《平行四边形的性质》教案【优秀9篇】
在教学工作者实际的教学活动中,有必要进行细致的教案准备工作,教案有助于顺利而有效地开展教学活动。教案要怎么写呢?它山之石可以攻玉,下面众鼎号为您精心整理了9篇《《平行四边形的性质》教案》,希望能够满足亲的需求。
平行四边形 篇一
七、教学步骤
【复习提问】
图1
1.什么叫平行四边形?我们已经学习了它的哪些性质?
2.已知:如图1, ,.
求证:.
3.什么叫做两条平行线间的距离?它有什么性质?
【引入新课】
在证明“平行四边形对角相等”这一性质时,是通过连结一条对角线,把它分成两个全等三角形来证明的。如果把平行四边形的两条对角两条对角线都连结起来,那么这两条对角线之间又有什么关系呢?下面来研究这个问题。
【讲解新课】
图2
(1)平行四边形的性质定理3,平行四边形的对角线互相平分。先让学生观察图形,如图2.获得对角线互相平分的感性认识,然后引导学生写出已知,求证、证明。
(2)平行四边形性质,定理的综合应用:
同学们已经掌握了平行四边形的边、角、对角线的性质,这是解决平行四边形有关问题的基础,灵活应用则是关键。
图3
例2 已知:如图3 的对角线、相交于点 ,过点与、分别相交于点、.
求证:.
证明比较容易,只须证出△ ≌△,或△ ≌△,这是学生自己可以完成的,但需注意及时应用新知识,防止思维定势。如这里可直接由定理3得出 ,而不再重复定理的推导过程证出。
图4
例3 已知,如图4,,,.求的面积。
(1)首先引导学生按所给条件画出这个平行四边形,让学生回顾小学里学过的平行四边形面积公式: .
(2)讲清楚何为平行四边形的高。在平行四边形中,从一条边上的任意一点向对边作垂线,这点与垂足间的距离叫做以这条边为底的平行四边形的高。如图5中的垂线段分别是垂足所在边上的高,习惯上作平行四边形的高时都从一个顶点出发作一边的垂线。作图时平行四边形的高指的是垂线段本身,而计算时用的是垂线段的长度。
(3)平行四边形面积的表示法,如图5表示为 .
(4)学生自己完成解答。
图5
【总结、扩展】
1.小结
(1)性质定理及其它新知识的灵活应用,防止思维定势,方法僵化。
(2)引导学生填写下列表格(打出投影)
名称
平行四边形
示意图
定义
性
质
边
角
对角线
2.思考题:教材P144中 B.4
八、布置作业
教材P141中2(4);P142中3(2)、4、5、6.
九、板书设计
标题 例2
小结(表格)
平行四边形性质3 例3
十、背景知识与课外阅读
国际数学奥林匹克
简称“ ”,为在中学生中激励,选拔科学人才,1959年开始举办数学竞赛,首次由罗马尼亚任东道国,此后每年七举行一次,在各国提交的题目中,由每届的全委会选六道题,分两个上午完成,每次四个半小时,总分42分,各参赛国可派六名学生参加竞赛。1985年7月我国首次派代表参加第26届 .中国队获金牌数为各队之首。
十、随堂练习
教材P.134中1、2
补充:1.若平行四边形一边长为 ,一对角线长为 ,则另一对角线 的取值范围是_____________.
2.在中, , , ,则 .
3.已知 是 的 边上任一点,则 : 的值为____.
A. B. C. D.不确定
小学四年级数学上册平行四边形教案 篇二
教学目标:
1、 使学生通过实际测量充分感知四边形内角和为360度这一规律。
2、提高学生综合运用知识解决问题的能力。。
3、通过动手测量,使学生经历充分感知四边形内角和为360度这一规律的全过程,并渗透归纳、猜想和验证的数学思想。
4、使学生感悟到数学的神奇和奥妙,增强学好数学的信心。
教学重难点:
感知四边形内角和是360度这一规律。
教具准备:
量角器。
教学过程:
一、情境引入,回顾再现
师:这节课我们继续来研究四边形。
板书课题:平行四边形和梯形。
二、分层练习,强化提高
展示一个平行四边形,请学生用量角器测量一下每个角的'度数。再把四个角的度数相加,是多少度呢?这是一个四边形,其他的四边形是什么情况呢?
小组研究,总结规律:
1. 组内分工测量75页8题中的每个四边形的各个角的度数。
2. 汇总填表75页9题。
3. 共同讨论总结规律,全班汇报交流。
出示图形,小组内可再任意画一个四边形试一试。
小结:任意一个四边形四个角的度数之和都是360度。
三、自主检测,评价完善
1.在表中适当的空格内画“∨”。
2.在图中填写合适的四边形名称。
四、归纳小结,课外延伸
这节课有什么收获?
