合,非负整数集合,自然数集合,有理数集合均有的一个元素,要正确地将数填入相应的集合里,还必须正确掌握有理数的分类。

例3、选择:下面的说法中,正确的是( d )

a、在有理数中,0的意义仅表示没有。

b、正有理数和负有理数组成全体有理数。

c、0.3既不是整数,也不是分数,因此它不是有理数。

d、0既不是正数,也不是负数,它是自然数。

注意:0是一个很重要又很特殊的数,它不是正数,也不是负数,它是非负数;它既是整数,也是偶数,还是自然数,它有多种含义:

(1)表示没有:树上有0只鸟,表示数上没有鸟。

(2)表示起点:如在计时中,0表示每天的起点时期。

(3)表示分界点:如数0是正数和负数的分界点。

(4)记数中表示缺位:如103中表示十位缺位。

例4、说出下面的数轴上的点o、a、b、c、d、e各表示什么数?

c

-4

-3

e

-1

-2

b

0

o

2

1

a

3

4

d

答:o、a、b、c、d、e分别表示:0,1,-2,-2.5, , 。

说明:(1)数轴是一条具有三个要素(原点、正方向和单位长度)的直线,这些要素也是判断一条直线是不是数轴的根本依据。数轴与它所在位置无关,但为了教学上的需要,一般水平放置的数轴,规定从原点向右为正方向,这就得证了“数轴上表示的两个数右边的数总比左边的数大”。

(2)在数轴上表示数的点可用大写字母,写在数轴上方相应数的上面,原点用o标出,它表示数0,但不能说o =0,其它表示数的点字母也一样。

(3)数轴上原点的位置要根据需要来确定,不一定要居中。并且同一数轴上的单位长度不能变。

例5、指出数轴上各点分别表示什么数?

解:点a表示数-3.5;点b表示数0;

点c表示数2;  点d表示数-1;

点e表示数 。

说明:要正确读出点所表示的数,必须作如下判断:(1)点在原点的左侧还是右侧,确定数的符号;(2)看点离开原点几个单位,确定的数的值。例如点a在原点左侧,点a表示一个负数,点a离开原点3.5个单位长度,所以点a表示数-3.5;同样e离开原点 个单位长度,但点e在原点右侧,所以点e表示数 。

由此可见,数与点的位置密切相关,结合图形研究数量是数学中常用的方法:数轴就是“数形结合”的模型,同学们要熟悉,掌握并运用它。

例6、在数轴上表示下列各数,并比较大小。

-3, ,0, ,5

解:

-3< <0< <5

说明:要在数轴上正确描出表示各数的点,先看数的符号,表示负数的点描在原点的左侧,表示正数的点描在原点的右侧,再根据各数的数值,即点与原点的距离确定表示各数的点的位置,表示数0的点就是原点。

根据在“数轴上表示的两个数,右边的数总比左边的大”即可借助于数轴表示有理数的大小。

【一周一练】

1、填空题

(1)如果向东走5m记作+5m,那么向西走15m应记作       ;如果+30m表示向西行走30m,那么-20m表示             。

(2)人口增加3万人,记作+3万人,那么人口减少0.5万人可记作         。

(3)比海平面高800m的地方,它的高度记作海拔      ,比海平面低150m的地方,它的高度记作海拔          。

(4)一种零件的内径尺寸在图纸上标注是20±0.05(单位:mm),表示这种零件的标准尺寸是20mm,加工时要求最大不超过标准尺寸      ,最小不小于标准尺寸  。

(5)若收入800元记作+800元,则-400元表示       。

(6)若把95分的成绩记作+15分,那么62分的成绩记作        ,这样记分时,某学生的成绩记作+5分,他的实际成绩是         。

(7)数轴上原点左边的点表示    数,原点右边的点表示    数,原点表示   。

(8)到原点的距离等于5个单位长度的点表示的数是       。

(9)不小于2的非负整数是          。

(10)在东西走向的公路上,乙在甲的东边3km处,丙距乙5km,则丙在甲的东边         处。

2、判断题(对的打“√”,错的打“×”)

(1)4<-8(  )          (2)-3>-4(  )

(3)0>-30(  )         (4)+a一定是正数(  )

(5)在数轴上表示的两个数,右边的数总比左边的数大。(  )

(6)正数与负数统称为有理数。(  )

(7)正整数是自然数,自然数就是正整数。(  )

(8)球类比赛胜地5分作+5分,-3分表示输了-3分。(  )

3、比较大小

(1)0             (2)      -3.14      (3)

(4)-0.125          (5)设a<0,则a    2a.

