八年级数学上册学习步骤与教案全集最新9篇
作为一名优秀的教育工作者,通常需要用到教案来辅助教学,教案是教学活动的依据,有着重要的地位。教案要怎么写呢?下面是众鼎号的小编为您带来的9篇《八年级数学上册学习步骤与教案全集》,如果能帮助到亲,我们的一切努力都是值得的。
数学八年级上教案 篇一
教学目的
1.使学生熟练地运用等腰三角形的性质求等腰三角形内角的角度。
2.熟识等边三角形的性质及判定。
2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。
教学重点:等腰三角形的性质及其应用。
教学难点:简洁的逻辑推理。
教学过程
一、复习巩固
1.叙述等腰三角形的性质,它是怎么得到的?
等腰三角形的两个底角相等,也可以简称“等边对等角”。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以∠B=∠C。
等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称“三线合一”。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;∠BAD=∠CAD,AD为顶角平分线,∠ADB=∠ADC=90°,AD又为底边上的高,因此“三线合一”。
2.若等腰三角形的两边长为3和4,则其周长为多少?
二、新课
在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。
等边三角形具有什么性质呢?
1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。
2.你能否用已知的知识,通过推理得到你的猜想是正确的?
等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到∠A=∠B=C,又由∠A+∠B+∠C=180°,从而推出∠A=∠B=∠C=60°。
3.上面的条件和结论如何叙述?
等边三角形的各角都相等,并且每一个角都等于60°。
等边三角形是轴对称图形吗?如果是,有几条对称轴?
等边三角形也称为正三角形。
例1.在△ABC中,AB=AC,D是BC边上的中点,∠B=30°,求∠1和∠ADC的度数。
分析:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由“三线合一”可知AD是△ABC的顶角平分线,底边上的高,从而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
问题1:本题若将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?
问题2:求∠1是否还有其它方法?
三、练习巩固
1.判断下列命题,对的打“√”,错的打“×”。
a.等腰三角形的角平分线,中线和高互相重合( )
b.有一个角是60°的等腰三角形,其它两个内角也为60°( )
2.如图(2),在△ABC中,已知AB=AC,AD为∠BAC的平分线,且∠2=25°,求∠ADB和∠B的度数。
3.P54练习1、2。
四、小结
由等腰三角形的性质可以推出等边三角形的各角相等,且都为60°。“三线合一”性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。
五、作业:
1.课本P57第7,9题。
2、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求∠CBD,∠BOE,∠BOC,∠EOD的度数
初二数学上册教案 篇二
一、班级情况分析:
本学期一(1)班有学生40人,新转学来一名女生。上学期末考试及格人数28人,高分人数3人,优秀人数15人,虽然学生成绩在年级排名第一,能过镇中线,但是学生未能发挥出真实水平。优秀临界生以及及格临界生的提升潜力较大。
一(7)班有学生38人,上学期末考试及格人数18人,高分人数2人,优秀人数5人,全班优秀学生不多不够拔尖,成绩中层的学生占据大部分。学生好动,对数学学习的积极性普遍不够高,学生好动,课堂气氛较活跃。学生数学基础不扎实。提升空间较大。
两班的整体成绩均不够理想。
二、教材分析:
本套教材切合《标准》的课程目标,有以下特点:
1.为学生的数学学习构筑起点,提供大量数学活动的线索,成为供所有学生从事数学学习的出发点。
2.向学生提供现实、有趣、富有挑战性的学习素材。所有数学知识的学习,都力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题,并展开数学探究。
3.为学生提供探索、交流的时间和空间。设立了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识。
4.展现数学知识的形成与应用过程,让学生经历真正的“做数学”、“用数学”的过程。
5.满足不同学生发展的需求。
三、教学目标及要求:
第一章:
1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。
2.经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。
3.了解整数指数幂的意义和正整数指数幂的运算性质,会进行简单的整式加、减、乘、除运算。
4.会推导乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2
第二章:
1.经历观察、操作、想象、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。
2.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。会用三角尺过已知直线外一点画这条直线的平行线;会用尺规作一条线段等于已知线段、作一个角等于已知角。
3.经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件以及平行线的特征。