《平行四边形的性质》教案 篇三
一、教材分析
1.教材的地位与作用平行四边形是最基本的几何图形,也是“空间与图形”领域中研究的主要对象之一.它在生活中有着十分广泛的应用,这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用.本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.另外本节课是在学生掌握了平移、旋转知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用
2.教学目标:知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.
3.教学重点、难点:重点:理解并掌握平行四边形的概念及其性质.难点:运用平移、旋转的图形变换思想探究平行四边形的性质.
4.教材处理:基于“创造性地使用教材”和“真正地以学生为本”的教学理念,我将教材内容进行合理内化、整合.首先,打破了原教材的知识结构,构建成一个新的教学体系,分为探索平行四边形的性质和平行四边形性质的应用这样两部分,本节课是探索平行四边形的性质.这样安排能很好地体现知识结构的完整性和系统性. 然后,将教材中平行四边形性质的探究活动完全开放,给学生充分探索的时间与空间,动手实验,动脑思考.力图构建学生主动探索、获取知识的平台,使学生真正成为实践的探索者、知识的构建者、愉快的收获者.最后,把一道命题证明的练习题改编成实验操作型问题.学生利用课前准备好的教具制作成模型,让图形动起来.这样设计有利于学生在图形运动变化的过程中去发现其中不变的关系,从而发现图形的性质.总之,教材处理力求在深挖概念内涵;拓展性质外延;深化练习效用的过程中达到培养学生创新意识和实践能力的教学目的.
二、教学方法与手段
本节课在教法上体现教师的“启发引导”,帮助学生实现认识上与态度上的跨越;在学法上突出学生的“探索发现”,在教学过程中立足于让学生自己去观察、去发现、去创造.利用多媒体、自制教具辅助教学,增强教学的直观性、实效性.
三、教学程序
设计说明本节课的设计,以建构主义理论为基础,以问题为载体,以学生的动手实践、自主探索、合作交流为主要的学习方式.在教学过程中,实施开放式教学,创设民主、宽松的教学氛围,最大限度地调动学生的积极性,激发他们的学习兴趣,引导他们多角度、多方位、多层次地思考问题,使他们有足够的的机会显示灵性、展示个性.教师成为课堂问题的激发者、有序探究的组织者、学生错误的澄清者、多角度思考的促进者,使师生成为“数学学习的共同体”
1、创设情境,把学生置于问题的建模过程
本节课以学生习以为常的“平行光线在室内的投影”为情境引出课题,激起学生强烈的好奇心和求知欲.使学生不知不觉中走入数学王国,经历了将实际问题抽象为数学问题的建模过程.
2、实践探究,把学生置于结论的发现过程
首先,将枯燥的概念教学赋予有趣的实际背景,使教学内容更生动、更鲜活。通过拼图游戏,让学生经历了平行四边形概念的探究过程,自然而然地形成平行四边形的概念,符合学生的认知规律.再通过对拼出的四边形分类,进一步加深学生对概念本质的理解.其次,遵循学生学习数学的认知规律,对教材内容进行了重组加工,将教材中平行四边形性质的探究活动完全开放.为学生提供了自主合作探究的舞台,营造了思维驰骋的空间,激发了学生思维创新的火花。
3、变式训练,把学生置于创新思维的深入培养过程
把书中一道命题证明的练习题改编成有趣的实验操作型问题,做到源于教材,活于教材.使学生学会用运动、变化的观点分析问题,从而培养学生思维的严谨性、发散性、灵活性,达到举一反三的作用.最大限度地发挥学生的潜能,活跃思维,培养学生的合作意识、创新精神。
四、反思小结
把学生置于知识系统建立的过程中这节课的结尾,既有对课堂知识的系统小结,又有对思想方法的高度凝炼,提升学生思维品质,让学生获得可持续发展的动力.板书设计充分体现了本节课的学习要点,给学生留下清晰的记忆。
平行四边形教案 篇四
一、素质教育目标
(一)知识教学点
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.
2.使学生理解判定定理与性质定理的区别与联系.
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.
(二)能力训练点
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.
(三)德育渗透点
通过一题多解激发学生的学习兴趣.
(四)美育渗透点
通过学习,体会几何证明的'方法美.
二、学法引导
构造逆命题,分析探索证明,启发讲解.
三、重点·难点·疑点及解决办法
1.教学重点:平行四边形的判定定理1、2、3的应用.
2.教学难点:综合应用判定定理和性质定理.
3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理(强调在求证平行四边形时用判定定理,在已知平行四边形时用性质定理).
四、课时安排
2课时
五、教具学具准备
投影仪,投影胶片,常用画图工具
六、师生互动活动设计
复习引入,构造逆命题,画图分析,讨论证法,巩固应用.
