初一数学知识点总结【最新5篇】
总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,为此我们要做好回顾,写好总结。总结怎么写才能发挥它的作用呢?下面是众鼎号的小编为您带来的5篇《初一数学知识点总结》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
数学初一知识点总结 篇一
知识点、概念总结
1、不等式:用符号"","≤","≥"表示大小关系的式子叫做不等式。
2、不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3、不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5、不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6、解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x) (3)如果不等式F(x)0,那么不等式F(x) 7、不等式的性质: (1)如果x>y,那么yy;(对称性) (2)如果x>y,y>z;那么x>z;(传递性) (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z www.1126888.com <0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数) 8、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 9、解一元一次不等式的一般顺序: (1)去分母(运用不等式性质2、3) (2)去括号 (3)移项(运用不等式性质1) (4)合并同类项 (5)将未知数的系数化为1(运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集 10、一元一次不等式与一次函数的综合运用: 一般先求出函数表达式,再化简不等式求解。 11、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 了一个一元一次不等式组。 12、解一元一次不等式组的步骤: (1)求出每个不等式的解集; (2)求出每个不等式的解集的公共部分;(一般利用数轴) (3)用代数符号语言来表示公共部分。(也可以说成是下结论) 13、解不等式的诀窍 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式组的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式组的解集是X<-6 (3)大于小于交叉取中间; (4)无公共部分分开无解了; 14、解不等式组的口诀 (1)同大取大 例如,x>2,x>3,不等式组的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式组的解集是X<2 (3)大小小大中间找 例如,x1,不等式组的解集是1 (4)大大小小不用找 例如,x3,不等式组无解 15、应用不等式组解决实际问题的步骤 (1)审清题意 (2)设未知数,根据所设未知数列出不等式组 (3)解不等式组 (4)由不等式组的解确立实际问题的解 (5)作答 16、用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。 一、将考试的一些错误信息进行分类 ①遗憾之错 就是分明会做,反而做错了的题。 比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如单位混用等。 ②似非之错 理解的不够透彻,应用得不够自如;回答不严密、不完整;第一遍做对了,一改反而改错了;或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。 ③无为之错 由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。 一般情况下,这三类错误的比例是2:7:1,你也可以自己分析一下自己的三类错误比例。得出结论后,就知道问题出在哪里,要针对性进行解决。 二、出现这些错误情况的原因 ①被动学习 许多同学有很强的依赖或懒惰的心理,只是被动的跟随老师的惯性运转,没有掌握学习的主动权。表现在不定计划、坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所有内容。 ②学不得法 老师上课一般都要讲清知识点的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。 ③不重视基础 一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。 ④数学思维不够宽广 有的同学不会对知识的深度、广度,以及各章节进行总结,并融会贯通,不会“多角度”考虑,不会“概括”、“类比”、“联想”、“抽象”等各种方法与思维。 ⑤死记硬背,不能迁移知识 初中数学主要是以形象、通俗的语言方式进行表达。有些同学建立了统一的思维模式,就只能机械的进行操作,形成一种定势方式。而不会加强知识的迁移,对一道题,要尽可能多想解法,多开动“脑筋”,使思维“活”起来。对一些相近的题,要善于总结,形成“一法多题”。 三、科学的学习方法 学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动为主动。 ①培养良好的学习习惯 良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 制定计划明确学习目的。合理的学习计划是推动主动学习和克服困难的内在动力。既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。 课前预习是取得较好学习效果的基础。预习不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。 上课是理解和掌握基本知识、基本技能和基本方法的关键环节。上课专心听重点难点,把老师补充的内容记录下来,而不是全抄全录,顾此失彼。 及时复习是提高效率学习的重要一环。通过反复阅读教材,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较。 独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所有新知识的理解和对新技能的掌握过程。 