4.进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实。
第三章:
1.能形象地描述百万分之一等较小的数据,并用科学记数法表示它们,进一步发展数感;能借助计算器进行有关科学记数法的计算。
2.了解近似数与有效数字的概念,能按要求取近似数,体会近似数的意义及在生活中的作用。
3.通过实例,体验收集、整理、描述和分析数据的过程。
4.能读懂统计图并从中获取信息,能形象、有效地运用统计图描述数据。
第四章:
1.经历从实际问题和游戏中了解必然事件、不可能事件和不确定事件发生的可能性。
2.体会等可能性与游戏规则的公平性,抽象出概率模型,计算概率,解决实际、作出合理决策的过程,体会概率是描述不确定现象的数学模型。
3.能设计符合要求的简单概率模型。
第五章:
1.通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。
2.在探索图形性质的过程中,发展推理能力和有条理的表达能力。
3.进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。
4.了解图形的全等,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。
5.在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。
第六章:
1.经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维。
2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量。
3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力。
4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。
第七章:
1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念。
2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
3.探索并了解基本图形的轴对称性及其相关性质。
4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。
5.欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。
四、教学改革的设想(教学具体措施)
充分体现培优扶困的实施,提高优秀人数和及格人数,减少低分人数,切实做到:
1、根据学生的个别差异。因材施教,热情关怀,循循善诱,加强个别辅导。帮助他们增强学习的信心,逐步达到教学的基本要求,尽量做好培优辅差工作。
2、精心设计练习,讲究练习方式提高练习效率,对作业严格要求,及时检查,认真批改,对作业中的错误及时找出原因,要求学生认真改正,培养学生独立完成作业的良好习惯。
3、认真备课,深入钻研教材,坚持自主学习,充分发挥学生的主动学习有积极性,了解学生装学习数学的特点,研究教学规律,不断改进教学方法。
4、坚持学习,多听课,多模仿,虚心向有经验的老师请教教育教学方法。努力提升自身的教学技能。
5、在教学中,加强学生思维能力的培养和非智力因素的培养。多开展数学活动课,扩大学生的视野,拓宽知识面,培养学习数学的兴趣,发展数学才能,发挥学生的主动性,独立性和创造性。
6、开展“一帮一”活动,实行以优带差点的帮助方法,多利用课余时间加强辅导,从基础知识补起,力求使学生一课一得,力求提高优秀率和及格率。
7.课前充分备好课,在课堂教学中特别要体现出培扶,分层次教育。
8.重视学生学习兴趣的培养,激发学生学习数学的内驱力。
9.大胆地深度尝试新的教学方法,要因地制宜,因材施教。
10.重视基础知识过关和单元测试过关工作,及时进行单元总结,做好平时的查漏补缺工作,不遗漏知识盲点。
11.注重对作业、练习纸、练习册、测验卷的及时批改,并尽量做到全批全改,及时反馈信息。
12.多用多媒体教学,使数学生动化。
13.多用实物教学,使数学形象化。
14.实行课课清,日日清,周周清。
15.加强课堂管理,严把课堂质量关,提高课堂效率。
16.抓好学生的作业上交完成情况。
17.加强与学生的交流,做好学生的思想教育与培优辅差工作。
五、拟定本学期教学目标
六、拟定本学期培优扶养计划。
培扶措施
对临界优秀生
在理解题、思维训练题给予方法指导,并要加强书面的表达能力。做到思路清晰,格式标准。基础训练题的过关检测,对每次测试的成绩给予个别指导,多用激励教育。
对临界及格生:
首先加强基础知识的培训,尤其要在选择题、填空题多下功夫。在课堂上、课后对他们多加注意,及时纠正错误。抓好每次单元过关测试工作,抓好时机,多表扬,树立信心。
七、教学内容及课时安排(略)
八、作业格式及批改要求:
作业格式:
1.作业本左边都画上竖线,留约0.5CM空白。
2.每次作业都要在第一行注明日期和作业的出处,如P42,1即课本42面第1题。
3。每题作业之间要留一行隔开,每次作业之间至少留一行空白,再写下一次作业。
批改要求:
1.每题作业都要有批改的痕迹,错的打“×”,对的打“√”,书写要清晰,明确看出错对。
2.每次作业必须全批全改,要体现出层次。作业簿要打分数+等级(等级分A、B、C三等,代表学生的书写成绩。)
3、每次的作业要及时更正,更正时统一在每次的作业后面用红笔更正。
八年级数学上册教案 篇三
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重 点: 能观察出多项式的公因式,并根据分配律把公因式提出来
难 点: 让学生识别多项式的公因式。
三、合作学习:
公因式与提公因式法分解因式的概念。