七、教学步骤
【复习提问】
1.平行四边形有什么性质?学生回答教师板书
2.将以上性质定理分别用命题的形式叙述出来.
【引入新课】
用投影仪打出上述命题的逆命题.
上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法).
那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).
【讲解新课】
1.平行四边形的判定
我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?
如图1,在四边形中,如果,那么.
∴.
同理.
∴四边形是平行四边形,因此得到:
平行四边形判定定理1:两组对角分别相等的四边形是平行四边形.
类似地,我们还会想到,两组对边相等的四边形是平行四边形吗?
如图1,如果,,连结,则△ ≌△得到,,那么,,则四边形是平行四边形.
由此得到:
平行四边形判定定理2:两组对边分别相等的四边形是平行四边形.
(判定定理1、2的证明采用了探索式的证明方法,即根据题设和已有知识,经过推理得出结论,然后总结成定理).
我们再来证明下面定理
平行四边形判定定理3:对角线互相平分的四边形是平行四边形.
(该定理采用规范证法,如图1由学生自己证明,教师可引导学生用前面三种依据分别证明,借以巩固所学知识)
2.判定定理与性质定理的区别与联系
判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆.
例1已知:是对角线上两点,并且,如右图.
求证:四边形是平行四边形.
分析:因为四边形是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用定义或判定定理1、2都可以,还可以连结交于利用判定定理3简单.
证明:(由学生用各种方法证明,可以巩固所学过的知识和作辅助线的方法,并比较各种证法的优劣,从而获得证题的技巧).
【总结、扩展】
1.小结:(投影打出)
(1)本堂课所讲的判定定理有
(2)在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识.
2.思考题
教材P144B.3
八、布置作业
教材P142中7;P143中8、9、10
九、板书设计
xxx
十、随堂练习
教材P138中1、2
补充
1.下列给出了四边形中、 、的度数之比,其中能判定四边形是平行四边形的是()
A.1:2:3:4 B.2:2:3:3
C.2:3:2:3 D.2:3:3:2
2.在下面给出的条件中,能判定四边形是平行四边形的是()
A.,B.,
C.,D.,
3.已知:在中,点、在对角线上,且.
求证:四边形是平行四边形.
《平行四边形的认识》教案 篇五
重点
会做任意三角形高、中线、角平分线
难点
会做任意三角形高、中线、角平分线
教学方法
讲练结合、探索交流课型新授课教具投影仪
一、三角形的高
1、复习:过点A做BC的垂线,垂足为D
2、在黑板上做△ABC,过点A做对边BC
的垂线,垂足为D,我们
就将线段AD称为△ABC的高
3高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂
足之间的线段称为三角形的高
例如在上图中,我们从△ABC的一个顶点出发,向它对边BC所在
的直线作垂线,垂足为D,线段AD就是三角形的高
注:1)三角形的高必为线段
2)三角形的高必过顶点垂直于对边
3)三角形有三条高
为了将这三条高加以区别,我们把AD称为BC边上的高
例:做出下列三角形的三条高
1锐角三角形:
可由教师先做示范,然后再让学生自行画出
其余两个
2直角三角形
由于∠C等于900,说明AC⊥BC,那么BC
边上的高即为AC,AC边上的高即为BC,
3钝角三角形
二、三角形的角平分线
1引入:一知△ABC,做∠A的平分线AD交BC与点E,线段AE就称为△ABC的角平分线
2定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点间的线段称为三角形的角平分线
3注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线
2)三角形的角平分线必过顶点平分三角形的一内角如上所示,△ABC的角平分线AE平分∠A,即∠BAE=∠CAE=∠BAC
3)三角形有三条角平分线
为了将这三条角平分线加以区别,我们把AE称为∠BACD的角平分线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形
钝角三角形
三、中线
1引入:如右所示,取BC的中点F,连结AF,那么线段AF就称为△ABC的中线
2定义:在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线
如上所示,线段AF就是△ABC的中线
31)三角形的'中线必为线段
