初一数学知识点总结归纳大全优秀7篇
学习从来无捷径。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。它山之石可以攻玉,下面众鼎号为您精心整理了7篇《初一数学知识点总结归纳大全》,希望能够给您提供一些帮助。
数学初一知识点总结 篇一
知识点、概念总结
1、不等式:用符号"","≤","≥"表示大小关系的式子叫做不等式。
2、不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3、不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5、不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6、解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x) (3)如果不等式F(x)0,那么不等式F(x) 7、不等式的性质: (1)如果x>y,那么yy;(对称性) (2)如果x>y,y>z;那么x>z;(传递性) (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数) 8、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 9、解一元一次不等式的一般顺序: (1)去分母(运用不等式性质2、3) (2)去括号 (3)移项(运用不等式性质1) (4)合并同类项 (5)将未知数的系数化为1(运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集 10、一元一次不等式与一次函数的综合运用: 一般先求出函数表达式,再化简不等式求解。 11、一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 了一个一元一次不等式组。 12、解一元一次不等式组的步骤: (1)求出每个不等式的解集; (2)求出每个不等式的解集的公共部分;(一般利用数轴) (3)用代数符号语言来表示公共部分。(也可以说成是下结论) 13、解不等式的诀窍 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式组的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式组的解集是X<-6 (3)大于小于交叉取中间; (4)无公共部分分开无解了; 14、解不等式组的口诀 (1)同大取大 例如,x>2,x>3,不等式组的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式组的解集是X<2 (3)大小小大中间找 例如,x1,不等式组的解集是1 (4)大大小小不用找 例如,x3,不等式组无解 15、应用不等式组解决实际问题的步骤 (1)审清题意 (2)设未知数,根据所设未知数列出不等式组 (3)解不等式组 (4)由不等式组的解确立实际问题的解 (5)作答 16、用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。 1、有理数: (1)凡能写成形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数; (2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2、数轴:数轴是规定了原点、正方向、单位长度的一条直线。 3、相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; 4、绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为: 绝对值的问题经常分类讨论; (3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|, 5、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0 1、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。 2、对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。 3、对顶角和邻补角的关系 4、垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。 5、垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 6、垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。 7、垂线性质 (1)在同一平面内,过一点有且只有一条直线与已知直线垂直。 (2)连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。 (3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 1、整式的乘除的公式运用(六条)及逆运用(数的计算)。 (1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an (5)a0 (a≠0) (6)a-p= = 2、单项式与单项式、多项式相乘的法则。 3、整式的乘法公式(两条)。 平方差公式:(a+b)(a-b)= 完全平方公式:(a+b)2 (a-b)2 常用公式:(x+m)(x+n)= 5、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。 6、互为余角和互为补角和 7、两直线平行的条件:(角的关系线的平行) ①相等,两直线平行; ② 相等,两直线平行; ③ 互补,两直线平行。 8、平行线的性质:两直线平行。(线的平行 9、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系) 10、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义 (3)图象交点表示什么意义(4)会求平均值。 11、三角形(1)三边关系:角的关系) (2)内角关系: (3)三角形的三条重要线段: (重点)(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分) (5)全等三角形的性质: (重点)(6)等腰三角形:(a)知边求边、周长方法 (b)知角求角方法 (c)三线合一: (7)等边三角形: 填空题答题技巧 要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。 对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。 解答题答题技巧 (1)仔细审题。注意题目中的关键词,准确理解考题要求。 (2)规范表述。分清层次,要注意计算的准确性和]www.1126888.com[简约性、逻辑的条理性和连贯性。 (3)给出结论。注意分类讨论的问题,最后要归纳结论。 (4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。 一、一元一次不等式的解法: 一元一次不等式的解法与一元一次方程的解法类似,其步骤为: 1、去分母; 2、去括号; 3、移项; 4、合并同类项; 5、系数化为1 二、不等式的基本性质: 1、不等式的两边都加上(或减去)同一个整式,不等号的方向不变; 2、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变; 3、不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 三、不等式的解: 能使不等式成立的未知数的值,叫做不等式的解。 四、不等式的解集: 一个含有未知数的不等式的所有解,组成这个不等式的解集。 五、解不等式的依据不等式的基本性质: 性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变, 性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变, 性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变, 常见考法 (1)考查一元一次不等式的解法; (2)考查不等式的性质。 误区提醒 忽略不等号变向问题。 初中数学重点知识点归纳 有理数乘法的运算律 1、乘法的交换律:ab=ba; 2、乘法的结合律:(ab)c=a(bc); 3、乘法的分配律:a(b+c)=ab+ac 单项式 只含有数字与字母的积的代数式叫做单项式。 注意:单项式是由系数、字母、字母的指数构成的。 多项式 1、几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。 2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。 提高数学思维的方法 转化思维 转化思维,既是一种方法,也是一种思维。转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、清晰。 创新思维 创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,得出与众不同的解 要培养质疑的习惯 在家庭教育中,家长要经常引导孩子主动提问,学会质疑、反省,并逐步养成习惯。 在孩子放学回家后,让孩子回顾当天所学的知识:老师如何讲解的,同学是如何回答的?当孩子回答出来之后,接着追问:“为什么?”“你是怎样想的?”启发孩子讲出思维的过程并尽量让他自己作出评价。 有时,可以故意制造一些错误让孩子去发现、评价、思考。通过这样的训练,孩子会在思维上逐步形成独立见解,养成一种质疑的习惯。 一、目标与要求 1、认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形。 2、经历度量三角形边长的实践活动中,理解三角形三边不等的关系。 3、懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题。 4、三角形的内角和定理,能用平行线的性质推出这一定理。 5、能应用三角形内角和定理解决一些简单的实际问题。 二、重点 三角形内角和定理; 对三角形有关概念的了解,能用符号语言表示三条形。 三、难点 三角形内角和定理的推理的过程; 在具体的图形中不重复,且不遗漏地识别所有三角形; 用三角形三边不等关系判定三条线段可否组成三角形。 四、知识框架 五、知识点、概念总结 1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2、三角形的分类 3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 7、高线、中线、角平分线的意义和做法 8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 9、三角形内角和定理:三角形三个内角的和等于180° 推论1直角三角形的两个锐角互余; 推论2三角形的一个外角等于和它不相邻的两个内角和; 推论3三角形的一个外角大于任何一个和它不相邻的内角; 三角形的内角和是外角和的一半。 10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。 11、三角形外角的性质 (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线; (2)三角形的一个外角等于与它不相邻的两个内角和; (3)三角形的一个外角大于与它不相邻的任一内角; (4)三角形的外角和是360°。 12、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 13、多边形的内角:多边形相邻两边组成的角叫做它的内角。 14、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 15、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 读书破万卷下笔如有神,以上就是众鼎号为大家带来的7篇《初一数学知识点总结归纳大全》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。数学初一知识点总结 篇二
最全初一数学知识点总结 篇三
初一下册数学重点知识点 篇四
数学初一知识点总结 篇五
数学初一知识点总结 篇六
初一下册数学《三角形》知识点 篇七