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc = m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3) a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤。
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的。
课堂练习
1.写出下列多项式各项的公因式。
(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72 (2)a2b-5ab
(3)4m3-6m2 (4)a2b-5ab+9b
(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤。:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的。
注意:(a-b)2=(b-a)2
六、作业 1、教科书习题
2、已知2x-y=1/3 ,xy=2,求2x4y3-x3y4 3、(-2)2012+(-2)2013
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
八年级上册数学的教案 篇四
三角形的证明
1、等腰三角形
①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)
②全等三角形的对应边相等、对应角相等
③定理:等腰三角形的两底角相等,即位等边对等角
④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合
⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°
⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)
⑦定理:三个角都相等的三角形是等边三角形
⑧定理;有一个角等于60°的等腰三角形是等边三角形
⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
2、直角三角形
①定理:直角三角形的两个锐角互余
②定理有两个角互余的三角形是直角三角形
③勾股定理:直角三角形两条直角边的平方和等于斜边的平方
④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形
⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题
⑥一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理
⑦定理:斜边和一条直角边分别相等的两个直角三角形全等
3、线段的垂直平分线
①定理:线段垂直平分线上的点到这条线段两个端点的距离相等
②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
4、角平分线
①定理:角平分线上的点到这个角的两边的距离相等
②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上
八年级数学上册教案 篇五
教材分析
平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。
学情分析
学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。
教学目标
1、知识与技能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行运算.
2、过程与方法:在探索平方差公式的过程中,发展学生的符号感和归纳能力、推理能力.在计算的过程中发现规律,掌握平方差公式的结构特征,并能用符号表达,从而体会数学语言的简洁美.
3、情感、态度与价值观:激发学习数学的兴趣.鼓励学生自己探索,有意识地培养学生的合作意识与创新能力.
教学重点和难点
重点:平方差公式的推导和应用.
难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.
八年级数学上册教案 篇六
1、已知任意RtΔABC,∠C = 90,再画RtΔABC,使∠C=∠C=90,AB=AB,BC=BC。把画好的RtΔABC剪下来,放到RtΔABC上,它们全等吗?
通过作图,发现这样所做的两个直角三角形完全重合在一起,由此可以得到结论:斜边和一条直角边分别相等的两个直角三角形_______,简写成“__________________”或“______”。
2、用数学语言表示两个直角三角形全等。
在RtΔABC与RtΔABC中
AB=AB
BC= ____
∴RtΔABC≌_________( )
直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:_________、_________、_________、_________、还有直角三角形特殊的判定方法 _________。
3、例题学习
如图,AC⊥BC,BD⊥AD,AC=BD。求证:BC=AD
1、两直角三角形,两直角边对应相等,这两个直角三角形全等,是根据两三角形全等的“_______________”条件。
2、两直角三角形,斜边和一个锐角对应相等,这两个直角三角形全等,是根据两三角形全等的“_______________”条件。
3、两直角三角形,一个锐角、一条直角边对应相等,这两个直角三角形全等,是根据两三角形全等的“_______________”条件。
4、两直角三角形全等的特殊条件是_________和__________对应相等。
5、(1)如图,∠ACB=∠ADB=90,要使ΔABC≌ΔBAD,还需增加一个什么条件?把增加的条件填在横线上,并在后面的括号填上判定全等的理由。
①________________( )
②________________( )
(2)如图所示,AC=AD,∠C=∠D=90,你能说明BC=BD吗?