2)三角形的中线必平分对边如上所示,线段AF是△ABC的中线
必有:BF=CF=BC
3)三角形有三条中线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形:
钝角三角形
素材A:
1在△ABC中,AD是角平分线,
BE是中线,∠BAD=400,则
∠CAD=,
若AC=6cm,则AE=
素材B:
2下列说法正确的是()
A三角形的角平分线、中线、高都在三角形的内部
B直角三角形只有一条高
C三角形的三条至少有一条在三角形内
D钝角三角形的三条高均在三角形外
答案:1400、6㎝2C
小学四年级数学上册平行四边形教案 篇六
教学目标:
1、 通过自主探究活动,理解平行与垂直这两种特殊的直线间的位置关系,初步认识平行线和垂线。
2、 通过观察、操作、讨论、归纳等活动,积累操作和思考的活动经验。
3、 发展学生的空间观念,初步渗透分类的数学思想。
教学重点:
正确理解相交、互相平行、互相垂直的概念。
教学难点:
理解平行与垂直概念的本质特征。
教具准备:
学生白纸、小棒、直角板、课件、黑板
教学过程:
一、唤起与生成
同学们,直线我们已经学过了,今天这节课我们就来研究两条直线之间的位置关系(板书:两条直线)让我们一起想象一下,如果让我们在一张白纸上画两条直线,这两条直线会形成怎样的位置关系呢?(生着急回答)我们不急着回答。
二、探究与解决
先拿出老师给你们准备的白纸和两根小棒,把白纸当作平面,两根小棒当做是两条直线,先在白纸上摆一摆,然后再照样子画一画。请看大屏幕,老师有操作要求。谁来读一读。(你的声音真响亮)
(出示课件2)摆一摆
师:根据老师的要求,动动小手,开始吧。(教师巡视)
学生一边摆一边画,老师边观察边收集学生具有代表性的作品。(选出能呈现各种情况的典型作品)
小结:同学们的想象力太丰富了,画出了那么多种情况。这是我从同学们手中收集的有代表性的作品,我们一起来欣赏一下同学们的作品。(老师张贴)
为了交流方便,我们给它标上序号。在一张白纸上画两条直线,同学们画出了这么一些不同的情况,如果现在请你根据两条直线的位置关系,把这5种情况分分类,你觉得可以怎么分?(课件3)
看大屏幕,老师读要求,先独立思考再在小组内交流。
分好了,把你的想法说给同桌听一听,请小组派代表来汇报一下,你们是按什么进行分类的?分类的结果是什么?来,你说,老师把它记下来。
学生汇报了三种情况。
我们仔细观察一下,这两种分法,有什么不一样?②号?
我们统计一下,这样分的举手。那我来采访一下,这些同学是怎么想的,你为什么这样分?学生说。老师说,你想分成相交的、不相交的,老师把它记下来(板书)相交的、不相交的。这是这种分法同学的想法,还有哪些是这样分的?你们又是怎么想的呢?为什么把②号分到这里呢?学生说,②号直线可以向两端无限延长,有宽的、有窄的,就相交在一起了,所以②和①③④一组。
谁听明白他的意思?生再来说一说。你是怎么看出②号延长后可以相交的?你讲的真清晰,往哪边延长?我们来延长一下看看。咦,真让你们说对了,延长后果真相交在一起。真了不起!老师为你们点赞!那⑤号呢?学生有说到,平行。老师追问:你说的平行是什么意思?继续追问。(生说像直直的线)这样两条直线的位置关系在数学上叫它们互相平行。(板书:互相平行)像①②③④属于相交情况,它们相交后都会产生一个交点(板书:一个交点)
同学们,这两种情况我们已经交流过了,这里还有一种分法,谁是这样分的?说说你的想法。生提到直角,一起验证直角,(板书:直角),那①③④号它们形成的`角为钝角、锐角(同时板书)小眼睛真亮,像④号这样,在数学上我们称为互相垂直(板书:互相垂直)。同学们看,我们把两条直线的位置关系分成了两种,相交的、不相交的,这就是我们这节课要研究的平行与垂直。(板书课题)关于互相平行、互相垂直的定义,让我们看看书上是怎么说的?打开课本的56、57页,同学们自学一下,里面的重点内容可以圈一圈,画一画。
来,谁来说一说什么是互相平行?来你来说一说,你再来说一说。直线a平行于直线b,在数学上记作a∥b,老师板书(这是两根平行的小斜杠)来伸出小手跟着老师一起比划一下。
那,什么是互相垂直呢?谁起来说一说?垂直符号。伸出小手比划一下。(师板书)
那同学们平行与垂直我们已经认识了,那平行与垂直的现象在我们的生活中也经常可以看见。你能很快的在我们周围找找平行与垂直的例子吗?生说。老师这里也有一些平行与垂直的现象,我们一起来欣赏一下。(播放课件)看这个图形是:长方体。这两条线的位置关系是?那这两条线呢?这两条线呢?所以我们今天研究的互相平行和互相垂直的位置关系必须是在同一个平面内的。(板书:同一平面)
三、训练与应用
1.来学到这里,老师要试试你的眼力。(出示课件练习)
2.刚才我们举了生活中的平行与垂直的现象,其实在我们以前学过的平面几何图形中也有平行与垂直的影子。(出示课件)
把答案写在记录纸上。
找生写的投影。
四、小结与提高
同学们,一节课很快就要过去了,通过这节课的学习,你有什么新的收获吗?
