首页 > 教师教学 > 教学设计 >

2022人教版高三数学课本知识点归纳(通用3篇)

众鼎号分享 87057

众鼎号 分享

奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。读书破万卷下笔如有神,下面众鼎号为您精心整理了3篇《2022人教版高三数学课本知识点归纳》,在大家参考的同时,也可以分享一下众鼎号给您的好友哦。

高三数学上学期知识点 篇一

1、圆柱体:

表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:

表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、正方体

a—边长,S=6a2,V=a3

4、长方体

a—长,b—宽,c—高S=2(ab+ac+bc)V=abc

5、棱柱

S—底面积h—高V=Sh

6、棱锥

S—底面积h—高V=Sh/3

7、棱台

S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3

8、拟柱体

S1—上底面积,S2—下底面积,S0—中截面积

h—高,V=h(S1+S2+4S0)/6

9、圆柱

r—底半径,h—高,C—底面周长

S底—底面积,S侧—侧面积,S表—表面积C=2πr

S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱

R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)

11、直圆锥

r—底半径h—高V=πr^2h/3

12、圆台

r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3

13、球

r—半径d—直径V=4/3πr^3=πd^3/6

14、球缺

h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3

15、球台

r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6

16、圆环体

R—环体半径D—环体直径r—环体截面半径d—环体截面直径

V=2π2Rr2=π2Dd2/4

17、桶状体

D—桶腹直径d—桶底直径h—桶高

V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高三数学基础知识点 篇二

不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用。在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明。不等式的应用范围十分广泛,它始终贯串在整个中学数学之中。

诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。

知识整合

1、解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。

2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。

3、在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。

4、证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法。要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点。比较法的一般步骤是:作差(商)→变形→判断符号(值)。

高三数学必修知识点 篇三

1.等差数列的定义

如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

2.等差数列的通项公式

若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.

3.等差中项

如果A=(a+b)/2,那么A叫做a与b的等差中项。

4.等差数列的常用性质

(1)通项公式的推广:an=am+(n-m)d(n,m∈N_).

(2)若{an}为等差数列,且m+n=p+q,

则am+an=ap+aq(m,n,p,q∈N_).

(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_)是公差为md的等差数列。

(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列。

(5)S2n-1=(2n-1)an.

(6)若n为偶数,则S偶-S奇=nd/2;

若n为奇数,则S奇-S偶=a中(中间项).

注意:

一个推导

利用倒序相加法推导等差数列的前n项和公式:

Sn=a1+a2+a3+…+an,①

Sn=an+an-1+…+a1,②

①+②得:Sn=n(a1+an)/2

两个技巧

已知三个或四个 m.1126888.com 数组成等差数列的一类问题,要善于设元。

(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….

(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元。

四种方法

等差数列的判断方法

(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;

(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_)都成立;

(3)通项公式法:验证an=pn+q;

(4)前n项和公式法:验证Sn=An2+Bn.

注:后两种方法只能用来判断是否为等差数列,而不能用来证明等差数列。

它山之石可以攻玉,以上就是众鼎号为大家整理的3篇《2022人教版高三数学课本知识点归纳》,能够给予您一定的参考与启发,是众鼎号的价值所在。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:2022年高考真题全国乙卷文综(优秀2篇)

下一篇:返回列表