4、数学期末85分以上为优秀,老师以85分为基准,将某一小组的五名同学的成绩简记为:-7,+12,0,-2,+5,问这五名同学最高成绩为多少?最低成绩为多少?其余3名同学的成绩是多少?

5、画一条数轴,在数轴上表示下列各数的点,并用“>”号连接。

4.5,    -4,     0,

6、把下列各数填在相应的大括号里。

,  -1,  0,  +6,  -1.08,  ,  10%,  0.33……,  4

正数集合:{        …}        负数集合:{        …}

自然数集合:{      …}        分数集合:{        …}

非负整数集合{      …}

非正数集合:{      …}        有理数集合:{      …}

【一周一练答案】

1、填空

(1)-15m,    向东行走20m;

(2)-0.5万人;

(3)800m, -150m;

(4)-0.05mm ,0.05mm;

(5)支出400元;

(6)-18分,85分;

(7)负,正,0;

(8)±5

(9)0,  1,  2,

(10)8km或-2km

2、判断题

(1)× (2)√ (3)√ (4)× (5)√ (6)× (7)× (8)×

3、比较大小:(1)>   (2)<   (3)<   (4)=   (5)>

4、最高成绩是97分,最低成绩是78分,其余三名同学的成绩是:85分,83分,90分。

-4

-3

-1

-2

0

2

1

3

4

6

5

4.5

-4

0

-

5、

4.5> >0> >-4

6、正数集合:{+6, ,10%,0.33……,4,…}

负数集合:{ ,-1,-1.08,…}

自然数集合:{0,+6,4,…}

分数集合:{ ,-1.08,10%,0.33……,…}

非正数集合:{ ,-1,0,-1.08,…}

非负整数集合:{0,+6,4,…}

有理数集合:{ ,-1,0,+6,-1.08, ,10%,0.33……,4,…}

初一数学 篇三

一、:代数初步知识。

1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.

二、:几个重要的代数式(m、n表示整数)。

(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

三、:有理数。

1.有理数:

(1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(2)有理数的分类:①②

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:初一上册知识点绝对值的问题经常分类讨论;

(3)

(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

四、:有理数法则及运算规律。

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数。

2.有理数加法的运算律:

(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).

3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

4.有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。

5.有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac.

6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

7.有理数乘方的法则:

(1)正数的任何次幂都是正数;

五、:乘方的定义。

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)

(4)据规律底数的小数点移动一位,平方数的小数点移动二位。

2.

3.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位。

4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。

5.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则。

6.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明。

六、:整式的加减。

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

3.多项式:几个单项式的和叫多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)是常见的两个二次三项式。

5.整式:单项式和多项式统称为整式。

七、:整式分类为。

1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

2.合并同类项法则:系数相加,字母与字母的指数不变。

3.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

4.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

5.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

八、:一元一次方程

1.等式与等量:用“=”号连接而成的式子叫等式。注意:“等量就能代入”!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

3.方程:含未知数的等式,叫方程。

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项。移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).

9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).

九、:列一元一次方程解应用题。

(1)读题分析法:…………多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。

(2)画图分析法:…………多用于“行程问题”

利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。

十、:.列方程解应用题的常用公式。

初一数学 篇四

一、知识导航

1、主要概念:变量是 ;自变量是 ;因变量是 。

2、变量之间关系的三种表示方法: 。

其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把 的值找到,查询方便;但是欠 ,不能反映变化的全貌,不易看出变量间的对应规律。

关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。图像:形象直观。可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。

3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。

二、学习导航

1、有关概念应用

例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?

① 用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;

②正方形边长是3,若边长增加x,则面积增加为y.

2、利用表格寻找变化规律

例2 研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:

施肥量

(千克/公顷) 0 34 67 101 135 202 259 336 404 471

土豆产量

(吨/公顷) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75

上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?