下节课我们将继续学习有关平行与垂直的有关知识,好,下课!
八年级数学教案:《平行四边形》 篇七
一、教学目标:
1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。
2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。
3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。
教学重点:在制作中发现平行四边形的基本特征。
教学难点:引导学生发现平行四边形的特征。
二、教学过程:
(一)创设情境,设疑激趣
1.师:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?
生:能
师:是什么平面图形,谁能上来指一指。
生:平行四边形
根据回答:教师板书:平行四边形
(二)引导探究,自主建构
师:同学们再看,这里面有没有平行四边形?(出示扩缩尺、升降机图片)
生:谁能上来指一指?
师:那同学们想一下什么样的图形是平行四边形呢?请看大屏幕
(大屏幕出示平行四边形定义:两组对边分别平行的四边形叫做平行四边形)
师:谁能找一下这句话里最重要的几个词,并解释一下?
生:四边形
师:什么样的图形是四边形?
生:由四条边围成的图形
师:还有哪几个词?
生:两组对边分别平行
师:你能上来一边用手指着一边给大家解释一下这句话吗?
生:能
师:除了两组对边分别平行,两组对边的长度有什么关系呢?拿出刚刚发给你的平行四边形,量一量四条边的长度,你发现了什么?
生:两组对边相等
师:平行四边形的两组对边平行且相等,那么平行四边形的对角有什么特点呢?继续拿出发给你的平行四边形,把两组对角像老师这样折一折,你发现了什么?
生:两组对角相等
师:刚才同学们说的都非常好,现在带着你的理解在研究单的方格纸上画一个平行四边形
生画图,师巡视指导。
研究单
在下面的方格纸上画一个平行四边形
师:(选几个学生画的平行四边形粘到黑板上)孩子们,画好了吗?
生:画好了
师:画好了,请看黑板,思考老师这样一个问题:为什么同学们画的平行四边形都不一样大呢?
随意生怎么说,只要表达出底和高的意思就行
师:介绍平行四边形的底和高
注:这个平行四边形的高学生画
注:老师画第二种情况
师:请同学们继续拿出研究单,完成研究二。不用写,能思考出答案就行
研究二:总结正方形、长方形和平行四边形的特征。
正方形
长方形
平行四边形
边
角
师:孩子们,现在小组交流一下你的想法
生生交流,师巡视指导
师:好了,小组交流到此结束,哪个小组愿意全班交流一下你们的想法。
生:......
师:同学们请继续看,老师这里有一个平行四边形框架,(来回拉动平行四边形),你发现平行四边形有什么性质?
生:具有不稳定性
师:(继续拉动平行四边形,拉成长方形),说明长方形和平行四边形是什么关系?
生:长方形是特殊的平行四边形。
师:同学们,我们已经学过正方形、长方形的关系,谁来说一说?
生:正方形是特殊的长方形(师出示长方形圈正方形的圈)
师:利用平行四边形的特征,如果把平行四边形也圈进来,应该怎样圈?
生:圈在最外面
(三)自主反思
通过本节课的学习,你收获了什么?
平行四边形教案 篇八
一教学目标:
1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题.
3.培养用类比、逆向联想及运动的思维方法来研究问题.
二重点、难点
1.重点:平行四边形的判定方法及应用.
2.难点:平行四边形的判定定理与性质定理的灵活应用.
3.难点的突破方法:
平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.
(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.
(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:
①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;
②本节课只介绍前两个判定方法.
(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.
然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.
在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.
(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.
(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.
(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.
三例题的意图分析
本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的`综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.
四课堂引入
1.欣赏图片、提出问题.
展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?
2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?
让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
五例习题分析
例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.
求证:四边形BFDE是平行四边形.
分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.
(证明过程参看教材)
问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.
例2(补充) 已知:如图,A′B′∥BA,B′C′∥CB, C′A′∥AC.
求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;
(2) △ABC的顶点分别是△B′C′A′各边的中点.
证明:(1)∵A′B′∥BA,C′B′∥BC,
∴四边形ABCB′是平行四边形.
∴ ∠ABC=∠B′(平行四边形的对角相等).
同理∠CAB=∠A′,∠BCA=∠C′.
(2) 由(1)证得四边形ABCB′是平行四边形.同理,四边形ABA′C是平行四边形.
∴ AB=B′C, AB=A′C(平行四边形的对边相等).
∴ B′C=A′C.
同理 B′A=C′A, A′B=C′B.
∴ △ABC的顶点A、B、C分别是△B′C′A′的边B′C′、C′A′、A′B′的中点.
例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形.你能在图中找出所有的平行四边形吗?并说说你的理由.