解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。做错的作业要再做一遍,对错误的地方没弄清楚要反复思考。 系统小结是通过积极思考,达到全面系统深刻地掌握知识和发展认识能力的重要环节。小结要在系统复习的基础上以教材为依据,参照笔记与资料,通过分析、综合、类比、概括,提示知识间的内在联系,以达到所有知识融会贯通的目的。 课外学习包括阅读课外书籍与报刊,课外学习是课内学习的补充和继续,它不仅能丰富同学们的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展我们的兴趣爱好,培养独立学习和工作的能力。 ②秩序渐进,防止急躁 由于学生年龄较小,阅历有限,有些学生容易急躁,有的同学贪多求快,有的同学想靠几天“冲刺”一蹴而就,有的取得一点成绩便洋洋自得,遇到挫折又一蹶不振。学习是一个长期的巩固旧知识、发现新知识的积累过程,决非一朝一夕可以完成。学习是一项循序渐进、长期积累的过程,要有恒心、决心,有一些拼搏的心,要防止急躁心里,才能取得最后的成功。 ③研究学科特点,寻找最佳学习方法 数学学科担负着培养学生运算能力、逻辑思维能力、空间想象能力,以及运用所学知识分析问题、解决问题的能力的重任。它的特点是具有高度的抽象性、逻辑性和广泛性,对能力要求较高。具体寻找方法因人而异,但学习的五个环节:预习、上课、复习、作业、总结是少不了的。 ④多交流、多反思解疑,化解分化点 多和同学交流,多向老师请教,多开展变式练习,化解分化点,以达到灵活掌握知识、运用知识的目的。 只要学习科学方法,有恒心,有信心,有拼搏心,克服急躁心里,克服“小聪明”,多交流,多反思,养成良好的学习习惯,就能顺利度过学习适应期,就能在今后的数学成绩突飞猛进。 四、学数学的几个建议: 1、记数学笔记,特别是对概念理解的不同侧面和数学规律,以及老师补充的课外知识。 2、建立数学纠错本。 3、记忆数学规律和数学小结论。 4、与同学建立良好关系,争做“小老师”,形成数学学习“互助组”。 5、增加数学课外阅读,加大自学力度。 6、反复巩固,消灭前学后忘。 7、学会总结归类。 有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。 有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。 两条直线相交,有2对对顶角。 对顶角相等。 两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 注意: ⑴垂线是一条直线。 ⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:a⊥b,AB⊥CD。 画已知直线的垂线有无数条。 过一点有且只有一条直线与已知直线垂直。 连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 一、数学有理数知识点 有理数加法的运算律: (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c)。 有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac. 二、整式的加减知识点 1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。 2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。 3、多项式:几个单项式的`和叫多项式。 4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。 三、初一学生必背数学重点 1、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。 2、对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。 3、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 4、平行线:在同一平面内,不相交的两条直线叫做平行线。 5、同位角、内错角、同旁内角: 同位角:1与5像这样具有相同位置关系的一对角叫做同位角。 内错角:2与6像这样的一对角叫做内错角。 同旁内角:2与5像这样的一对角叫做同旁内角。 1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。 2、系数:单项式中的数字因数叫做这个单项式的系数。所有字母的指数之和叫做这个单项式的次数。任何一个非零数的零次方等于1. 3、多项式:几个单项式的和叫多项式。 4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。 5、常数项:不含字母的项叫做常数项。 6、多项式的排列 (1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 (2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。 7、多项式的排列时注意: (1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。 (2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。 b.确定按这个字母向里排列,还是向外排列。 (3)整式: 单项式和多项式统称为整式。 8、多项式的加法: 多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。 9、同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。 10、合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母与字母的指数不变。 11、掌握同类项的概念时注意: (1)判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。 ②相同字母的次数也相同。 (2)同类项与系数无关,与字母排列的顺序也无关。 (3)所有常数项都是同类项。 它山之石可以攻玉,以上就是众鼎号为大家带来的5篇《初一数学知识点总结》,希望可以对您的写作有一定的参考作用。初中学生学好数学的几个妙招 篇二
最全初一数学知识点总结 篇三
最全初一数学知识点总结 篇四
最全初一数学知识点总结 篇五