变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:

时间/秒 0 1 2 3 4 5 6 7 8 9 10

速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9

①上表反映了哪两个变量之间的关系?哪个是因变量?

②如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?

③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加?

④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?

3、用关系式表示两变量的关系

例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。②设地面气温是20℃,如果每升高1km,气温下降6℃,求气温与t高度h的关系。

变式(江西)如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是: .

4、用图像表示两变量的关系

例4、(桂林)今年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,目前疫情已得到有效控制。下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道:

(1)5月6日新增确诊病例人数为 人;

(2)在5月9日至5月11日三天中,共新增确诊病例人数为 人;

(3)从图上可看出,5月上半月新增确诊病例总体呈 趋势。

例5、(陕西) 星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系。依据图象,下面描述符合小红散步情景的是( ).

A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了

B.从家出发,到了一个公共阅报栏,看了一会儿报后,

继续向前走了一段,然后回家了

C.从家出发,一直散步(没有停留),然后回家了

D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返

变式 (成都)右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系。请根据这个行驶过程中的图象填空:汽车出发 小时与电动自行车相遇;电动自行车的速度为 千米/时;汽车的速度为 千米/时;汽车比电动自行车早 小时到达B地。

三、一试身手

1、(贵阳)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还。”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是(  )

2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余

部分的高度y(厘米)与燃烧时间x(小时)

之间的关系如图所示。

请根据图象所提供的信息解答下列问题:

(1)甲、乙两根蜡烛燃烧前的高度分别是      ,

从点燃到燃尽所用的时间分别是       ;

(2)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?

3、(20xx宿迁课改)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示。如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是(  )

A.8.6分钟 B.9分钟

C.12分钟 D.16分钟

4、某机动车出发前油箱内有油42l,行驶若干小时后,途中在加油站加油若干升。油箱中余油量Q(L)与行驶时间t(L)之间的关系如图8 所示。

回答问题:(1)机动车行驶几小时后加油?

(2)中途中加油_________L;

(3)已知加油站距目的地还有 ,车速为 ,

若要达到目的地,油箱中的油是否够用?并说明原因。

5、在一次实验中,小明把一根弹簧的上端固定。在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值。

所挂质量

0 1 2 3 4 5

弹簧长度

18 20 22 24 26 28

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)当所挂物体重量为 时,弹簧多长?不挂重物时呢?

(3)若所挂重物为 时(在允许范围内),你能说出此时的弹簧长度吗?

6、小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完。销售金额与售出西瓜的千克数之间的关系如图9所示。请你根据图象提供的信息完成以下问题:

(1)求降价前销售金额y(元)与售出西瓜 (千克)之间的关系式;

(2)小明从批发市场共购进多少千克西瓜?

(3)小明这次卖瓜赚子多少钱?

7、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图象。

(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费?

(2)通话多少分钟内,所支付的电话费不变?

(3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是 ,那么通话4分钟的电话费是多少元?

8、如图是某水库的蓄水量v(万米3)与干旱持续时间t(天)之间的关系图,回答下列问题:

(1)该水库原蓄水量为多少万米3?持干旱持续时间10天后,水库蓄水量为多少万米3?

(2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?

(3)按此规律,持续干旱多少天时,水库将干涸?

9、(成都市)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为 元和 元。

(1)写出 、 与x之间的关系式;

(2)一个月内通话多少分钟,两种移动通讯费用相同?

(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?

初一数学 篇五

【教学内容】

第一章 1·4公式    1·5简易方程

【教学目标】

1、能运用公式解决比较简单的实际问题,并对简单公式的导出方法有一个初步的认识;

2、会解简单的方程及会利用简易方程解实际问题;

3、初步了解抽象概括的思维方法及特殊与一般的辩证关系。

【知识讲解】

一、本讲主要学习内容

1、公式;      2、方程中的有关概念;      3、解方程的依据。

下面讲述这几点的主要内容:

1、公式

用字母表示数的一类重要应用就是公式,在小学,我们已经学过许多公式。

如:(1)s=vt(路程公式), (速度公式), (时间公式)

(2)梯形面积公式:

(3)圆的面积公式:

(4)s圆环=

2、方程中的有关概念

(1)含有未知数的等式叫方程。

(2)使方程左右两边相等的未知数的值,叫方程的解。

(3)求方程的解的过程叫解方程。

3、解方程的依据

(1)方程两边都加上(或减去)同一个适当的数。

(2)方程两边都乘以(或除以)同一个适当的数。

二、典型例题

例1、图示是一个扇环,外圆半径是r,内圆半径是r,扇环的圆心角为n,写出扇环的面积公式,并计算当r=8cm,r=4cm,n=60°时的扇环面积( 取3.14,结果取一位小数)。

分析:扇环面积可以看作是环形面积的一部分,因为环形的圆心角是360°,所以圆心角是n的扇环面积是环形面积的 。

解:   当r=8cm  r=4cm  n=60°时,

答:扇环的面积约是25.1cm2。

说明:(1)公式计算时单位要一致,计算过程中一般不写单位,最后结果才写出单位,并用括号将单位括起来。

(2)上面所用的求扇环面积的方法体现了数学上的转化思想。一般在计算比较复杂的图形的面积时,都有采用此法,即将复杂的图形转化为几个简单图形的面积的和或差。

例2、一根钢管它的截面是一个圆环,圆环的外圆半径是r=10cm,内圆半径r=8cm,钢管长l=100cm。

求:(1)求此钢管的体积;

(2)若将此钢管内外都油漆起来,求油漆部分的面积。

分析:(1)由于圆柱体的体积是截面积×高,所以要求此圆柱的体积,首先应求出截面圆环的面积;圆环的面积转化为两圆面积之差。即s圆环=s外圆-s内圆;

(2)由于油漆部分包括四个方面,即内外两个侧面与两个圆环面。所以只要求出这四个面的面积之和就可以了。

解:(1)

(2)

答:(1)钢管的体积是 cm3;(2)油漆面积是3672 cm2。

说明:对于 ,若题中没有给出数值,结果可以保留 。

例3、一种树苗的高度用h表示,树苗生长的年数用a表示,测得有关数据如下表。

(树苗原高100cm)

年数a

1

2

3

4

……

高度h

100+5

100+10

100+15

100+20

……

写出用年数a表示高度h的公式并求当a=10时,n是多少?

分析:怎样用含a的代数式来表示h呢?在h这一栏中的数

是两部分的和,看“+”后的部分与a的关系:

因此得后一部分是5a,再加上100,得:h=5a+100

解:h=5a+100   当a=10时,h=5×10+100=150(cm)

例4、选择题:下列方程中,解是4的方程是(      )

a、2x+5=0     b、3x-8=0      c、 x+3=5       d、2(x-1)=8

答:c

说明:判别某数是不是方程的解只要将它代入方程,看等式是否成立即可。

例5、解方程

解:方程两边都加上 ,得:0.7x=

方程两都除以0.7,得:

注意:(1)上述解方程的过程也可写成:

解:0.7x= (两边都加上 )

(两边都除以0.7)

(2)为了防止发生差错,解方程时,必须严格按步进行。最后还可

以把求得的方程的解代入原方程,检验等式是否成立;

(3)方程两边都除以0.7,实际上就是乘以 ,一般在有小数或分

数的计算中,统一化为分数再计算要简便些。

例6、甲、乙两人去植树,甲种了全部树苗的 ,乙种了30棵。甲、乙两人共种了50棵,还剩有部分树苗,问原有树苗多少棵?

解:设原有树苗x棵,根据题意得: x+30=50

x =20(两边都减去30)

x =100(两边都乘以5)

答:原有树苗100棵。

注意:到方程解应用题时,必须仔细审题,在弄清题意的前提下,首先设未知数(一般可用x或y、z表示),再用代数式表示题中其至有关的数,并根据题 中的等量关系列出方程,最后是解方程,检验并作答。

例7、张明用a元钱购买国库券,n年期的年利率是i,那么到期时张明可得本息和多少元?并计算当a=100元,i=3%,n=5时的本息和。(本息和=本金+利息)