解:有6个平行四边形,分别是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO.
理由是:因为正△ABO≌正△AOF,所以AB=BO,OF=FA.根据 “两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形.其它五个同理.
六随堂练习
1.如图,在四边形ABCD中,AC、BD相交于点O,
(1)若AD=8cm,AB=4cm,那么当BC=____cm,CD=____cm时,四边形ABCD为平行四边形;
(2)若AC=10cm,BD=8cm,那么当AO=___cm,DO=___cm时,四边形ABCD为平行四边形.
2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.
3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:
①第4个图形中平行四边形的个数为_____.
(6个)
②第8个图形中平行四边形的个数为_____.
(20个)
七课后练习
1.(选择)下列条件中能判断四边形是平行四边形的是( ).
(A)对角线互相垂直 (B)对角线相等
(C)对角线互相垂直且相等 (D)对角线互相平分
2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,
求证:BE=CF
平行四边形教案 篇九
一、内容和内容解析内容:
本课是人教版新课标实验教科书八上第十九章的第一课时,其主要内容是平行四边形的概念及平行四边形的边、角的相关性质。
内容解析:
四边形是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。平行四边形是特殊的四边形,较一般四边形而言,它与我们的关系更为密切,这不仅表现在日常生活中有众多的平行四边形图案,更重要的是,它的性质在日常生活及生产实践等各个领域中均有广泛的应用。此外,平行四边形的相关知识在建筑学、物理学、测绘学中也有较为重要的应用。
平行四边形是一个四边形,但与一般四边形相比,它的对边分别平行。由这一本质特征,教材给出了定义:两组对边分别平行的四边形叫做平行四边形。这一定义既给出了平行四边形的一种判断方法:两组对边分别平行的四边形是平行四边形。也给出了平行四边形的一条性质:平行四边形的对边平行。这为判定一个四边形是平行四边形提供了重要的理论依据,也为证明两直线平行提供了新的方法。
平行四边形从属于四边形,所以一般四边形所具有的性质它都具有,如:内角和是360°、外角和为360°、四边形的不稳定性等。同时,它还具有自己特有的性质:对边平行且相等、对角相等、邻角互补等。这些性质为学生证明或解决线段相等、角相等等问题提供了全新的思路,拓展了学生的视野。另外,平行四边形的这些性质还是所有特殊平行四边形的基本性质。本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础。
在教材的编写上,本课还注意了使学生经历充分地观察、猜想、验证、推理、交流、应用等数学活动后获得结论,这对于培养学生的观察能力、推理能力、图形处理能力、探索及解决问题的能力等方面,都起着较为重要的作用。
教学重点:平行四边形的性质的探究与应用
二、目标和目标解析
目标:理解并掌握平行四边形的概念和性质,能运用平行四边形的概念及性质解决相关问题。
目标解析:
1、经历从现实情景中抽象出平行四边形的过程,发展学生的形象思维与抽象思维。2、经历观察、实验、猜想、验证、推理、应用等数学活动,培养学生的观察能力、概括能力和演绎推理能力,渗透转化思想。
3、通过性质的应用,培养学生独立思考的习惯,发展合作交流与应用意识,感悟数学与实际生活的密切联系。4、通过一系列探究活动的开展,使学生从中体验数学活动的探索性和创造性,感受探究成功的乐趣,从而激发学习兴趣。
三、教学问题诊断分析
平行四边形的定义,学生在小学已经学过,但受当时学生文化基础与认知水平的限制,他们对平行四边形的认识还比较肤浅,对概念本质属性的理解与把握还不够深刻与透彻。作为本节课的核心概念,教学中切忌把平行四边形概念当学生已学知识,简单复习巩固后,一带而过。而应精心设计教学活动,使学生在原有知识的基础上,加深理解、全方位把握。尤其对于定义的双重性,应引导学生细致剖析,使他们理解、让他们会用。另外,考虑到学生以前对一般四边形与特殊四边形的认识是割裂开来的,他们对两者从属关系的认识较为淡漠,学习定义之前,教师应先让学生明晰一般四边形与特殊四边形的联系与区别,这样既可突出概念本质,也可为性质的学习作好铺垫。