6、如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面的两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。
1、如图所示,有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC与∠DFE有什么关系?
2、如图1,E、F分别为线段AC上的两个动点,且DE⊥AC于E点,BF⊥AC于F点,
若AB=CD,AF=CE,BD交AC于M点。(1)求证:MB=MD,ME=MF;(2)当E、F两点移动至图2所示的位置时,其余条件不变,上述结论是否成立?若成立,给予证明。
四、
课后反思:_____________________________________________________。
八年级数学上册教案 篇七
一、知识点:
1、坐标(x,y)与点的对应关系
有序数对:有顺序的两个数x与y组成的数对,记作(x,y);
注意:x、y的先后顺序对位置的影响。
2、平面直角坐标系:
(1)、构成坐标系的各种名称:四个象限和两条坐标轴
(2)、各种特殊点的坐标特点:坐标轴上的点至少有一个坐标
为0;X轴上的点的纵坐标为0,y轴上点的横坐标为0,原点
的坐标为(0,0)。
3、坐标(x,y)的几何意义
平面直角坐标系是代数与几何联系的纽带,坐标(x,y)有某
几何意义,如点A(-3,2)它到x轴、y轴、原点的距离分别是︱x︱
=︱2︱=2,︱y︱=︱-3︱=3,OA = 。
4、注意各象限内点的坐标的符号
点P(x,y)在第一象限内,则x0,y0,反之亦然。
点P(x,y)在第二象限内,则x0,y0,反之亦然。
点P(x,y)在第三象限内,则x0,y0,反之亦然。
点P(x,y)在第四象限内,则x0,y0,反之亦然。
5、平行于坐标轴的直线的点的坐标特点:
平行于x轴(或横轴)的直线上的点的这 纵 坐标相同;
平行于y轴(或纵轴)的直线上的点的 横 坐标相同。
6、各象限的角平分线上的点的坐标特点:
第一、三象限角平分线上的点的横纵坐标 相同 ;
第二、四象限角平分线上的点的横纵坐标 互为相反数 。
7、与坐标轴、原点对称的点的坐标特点:
关于x轴对称的点的横坐标 相同 ,纵坐标 互为相反数
关于y轴对称的点的纵坐标 相同 ,横坐标 互为相反数
关于原点对称的点的横坐标、纵坐标都 互为相反数
8、特殊位置点的特殊坐标:
坐标轴上点P(x,y) 连线平行于坐标轴的点 点P(x,y)在各象限的坐标特点
X轴 Y轴 原点 平行X轴 平行Y轴 第一象限 第二象限 第三象限 第四象限
(x,0) (0,y) (0,0) 纵坐标 相同
横坐标 不同 横坐标 相同
纵坐标 不同
9、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
10、用坐标表示平移:见下图
二、典型训练:
1、位置的确定
1、如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋。为记录棋谱方便,横线用数字表示。纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为 _____.
2、如图所示的象棋盘上,若帅位于点(1,﹣3)上,相位于点(3,﹣3)上,则炮位于点( )
A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)
2、平面直角坐标系内的点的特点: 一)确定字母取值范围:
1、点A(m+3,m+1)在x轴上,则A点的坐标为( )
A (0,-2) B、(2,0) C、(4,0) D、(0,-4)
2、若点M(1, )在第四象限内,则 的取值范围是 。
3、已知点P(x,y+1)在第二象限,则点Q(﹣x+2,2y+3)在第 象限。
二)确定点的坐标:
1、点 在第二象限内, 到 轴的距离是4,到 轴的距离是3,那么点 的坐标为( )
A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)
2、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为( )
A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)
3、在x轴上与点(0,﹣2)距离是4个单位长度的点有 。
4、若点(5﹣a,a﹣3)在第一、三象限角平分线上,则a= 。
三)确定对称点的坐标:
1、P(﹣1,2)关于x轴对称的点是 ,关于y轴对称的点是 ,关于原点对称的点是 。
2、已知点 关于 轴的对称点为 ,则 的值是( )
