首页 > 教师教学 > 教学设计 >

高一数学公式知识点归纳(优秀8篇)

众鼎号分享 182149

众鼎号 分享

在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点就是一些常考的内容,或者考试经常出题的地方。还在为没有系统的知识点而发愁吗?众鼎号为您精心收集了8篇《高一数学公式知识点归纳》,希望能对您的写作有一定的参考作用。

和差化积 篇一

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

高中数学怎么学? 篇二

一、数学的学习时间应该占全部总学科的50%左右;

数学是一个费时费力的学科,无论文理。对于文科和理科来说,数学的高考成绩都是重中之重。比如文科,鲜有听到一个班文综成绩能差60分以上的,但数学别说60,80都能差出来。对于理科,物理,化学都需要大量的运算,数学的学习又是提供一种工具与思维。因此,对于之前的文理科,抑或是现在取消文理以后的偏文,偏理科来说,数学都是非常重要的。

数学在课下学习的时间,大约应该占到整体学习的50%左右。比如每天晚上学习3个小时,至少有1个半小时要学习数学。为啥需要这么长时间?主要就是因为,很多数学题需要相对长时间的思考与总结。不过,相信我,当你数学成绩显著提高以后,其他学科成绩会非常容易提升。同时,你可以做个小小的调查,但凡是数学学习成绩非常好,并且成绩很稳定的同学,他的数学相关学习时间也基本符合50%这个比例。

二、每一道数学题都值得做三遍;

对于每一道数学题(特别特别简单的除外),都要做三遍。

第1遍就是正常做,然后对照参考答案与解题思路,更正答案。

第2遍做一般是隔天效果最好,重新再快速地把之前所有的题目全部都重新做一遍,这个“做”不是和第1遍一样1字不差,从头到尾地演算。而是要针对关键步骤,关键思路进☆www.1126888.com☆行整理。比如之前看到某一个题目的时候,我们的想法是A,结果正确的解题思路是B,A和B相比差异非常大。这个时候我们就需要通过第2遍做,更正我们的思路,纠正我们的思维方式,改变我们的思考习惯。第2遍做的时候,还是出错的题目,就一定要用星号重点标注,留备复习使用。

第3遍做,最好是7天以后。时隔七天,这个时候再做一遍,你就会有豁然开朗的感觉。对于90%以上的题目,你基本上就是看到题目就知道思路是什么,解题步骤是什么,甚至你都能记得每一步之前计算的结果是什么,错在了哪里。对于之前第2遍做错了,标注星号的题目一定要认认真真,从头开始再做1次,这个时候如果还感觉不熟练,还是做错,那么就需要请出我们的错题本了。

三、要有一个自己的错题记录本;

错题本的意义,不是把每一道你做错的题目都誊写一遍,而是要把那些反复做不对,反复做都有差错的题目保存下来。错题本的本质,是对我们思维方式,思考习惯的一个纠正。在这个错题本上的题目都应该是做了3遍还会出错的题目。

而错题本的记录内容,至少应该包括下面几个内容。1是完整的题目信息;2是用自己的方式演算出的正确答案(将参考答案照抄一遍没有任何意义);3是自己对这个题目的评论,需要重点指出关键步骤,以及自己最初的想法与正确做法的差异在哪里。

此外,错题本需要长期积累,不要1个月1个本,而是要尽量以年为单位进行更换错题本。每次考试之前,都认认真真地重做一次错题本上的题目,你会有“涅槃”的感觉,而这些题目的积累将是你学习过程中最宝贵的财富之一。

四、要看课本;

很多人觉得,数学课本可能是中学阶段最“水”的课本了,都觉得课本上的习题都简单的不行,一眼出答案,怎么就还需要看课本呢?其实,这些人都是知其然而不知其所以然。我们思考一个问题,高考考什么?高考是一个划定了考试大纲的考试,也就是所有的考试范围你是都知道的。那么什么是高考的考试大纲范围?就是我们的课本呀!

在经过一段时间的学习以后,比如是一个章节的学习,就一定要拿出数学课本,找一个连贯的时间,静静地读完数学课本里对应章节的每一段话,每一个字,包括所有的补充材料。当然,课后的习题,也都要通读。在读完这些内容以后,最后还要翻开课本的目录,对应这个章节的每一个小标题,静心回忆一下每一个小标题的最重要的知识点,你最感兴趣的内容等等。

五、要构建自己的知识网络;

很多人觉得,数学的学习就是做题,把能做的题目都做了,把能改的错误都改了便能学好数学。我个人认为,这样做确实能够提高成绩,但仅仅是提高了成绩,却没有学到知识。人的认知是网状的,而不是线性的,如果想要把一个东西真的弄懂,内化成自己的知识,就一定要有层级结构记忆的概念。最终要有自己对学科的认知。

比如,我对高中数学的认知:方程,函数,不等式,逻辑命题是基础;数列是离散化的函数;平面解析几何本质上是通过条件,列方程,解方程;立体几何属于独立部分;除此以外,还有一些其他边边角角的小知识点,比如概率论初步,微积分初步等等。

说这么多,就是希望大家最终学到手的知识,一定要总结,一定要内化,一定要尝试构建自己的认知体系,一定要有高屋建瓴的感觉。不能专注于某一个细节“流连忘返”,而是要不断的zoomin,zoomout,平衡整体与部分的关系,建立起自己对整个数学学科的理解。

六、大型考试之前的准备工作

考试之前,需要做好3件事情。1是需要认真阅读课本目录,目录中每个标题对应的知识重点;2是需要把错题本上的所有错题全部重新过一遍;3是好好休息,没必要临时突击。

某些数列前n项和 篇三

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

高一数学公式知识点归纳 篇四

1、圆体积=4/3(pi)(r^3)

2、面积=(pi)(r^2)

3、周长=2(pi)r

4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】

5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

1、椭圆周长公式:l=2πb+4(a-b)

2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

3、椭圆面积公式:s=πab

4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa

2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb

3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)

4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga

2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)

2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)

3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))

4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))

1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)

2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)

3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb

5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb

高一数学公式记忆口诀

《集合与函数》

内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

万能公式 篇五

(sin^2)x=1-cos2x/2

(cos^2)x=i=cos2x/2

高中数学万能解题法 篇六

①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

⑥顺推解决法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

函数的运算 篇七

在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。

函数的概念和图象

重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。 考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;

②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数; ③了解简单的分段函数,并能简单应用。

高一数学公式知识点归纳 篇八

y = ax^2+bx+c就是y等于ax的平方加上b

a>0时开口向上

a<0时开口向下

c = 0时抛物线经过原点

b = 0时抛物线对称轴为y轴

它表示抛物线的。焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=-p/2

由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

圆的体积公式4/3(pi)(r^3)

圆的面积公式(pi)(r^2)

圆的周长公式2(pi)r

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h

正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi_r2

圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l

弧长公式l=a_r a是圆心角的弧度数r>0扇形面积公式s=1/2_l_r

锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h

斜棱柱体积V=S'L注:其中S'是直截面面积L是侧棱长

柱体体积公式V=s_h圆柱体V=pi_r2h

椭圆周长计算公式

椭圆周长公式:L=2πb+4(a-b)

椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

椭圆面积计算公式

椭圆面积公式:S=πab

椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

它山之石可以攻玉,以上就是众鼎号为大家带来的8篇《高一数学公式知识点归纳》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:小学毕业典礼上的教师讲话(最新4篇)

下一篇:返回列表