首页 > 学生学习 > 学习方法 >

高三数学知识点归纳【优秀5篇】

众鼎号分享 4457

众鼎号 分享

高三学生很快就会面临继续学业或事业的选择。面对重要的人生选择,是否考虑清楚了?这对于没有社会经验的学生来说,无疑是个困难的选择。下面是众鼎号的小编为您带来的5篇《高三数学知识点归纳》,希望能够对困扰您的问题有一定的启迪作用。

高三数学上学期知识点 篇一

1、圆柱体:

表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:

表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,

3、正方体

a—边长,S=6a2,V=a3

4、长方体

a—长,b—宽,c—高S=2(ab+ac+bc)V=abc

5、棱柱

S—底面积h—高V=Sh

6、棱锥

S—底面积h—高V=Sh/3

7、棱台

S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3

8、拟柱体

S1—上底面积,S2—下底面积,S0—中截面积

h—高,V=h(S1+S2+4S0)/6

9、圆柱

r—底半径,h—高,C—底面周长

S底—底面积,S侧—侧面积,S表—表面积C=2πr

S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圆柱

R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)

11、直圆锥

r—底半径h—高V=πr^2h/3

12、圆台

r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3

13、球

r—半径d—直径V=4/3πr^3=πd^3/6

14、球缺

h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3

15、球台

r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6

16、圆环体

R—环体半径D—环体直径r—环体截面半径d—环体截面直径

V=2π2Rr2=π2Dd2/4

17、桶状体

D—桶腹直径d—桶底直径h—桶高

V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

高三数学知识点 篇二

一、函数的定义域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数y=tanx中x≠kπ+π/2;

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;

2、换元法;

3、待定系数法;

4、函数方程法;

5、参数法;

6、配方法

三、函数的值域的常用求法:

1、换元法;

2、配方法;

3、判别式法;

4、几何法;

5、不等式法;

6、单调性法;

7、直接法

四、函数的最值的常用求法:

1、配方法;

2、换元法;

3、不等式法;

4、几何法;

5、单调性法

五、函数单调性的常用结论:

1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

2、若f(x)为增(减)函数,则-f(x)为减(增)函数。

3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

高考备考技巧 篇三

1、巧用心理暗示

“已经高三了”的心理暗示比什么都重要。人的成功最重要的莫过于知道自己处于什么样的情形,下一步要做什么。潜意识地意识到自己“已经高三了”,默默地告诉自己不能我行我素了,养成这样的习惯那就意味着良好学习状态的到来、成功的开始。

2、巧寻读书环境

要寻找最佳的环境读书。学校环境自不必说了,主要是在校外的环境。无论是晚上还是周末,建议尽可能少呆在家里。可以跟两三个同学一起去图书馆最好,又安静、又有气氛,有问题还能问,累了也可以一起玩玩。

3、巧订学习计划

模拟课程表安排好每天课余时间学习计划表,列出每天的学习科目和学习时间段,并尽量详细地列明早、中、晚的学习、休息、锻炼安排。同时,每科兼顾到吸收、复习、练习、归纳、预习五大环节。订下学习计划表后,尽量排除干扰,坚决执行。

4、巧理每天时间

要保证合理的睡眠安排,建议早上6:00后起床,中午休息30分钟,晚上睡觉不要超过23:30。如果上课常打瞌睡,便说明时间安排上有问题,学习效率较低。应该意识到,70%以上的知识是靠课堂完成的,30%知识靠课余时间完成的。

5、巧做限时训练

高考是个大系统,各科目是零件,加强限时训练是协调多学科学习、单科学习卓有成效的做法。在做章节练习时,限时作答每一题,对比正确程度,发现问题所在,在最短时间内予以弥补或矫正。正确率低于70%往往意味着自己在相关章节存在着较大问题。

高三数学知识点 篇四

①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。

⑶特殊棱锥的顶点在底面的射影位置:

①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心。

②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心。

③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心。

④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心。

⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心。

⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心。

⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

⑧每个四面体都有内切球,球心

是四面体各个二面角的平分面的交点,到各面的距离等于半径。

[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥。(×)(各个侧面的等腰三角形不知是否全等)

ii.若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直。

简证:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知则。

iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形。

iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形。

简证:取AC中点,则平面90°易知EFGH为平行四边形

EFGH为长方形。若对角线等,则为正方形。

2022人教版高三数学课本知识点 篇五

常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα(k∈Z)

cos(2kπ+α)=cosα(k∈Z)

tan(2kπ+α)=tanα(k∈Z)

cot(2kπ+α)=cotα(k∈Z)

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与-α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

它山之石可以攻玉,以上就是众鼎号为大家带来的5篇《高三数学知识点归纳》,希望可以启发您的一些写作思路。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:常用的学习方法有哪些(优秀8篇)

下一篇:2022河北二本院校名单及排名优秀3篇