A. B. C. D.
3、在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,
得到点A,则点A和点A的关系是( )
A、关于x轴对称 B、将点A向x轴负方向平移一个单位得点A
C、关于原点对称 D、关于y轴对称
3、与平移有关的问题
1、通过平移把点A(2,﹣3)移到点A(4,﹣2),按同样的平移方式,点B(3,1)移到点B,则点B的坐标是 。
2、如图,点A坐标为(-1,1),将此小船ABCD向左平移2个单位,再向上平移3个单位得ABCD.
(1)画出平面直角坐标系;
(2)画出平移后的小船ABCD,
写出A,B,C,D各点的坐标。
3、在平面直角坐标系中,□ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )
A.(3,7) B.(5,3) C.(7,3) D.(8,2)
4、建立直角坐标系
1、如图1是某市市区四个旅游景点示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,建立平面直角坐标系,用坐标表示下列景点的位置。①动物园 ,②烈士陵园 。
2、如图,机器人从A点,沿着西南方向,行了4 个单位到达B点后,观察到原点O在它的南偏东60的方向上,则原来A的坐标为 (结果保留根号)。
3、如图,△AOB是边长为5的等边三角形,则A,B两点的坐标分别是A ,B 。
5、创新题: 一)规律探索型:
1、如图2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、。则点A2015的坐标为________.
二)阅读理解型:
1、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点P作向上或向右运动(如图1所示。运动时间(s)与整点(个)的关系如下表:
整点P从原点出发的时间(s) 可以得到整点P的坐标 可以得到整点P的个数
1 (0,1)(1,0) 2
2 (0,2)(1,1),(2,0) 3
3 (0,3)(1,2)(2,1)(3,0) 4
根据上表中的规律,回答下列问题:
(1)当整点P从点O出发4s时,可以得到的整点的个数为________个。
(2)当整点P从点O出发8s时,在直角坐标系中描出可以得到的所有整点,并顺次连结这些整点。
(3)当整点P从点O出发____s时,可以得到整点(16,4)的位置。
三、易错题:
1、 已知点P(4,a)到横轴的距离是3,则点P的坐标是_____.
2、 已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P的坐标是_____.
3、 已知点P(m,2m-1)在x轴上,则P点的坐标是_______.
4、如图,四边形ABCD各个顶点的坐标分别为 (2,8),(11,6),(14,0),(0,0)。
(1)确定这个四边形的面积;
(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?
四、提高题:
1、在平面直角坐标系中,点(-2,4)所在的象限是( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
2、若a0,则点P(-a,2)应在 ( )
A.第象限内 B.第二象限内 C.第三象限内 D.第四象限内
3、已知 ,则点 在第______象限。
4、若 +(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为______.
5、点P(1,2)关于y轴对称点的坐标是 。 已知点A和点B(a,-b)关于y轴对称,求点A关于原点的对称点C的坐标___________.
6、已知点 A(3a-1,2-b),B(2a-4,2b+5)。
若A与B关于x轴对称,则a=________,b=_______;若A与B关于y轴对称,则a=________,b=_______;
若A与B关于原点对称,则a=________,b=_______.
7、学生甲错将P点的横坐标与纵坐标的次序颠倒,写成(m,n),学生乙错将Q点的坐标写成它关于x轴对称点的坐标,写成(-n,-m),则P点和Q点的位置关系是_________.
8、点P(x,y)在第四象限内,且|x|=2,|y| =5,P点关于原点的对称点的坐标是_______.
9、以点(4,0)为圆心,以5为半径的圆与y轴交点的坐标为______.
10、点P( , )到x轴的距离为________,到y轴的距离为_________。
11、点P(m,-n)与两坐标轴的距离___________________________________________________。
12、已知点P到x轴和y轴的距离分别为3和4,则P点坐标为__________________________.