对于性质,从教材的呈现方式看,编者力图以问题为线索,通过观察──猜想──验证──推理证明等一系列数学活动,以自主探索、小组合作探究的方式让学生主动获得。如何真实的反应教材本意,突出性质的探索过程?如何彻底将学生的被动接受转为主动发现?这是执教者必须深思的问题。八年级的学生,已具备了一定的观察、分析、动手操作、语言表达及逻辑推理能力,若直接让学生观察图形──提出猜想──简单度量──推理论证──给出结论,这样难免有穿新鞋走老路之嫌,同时,也很难提高学生的学习积极性。尤其是对于性质的证明,在仅有平行四边形的前提下,如何解决线段相等、角相等这一推证难点也将因教学方式的生硬而变得更加难以逾越,教学效果可想而知。
要切实解决这个问题,教师应通过充分的活动让学生真正“动”起来。我思考了这样的处理:将整个性质的探究分两步走,第一步先引导学生通过观察大胆“猜一猜”,再“画一画”,进一步感受图形特征,接着“量一量”,初步验证猜想。第二步激发学生“剪一剪”,引导他们以小组合作的方式进一步探究。将所画的平行四边形沿其中一条对角线剪开,学生将不难发现所得到的两三角形全等,而全等三角形的对应边相等、对应角相等,这样很自然地进一步验证了猜想,与此同时,通过引导,学生还将发现,连接一条对角线,平行四边形的问题便转化成了全等三角形的问题。这样,一石二鸟,既让学生品尝了探究成功之乐,也为性质的推理论证扫清了障碍,轻松突破难点。若学生基础较好,还可考虑直接提供学具袋(里面提供可采用度量、平移、旋转、折叠、拼图等方法的相应学具),然后完全放手让学生去自主探索。鼓励学生探究方式、结果、表示方式及学习方式的多样化。相信在老师的精心组织、合作与参与下,学生将会从多个方面完善对平行四边形性质的认识。
教学难点:平行四边形性质的探究与证明。
四、教学支持条件分析
⑴借助一般四边形、平行四边形、梯形等模型,明晰一般四边形与特殊四边形的区别与联系,深化对概念本质的认识,也可为性质的探究服务。⑵借助多媒体课件,使实例背景更形象、更逼真,以此激发学生的学习兴趣。借助Flash动画,从激励学生探究入手,改进问题的呈现方式,使教学更富有趣味性、生动性和互动性,从而激发学生的主动参与热情,为更好的实现教学目标服务。
五、教学过程设计
(一)情景激趣:
1、出示一般四边形模型,随后出示平行四边形模型,感受“特殊四边形”与“一般四边形”的区别与联系。设计意图:谈话式开场,清新自然。让学生明晰平行四边形与一般四边形从属关系的同时,轻松切入主题。
2、你能举出生活中平行四边形的实例吗?
3、媒体展示:原野鸟瞰、中银大厦外景、篱笆、电动门、艺术装饰物等图片,引导学生从图片中找出平行四边形。──生活中的平行四边形随处可见,它装点着我们的生活,服务着我们的生活。由此导出课题。
设计意图:先由学生举实例,再选取生活中平行四边形的一组精美图片由媒体集中展示,让学生感悟数学与生活紧密联系的同时,也让他们更真切地感受到学近平行四边形的必要。另外,通过对图形的捕捉与提炼,培养学生的形象思维与抽象思维能力。
(二)探究在线:
1.定义探究:
①结合平行四边形的模型提问:平行四边形的“平行”体现在哪里?
②师生共议,归纳定义。
定义:有两组对边分别平行的四边形叫做平行四边形。
结合媒体动画演示,学平行四边形的表示法、读法及对边、对角、邻边、邻角等概念。
设计意图:突出概念本质,深化对定义的理解。将对边、对角等概念由媒体形象生动的展示,可使枯燥的概念更加灵动,让学生自觉地进入到对定义的深入探究中来。
③出示梯形模型,巩固定义(两组对边分别平行).
④图形及符号语言:
设计意图:多角度的表述,使学生能全面、透彻的理解定义。同时,规范了推理格式、提升了概括能力。
2.性质探究:
①平行四边形除了两组对边分别平行外,还有没有其它性质呢?
探究:(媒体播放,分步出示)
猜一猜:边之间?角之间?
画一画:在格点纸上画一个平行四边形。量一量:度量一下,与你的猜想一致吗?
剪一剪:将所画的平行四边形沿其中一条对角线剪开,现在,你有新的办法进一步验证猜想吗?
②结论:边:对边平行、对边相等;角:对角相等、邻角互补
设计意图:以学生原有知识为出发点,引导学生通过观察、猜想、动手实践、合作交流等方式主动获取知识,获得解决问题的方法。同时,在学生亲历知识的发生、发展与形成过程中使学生获得富有成效的学习体验,发展探究与合作意识,培养逻辑思维能力。另外,通过“剪一剪”,学生进一步验证猜想的。同时还找到了将四边形问题转化为三角形问题的有效途径,为性质的证明扫清了障碍。这样既渗透了转化思想,又巧妙的突破了难点。
③你能证明“平行四边形的对边相等,平行四边形的对角相等”吗?
