初中数学三角形教案【优秀3篇】
等边三角形(又称正三角形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。众鼎号为您精心收集了3篇《初中数学三角形教案》,如果能帮助到您,众鼎号将不胜荣幸。
初中数学三角形教案 篇一
一、教学目标
知识目标:
1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.
能力目标:
2.进一步培养学生类比的数学思想.
情感目标:
3.通过学习,养成严谨科学的学习品质
二、教学重点、难点、疑点及解析
1.重点是性质定理的应用.
2.难点是相似三角形的判定与性质等有关知识的综合运用.
3.疑点是要向学生讲清什么是对应高、对应中线、对应角平分线,它不是一个三角形中两条高、中线、角平分线的比等于相似比.另外,在定理的证明过程中,要向学生讲清由已知两三角形相似(性质)去证另外两个三角形相似(判定)的思维过程,即相似三角形性质与判定的综合运用.
三、教学方法
新授课.
四、教学过程
(一)复习提问
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
(二)讲解新课
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的'其他性质(见图5-45,图5-46,图5-47).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
∵△ABC∽△ABC,
ADBC,ADBC,
教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.
分析示意图:结论∽(欠缺条件)∽(已知)
∵ △ABC∽△ABC,
BM=MC,BM=MC,
∵ △ABC∽△ABC,
2,4,
以上两种情况的证明可由学生完成.
小结:
本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.
(三)练习
课后练习节选
(四)作业
同步练习
初中数学三角形教案 篇二
一、教学目标
1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.
2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.
3.进一步培养学生类比的教学思想.
4.通过相似性质的学习,感受图形和语言的和谐美
二、教法引导
先学后教,达标导学
三、重点及难点
1.教学重点:是性质定理1的应用.
2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
[复习提问]
1.三角形中三种主要线段是什么?
2.到目前为止,我们学习了相似三角形的哪些性质?
3.什么叫相似比?
[讲解新课]
根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.
下面我们研究相似三角形的其他性质(见图).
建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.
性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比
初中数学三角形教案 篇三
学习目标:
1.经历探索直角三角形中边角关系的过程。理解正切的意义和与现实生活的联系。
2.能够用tanA表示直角三角形中两边的比,表示生活中物体的倾斜程度、坡度等,外能够用正切进行简单的计算。
学习重点:
1.从现实情境中探索直角三角形的边角关系。
2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。
学习难点:
理解正切的意义,并用它来表示两边的比。
学习方法:
引导—探索法。 更多免费教案下载绿色圃中
学习过程:
一、生活中的数学问题:
1、你能比较两个梯子哪个更陡吗?你有哪些办法?
2、生活问题数学化:
⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?
⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?
二、直角三角形的边与角的关系(如图,回答下列问题)
⑴Rt△AB1C1和Rt△AB2C2有什么关系?
⑵ 有什么关系?
⑶如果改变B2在梯子上的位置(如B3C3)呢?
⑷由此你得出什么结论?
三、例题:
例1、如图是甲,乙两个自动扶梯,哪一个自动扶梯比较陡?
例2、在△ABC中,∠C=90°,BC=12cm,AB=20cm,求t www.1126888.com anA和tanB的值。
四、随堂练习:
1、如图,△ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?
2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度。(结果精确到0.001)
3、若某人沿坡度i=3:4的斜坡前进10米,则他所在的位置比原来的位置升高________米。
4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为θ,则tanθ=______.
5、如图,Rt△ABC是一防洪堤背水坡的横截面图,斜坡AB的长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡比为1:1.5的斜坡AD,求DB的长。(结果保留根号)
五、课后练习:
1、在Rt△ABC中,∠C=90°,AB=3,BC=1,则tanA= _______.
2、在△ABC中,AB=10,AC=8,BC=6,则tanA=_______.
3、在△ABC中,AB=AC=3,BC=4,则tanC=______.
4、在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c= 25,求tanA、tanB的值。
5、若三角形三边的比是25:24:7,求最小角的正切值。
6、如图,在菱形ABCD中,AE⊥BC于E,EC=1,tanB= , 求菱形的边长和四边形AECD的周长。
7、已知:如图,斜坡AB的倾斜角a,且tanα= ,现有一小球从坡底A处以20cm/s 的速度向坡顶B处移动,则小球以多大的速度向上升高?
8、探究:
⑴、a克糖水中有b克糖(a>b>0),则糖的质量与糖水质量的比为_______; 若再添加c克糖(c>0),则糖的质量与糖水的质量的比为________.生活常识告诉我们: 添加的糖完全溶解后,糖水会更甜,请根据所列式子及这个生活常识提炼出一个不等式: ____________.
⑵、我们知道山坡的坡角越大,则坡越陡,联想到课本中的结论:tanA的值越大, 则坡越陡,我们会得到一个锐角逐渐变大时,它的正切值随着这个角的变化而变化的规律,请你写出这个规律:_____________.
⑶、如图,在Rt△ABC中,∠B=90°,AB=a,BC=b(a>b),延长BA、BC,使AE=CD=c, 直线CA、DE交于点F,请运用(2) 中得到的规律并根据以上提供的几何模型证明你提炼出的不等式。
§1.1从梯子的倾斜程度谈起(第二课时)
学习目标:
1.经历探索直角三角形中边角关系的过程,理解正弦和余弦的意义。
2.能够运用sinA、cosA表示直角三角形两边的比。
3.能根据直角三角形中的边角关系,进行简单的计算。
4.理解锐角三角函数的意义。
学习重点:
1.理解锐角三角函数正弦、余弦的意义,并能举例说明。
2.能用sinA、cosA表示直角三角形两边的比。
3.能根据直角三角形的边角关系,进行简单的计算。
学习难点:
用函数的观点理解正弦、余弦和正切。
学习方法:
探索——交流法。
学习过程:
一、正弦、余弦及三角函数的定义
想一想:如图
(1)直角三角形AB1C1和直角三角形AB2C2有什么关系?
(2)有什么关系?呢?
(3)如果改变A2在梯子A1B上的位置呢?你由此可得出什么结论?
(4)如果改变梯子A1B的倾斜角的大小呢?你由此又可得出什么结论?
请讨论后回答。
二、由图讨论梯子的倾斜程度与sinA和cosA的关系:
三、例题:
例1、如图,在Rt△ABC中,∠B=90°,AC=200.sinA=0.6,求BC的长。
例2、做一做:
如图,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你还能得出类似例1的结论吗?请用一般式表达。
四、随堂练习:
1、在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.
2、在△ABC中,∠C=90°,sinA= ,BC=20,求△ABC的周长和面积。
3、在△ABC中。∠C=90°,若tanA=
它山之石可以攻玉,以上就是众鼎号为大家整理的3篇《初中数学三角形教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。