分析:在储蓄中,本金存入后不再变化,而利息随本金利率和存入时间的变化而变化。本题中n年期到期,则存期n=5年。

解:设本息和为y,则y=a+nia

当a=1000, i=3%,n=5时,y=1000+5×3%×1000=1000+150=1150(元)

答:本息和是1150元。

【一周一练】

1、填空题:

(1)若三角形的面积是s,底是a,那么它的高h=_____,当s= m,a=4m时,h=_____。

(2)若梯形两底之和是m,高是h,那么它的面积s=______,当m=6.8cm,h=1.5cm时,s=______。

(3)圆的直径是d,它的周长c=____,面积s=____,若d=2.68,那么c=____,s____。

( 取3.14)

(4)圆锥体的底面积是s,体积是v。它的高h=_____。若s=7cm2,v=105 cm3,那么h=_____。( 取3.14)

(5)已知 +3=4,那么代数式x2-1的值是_______。

(6)若代数式 与1的差为0,则x=______。

(7)一个数的2倍加上6得13,则此数是             。

(8)静水中船的速度是x千米/时,水流的速度是1.5千米/时,顺水航行t小时,行走的路程s1=          千米;逆水航行t小时,行走的路程s2=           千米。

(9)某商品标价为165元,若降价以九折出售。(即优惠10%),仍可获利10%(相对于进货价),则该商品的进货价是_______元。

2、选择题:

(1)下列方程中,解是x=3的方程是(     )

a、2x+1=0          b、  (x+1)=2          c、 x-2=0        d、3x-8=0

(2)已知x=2是方程m-3x= 的解,则m2- 的值是(     )

a、               b、                  c、            d、

(3)圆柱的高为x,底面直径等于高,则圆柱的体积是(     )

a、           b、               c、              d、

(4)下列各题中两个方程的解不同的是(     )

a、2x+5=10和10=2x+5

b、 和

c、 和x-1=10

d、 和0.1x=0

3、解方程:

(1)            (2)0.1x+ =            (3)

4、某种型号的汽车行驶时油箱里的剩油数与汽车行驶的路程之间的关系如下表:

行驶全程n(km)

每km耗油量q(l)

剩油量a(l)

1

0.04

20-0.04

2

0.08

20-0.08

3

0.12

20-0.12

4

0.16

20-0.16

……

……

……

写出用n表示a的公式,并计算当n=150时,a是多少?

5、一件工作,甲独做要16小时完成,乙独做要12小时完成。现先由甲独做6小时,余下的由乙单独做,还需几小时完成。

6、甲、乙两同学从同地出发,沿300米的环形跑道相背而行,甲的速度是6.5米/秒,25秒钟后两人第一次相遇,乙的速度是多少?

【一周一练答案】

1、填空题:

(1) , m;                       (2) ,5.1cm2;

(3) , ,8.42cm,5.64cm2;      (4)45cm;

(5)3;                                (6)10;

(7) ;                              (8)(x+1.5)t;(x-1.5)t;

(9)135。

2、选择题:

(1)c;         (2)d;         (3)a;         (4)d。

3、(1)x=3;    (2)x= ;      (3) 。

4、a=20-0.04a;    140升;

5、 ,x=7.5(时)

6、分析:两人在环形跑道上相背而行,第一次相遇,说明此时两人所行的路程之和是一个跑道长。

解:设乙的速度是x米/秒,则

6.5×25+x×25=300

∴ x=5.5

答:乙的速度是5.5米/秒。

初一数学 篇六

公式

教学目标

1.了解公式的意义,使学生能用公式解决简单的实际问题;

2.初步培养学生观察、分析及概括的能力;

3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

教学建议

一、教学重点、难点

重点:通过具体例子了解公式、应用公式。

难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

二、重点、难点分析

人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

三、知识结构

本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

四、教法建议

1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

教学设计示例

公式

一、教学目标

(一)知识教学点

1.使学生能利用公式解决简单的实际问题。

2.使学生理解公式与代数式的关系。

(二)能力训练点

1.利用数学公式解决实际问题的能力。

2.利用已知的公式推导新公式的能力。

(三)德育渗透点

数学来源于生产实践,又反过来服务于生产实践。

(四)美育渗透点

数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美。

二、学法引导

1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

2.学生学法:观察→分析→推导→计算

三、重点、难点、疑点及解决办法

1.重点:利用旧公式推导出新的图形的计算公式。

2.难点:同重点。

3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差。

四、课时安排

1课时

五、教具学具准备

投影仪,自制胶片。

六、师生互动活动设计

教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式。

七、教学步骤

(一)创设情景,复习引入

师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏。

在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题。

板书: 公式

师:小学里学过哪些面积公式?