师生共议,写出已知、求证及证明过程。已知:如图,四边形ABCD为平行四边形。
求证:AB=CD,AD=BC;∠A=∠C,∠B=∠D.
分析:连结对角线将平行四边形的问题通过转化为全等三角形的问题进行解决。
设计意图:注重直观操作与逻辑推理的有机结合,把几何论证作为探究活动的自然延续和必然发展。同时,通过证明,验证了猜想的正确性,让学生感受到数学结论的确定性和证明的必要性。
④总结:性质1:平行四边形的对边相等。
符号语言: ∵四边形ABCD为平行四边形
∴AB=CD,AD=BC.
性质2:平行四边形的对角相等。
符号语言: ∵四边形ABCD为平行四边形
∴∠A=∠C,∠B=∠D.
师生共议:以上性质为证明(解决)线段相等,角相等,提供了新的理论依据。
设计意图:对平行四边形性质的归纳,是学生对平行四边形特征的更深入认识,也是知识的一次升华,突出了教学重点。
(三)厉兵秣马:
小试身手:(媒体播放)如图,在□ABCD中,根据已知你能得到哪些结论?为什么?
设计意图:尝试对性质的应用,实现从知识到能力的顺利过渡。同时,开放式的问题,利于学生多角度的思考并解决问题。
例题探究:如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为8m,其他三条边的长各是多少?(媒体播放)
随机应变:
(1)在□ABCD中,已知AC=12,ΔABC的周长=30,则□ABCD的周长=
(2)若∠DCE=38°,则□ABCD的四个内角的度数分别为:
(3)若最大的两个角之和为220°,则平行四边形的四个角的度数分别为:
设计意图:通过对例题的学习,加深对平行四边形性质的理解,培养学生的应用意识。通过一题多变,使学生能多角度、多层次、灵活的运用所学知识解决问题,培养学生思维的深刻性与灵活性。
智启百宝箱:
辨一辨:谁的测量肯定有误?
贝贝、晶晶、妮妮、号号四位同学正在测量
ABCD.
贝贝测量的结果:AB=CD=5,BC=AD=8;
晶晶测量的结果:∠A=∠C=40°,∠B=∠D=130°;
妮妮测量的结果:AB//CD,BC//AD;
号号测量的结果:∠A﹕∠B﹕∠C﹕∠D=2﹕6﹕2﹕7.想一想:如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形,线段AD和BC的长度有什么关系?
证一证:如图,在□ABCD中,E、F分别为边AB、CD上的点,连接DE、BF.
(1)如果E、F分别为AB、CD边上的中点,求证:∠ADE=∠CBF
(2)如果DE//BF,上述结论还成立吗?
设计意图:练习是学生心智技能和动作技能形成的基本途径,精心设计的练习将会使这一功用得到更充分的体现。以上这组练习层层递进、由浅入深,有效地促进学生对本节课所学习的概念与性质进行更加深刻的理解与掌握。另外,以游戏为载体,使问题的呈现方式更加生动活泼与富有挑战性,促使学生能更加主动的投入到知识的巩固与能力的提升中来。
(四)整理反思:
师生共议:通过这节课的学习,你对平行四边形有哪些新的认识?
我的收获(媒体播放):
①平行四边形的定义、性质。
②方法:证明平行、线段相等、角相等的新方法。
③转化思想:
设计意图:这是一次知识与情感的交流,浓缩知识要点、突出内容本质、渗透思想方法。培养学生自我反馈、自主评价的意识,促进学生可持续地、和谐地发展。
(五)快乐套餐:
必做:P90T
1、2.P91 T
6、7
选做:
文物保护部门需复原一如图形状的等腰三角形木格子,里面每一同方向木条相互平行且将腰分成相等的六段,已知等腰三角形的腰是30cm,底边长50cm,你能算出拼这个木格子所需木条的总长度吗?(接头不计) (聪明的同学们,你们能想出几种方法呢?)
(1)如果里面的每一同方向木条都不均匀排列,但互相平行,你还能算出所需木条的总长度吗?(接头不计)
(2)如果这个木格子底边上有n个不规则排列的点,你还能算出所需木条的总长度吗?(接头不计)
设计意图:“套餐”分两类,必做题面向全体、巩固所学,力图让“人人都获得必需的数学”。选做题力图“让不同的人在数学上得到不同的发展”,本题既可直接运用今天所学的定义与性质求解;亦可通过构造与此模型全等的图形,将两个全等的图形拼合成一个平行四边形,进而简捷求解;还可以借助“过等腰三角形底边上任一点向两腰作平行线,所得的平行四边形两邻边之和等于一腰长。”这一模型轻松求解等等。这是本课内容的一次拓展与升华。
上面内容就是众鼎号为您整理出来的9篇《《平行四边形的性质》教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在众鼎号。