13、点P在第二象限,若该点到x轴的距离为,到y轴的距离为1,则点P的坐标是( )
A.( 1, ) B.( ,1) C.( , ) D.(1, )
14、点A(4,y)和点B(x, ),过A,B两点的直线平行x轴,且 ,则 ______, ______.
15、已知等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为________________.
16、通过平移把点A(2,-3)移到点A(4,-2),按同样的平移方式,点B(3,1)移到点B,则点B的坐标是_____________.
17、如图11,若将△ABC绕点C顺时针旋转90后得到△ABC,则A点的对应点A的坐标是( )
A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)
18、平面直角坐标系 内有一点A(a,b),若ab=0,则点A的位置在( )。
A.原点 B. x轴上 C.y 轴上 D.坐标轴上
19、已知等边△ABC的两个顶点坐标为A(-4,0)、B(2,0),则点C的坐标为______,△ABC的面积为______.
20、(1)将下图中的各个点的纵坐标不变,横坐标都乘以-1,与原图案相比,所得图案有什么变化?
(2)将下图中的各个点的横坐标不变,纵坐标都乘以-1,与原图案相比,所得图案有什么变化?
(3)将下图中的各个点的横坐标都乘以-2,纵坐标都乘以-2,与原图案相比,所得图案有什么变化?
八年级数学上册学习步骤 篇八
训练板块训练目标三角形通过角的相关计算和证明,培养学生“看到什么想什么”的思考方式,熟练调用与角有关的定理,打通已知和所求,形成完整的思维链条;让学生初步体验辅助线的作用,依据定理,通过“搭桥、补全”转为基本图形解决.
训练学生掌握几何作图基本操作和规范的几何语言;按照先拆解再合练、先填空再独立书写的方式,分解动作训练学生的书写表达,为全等三角形的训(众鼎号★www.1126888.com)练做好铺垫.全等三角形在掌握全等三角形的性质及判定的基础上,以典型特征(中点,线段的和差倍分等)下辅助线的作法倍长中线、截长补短等为例,进一步训练学生对全等结构的认识,并能够根据特征构造全等三角形来解决问题;通过类比探究、动点问题等综合性题目,培养学生在固定框架下有序思考,有序操作的能力.轴对称在掌握等腰三角形性质及判定的基础上,进一步训练学生对特殊等腰三角形(等边三角形、等腰直角三角形)的认识以及在特殊结构(三线中已知两线)中构造等腰三角形解决问题的能力,培养学生有理有据的推理能力和结构化意识.整式的乘法与因式分解在学习了整式的运算法则的基础上,进一步从整体代入、几何表示以及公式的逆用等方面来学习整式.重在让学生掌握整体代入的思想方法,灵活运用知二求二进行计算,通过公式几何表示的讲解,建立起代数和几何之间的联系.训练学生观察、归纳、转化的代数推理能力.
因式分解模块在“一提、二套、三分、四查”的基本思路下,训练换元、拆项添项、待定系数等恒等变形技巧,构造或转化为熟悉模型结构,把复杂问题转为四种基本方法解决,训练学生转化化归的能力,提升学生的代数运算技能、分析推理能力.分式调用分式的基本性质、运算法则和应用,通过特征的观察与分析,辅以恰当的代数变形技巧(逐项通分、裂项相消、换元、取倒数、设参数等)来解决问题,训练学生转化化归、整体代入的数学思想.
数学八年级上教案 篇九
一、学习目标
1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重点:掌握运用平方差公式分解因式。
难点:将单项式化为平方形式,再用平方差公式分解因式。
学习方法:归纳、概括、总结。
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式。
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法。
1.请看乘法公式
左边是整式乘法,右边是一个多项式,把这个等式反过来就是左边是一个多项式,右边是整式的乘积。大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式讲解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
四、精讲精练
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
补充例题:判断下列分解因式是否正确。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
五、课堂练习
教科书练习。
六、作业
1、教科书习题。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
读书破万卷下笔如有神,以上就是众鼎号为大家整理的9篇《八年级数学上册学习步骤与教案全集》,希望可以对您的写作有一定的参考作用。