板书: S = ah

附图

(出示投影1)。解释三角形,梯形面积公式

【教法说明】让学生感知用割补法求图形的面积。

(二)探索求知,讲授新课

师:下面利用面积公式进行有关计算

(出示投影2)

例1 如图是一个梯形,下底 (米),上底 ,高 ,利用梯形面积公式求这个梯形的面积S。

师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作 等)

学生口述解题过程,教师予以指正并指出,强调解题的规范性。

【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量。2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯。

(出示投影3)

例2 如图是一个环形,外圆半径 ,内圆半径 求这个环形的面积

学生讨论:1.环形是怎样形成的。2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导。

评讲时注意1.如果有学生作了简便计算 ,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算。

2.本题实际上是由圆的面积公式推导出环形面积公式。

3.进一步强调解题的规范性

教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径。

测试反馈,巩固练习

(出示投影4)

1.计算底 ,高 的三角形面积

2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长 是多少?当 时,求t

3.已知圆的半径 , ,求圆的周长C和面积S

4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走 千米,下坡时每小时走 千米。

(1)求A地到B地所用的时间公式。

(2)若 千米/时, 千米/时,求从A地到B地所用的时间。

学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演。

【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展。

师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式。

八、随堂练习

(一)填空

1.圆的半径为R,它的面积 ________,周长 _____________

2.平行四边形的底边长是 ,高是 ,它的面积 _____________;如果 , ,那么 _________

3.圆锥的底面半径为 ,高是 ,那么它的体积 __________如果 , ,那么 _________

(二)一种塑料三角板形状,尺寸如图,它的厚度是 ,求它的体积V,如果 , , ,V是多少?

九、布置作业

(一)必做题课本第22页1、2、3第23页B组1

(二)选做题课本第22页5B组2

十、板书设计

附:随堂练习答案

(一)1. 2. 3.

(二)

作业答案

必做题1.

2. 3.

.

选做题5.

探究活动

根据给出的数据推导公式。

初一数学 篇七

教学目的

通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

重点、难点

1.重点:方程的两种变形。

2.难点:由具体实例抽象出方程的两种变形。

教学过程

一、引入

上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

二、新授

让我们先做个实验,拿出预先准备好的天平和若干砝码。

测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?

学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。

问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?

让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?

把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?

由图(1)、(2)可归结为;

方程两边都加上或都减去同一个数或同一个整式,方程的解不变。

让学生观察(3),由学生自己得出方程的第二个变形。

即方程两边都乘以或除以同一个不为零的数,方程的解不变:

通过对方程进行适当的变形。可以求得方程的解。

例1.解下列方程

(1)x—5=7(2)4x=3x—4

(1)解两边都加上5,x,x=7+5即x=12

(2)两边都减去3x,x=3x—4—3x即x=—4

请同学们分别将x=7+5与原方程x—5=7;x=3x—4—3,与原方程4x=3x—4比较,你发现了这些方程的变形。有什么共同特点?

这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。

例2.解下列方程

(1)—5x=2(2)x=

这里的变形通常称为“将未知数的系数化为1”。

以上两个例题都是对方程进行适当的变形,得到x=a的形式。

练习:

课本第6页练习1、2、3。

练习中的第3题,即第2页中的方程①先让学生讨论、交流。

鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。

三、巩固练习

教科书第7页,练习

四、小结

本节课我们通过天平实验,得出方程的两种变形:

1.把方程两边都加上或减去同一个数或整式方程的解不变。

2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。

五、作业

教科书第7—8页习题6.2.1第1、2、3。

以上就是众鼎号为大家带来的7篇《初一数学》,希望对您的写作有所帮助。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:《青松》练习(9篇)

下一篇:返回列表