首页 > 教师教学 > 教案模板 >

五年级数学教案最新9篇

众鼎号分享 128324

众鼎号 分享

作为一位无私奉献的人民教师,常常需要准备教案,教案是教学活动的总的组织纲领和行动方案。那么你有了解过教案吗?它山之石可以攻玉,下面众鼎号为您精心整理了9篇《五年级数学教案》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

五年级数学教案 篇一

课题:研究长方体课型:新知探究课时:1课时

学习目标:

1、我能在认识长方体的基础上,掌握长方体的特征,并认识长方体的长、宽、高。

2、我能通过自主探究与合作交流,探索出长方体的具体特征,并能解决简单的实际问题。

3、我有信心学会本节所学内容,我一定能够获得成功。

重点:掌握长方体面、棱、顶点的特征和认识长方体的长、宽、高。

难点:形成长方体的概念,发展学生的空间观念。

学习过程

创设情景揭示课题

1、教师出示幻灯片,让同学们从长方体、长方形、正方形、三角形、球体、圆柱、圆等图形中,找出立体图形和平面图形,然后在立体图形中找出长方体。

2、孩子们,你能找出长方体吗?

☆学海探秘探究一:火眼金睛

1、长方体有()个面,每个面是()形。指一指哪些面是相同的?

2、长方体有()条棱,指一指哪些棱长度相等?

3、长方体有()个顶点。

4、你还能发现什么?

探究二:制作长方体框架图我发现

1、长方体的12条棱可以分为几组?

2、相交于同一顶点的三条棱长度相等吗?

探究三:借助“产品”我能认

1、相交于一个顶点的三条棱的长度分别叫做()、()和()。

2、我能指出长方体的长、宽、高。

☆走进知识大本营填一填

1、长方体有()个面,都是()形,特殊情况可能有一组相对的面是()形,相对的面的面积()。

2、长方体有()条棱,相对的棱长度()。

3、长方体有()顶点。

4、相交于长方体一个顶点的三条棱的长度分别叫()、()和()

辨一辨

1、长方体的6个面不可能有正方形。()

2、长方体的12条棱中长宽高各有4条。()

3、一张长方形的纸是一个长方体。()

4决定长方体的大小是长、宽、高。()

☆拓展延伸:我能自己制作一个美观的长方体玩具箱。

☆谈收获、写反思(梳理成数学日记)

通过这节课的学习,你有哪些收获?还有哪些方面需要进一步的努力?

五年级数学教案 篇二

教学目标:

1、知道容积的意义。

2、掌握容积单位升和毫升的进率,及它们与体积单位立方分米、立方厘米之间的关系。

3、会计算物体的容积。

教学重点:

1、容积的概念。

2、容积与体积的关系。

教学难点:

容积与体积的关系。

教具:

量筒和量杯、不同的饮料瓶、纸杯

教学过程:

一、复习检查:

说出长正方体体积计算公式。

二、准备:

把泥放入一个长方体的小木盒中(压实,与上口平),然后扣出来,量一量泥块的长、宽、高。计算泥块的体积。这个长方体小木盒所能容纳物体的体积是( )。

三、新授:

认识容积及容积单位:

(1)箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积。

通过上面的“做一做”,我们知道长方体小木盒所能容纳物体的体积就是这个小木盒的容积。

(2)计量容积,一般就用体积单位。但是计量液体体积,如药水、汽油等,常用容积单位升和毫升。

(3)演示:体积单位与容积单位的关系。

说一说,在生活中哪些物品上标有升或毫升。升和毫升有什么关系呢?教具演示。

①1升(L)=1000毫升(mL)

将1升的水倒入1立方分米的容器里。

小结:1升(L)=1立方分米(dm3)

②1升=1立方分米

1000毫升=1000立方厘米

1毫升(mL)=1立方厘米(cm3)

练一练:

1、8L=( )mL3500mL=( )L15000cm3=( )mL=( )L

2、5dm3=( )L

(4)小组活动:

a、将一瓶矿泉水倒在纸杯中,看看可以倒满几杯?

b、估计一下,一纸杯水大约有多少毫升,几纸杯水大约是1升。

2、长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但是要从容器的。里面量长、宽、高。

例一个小汽车上的油箱,里面长5分米,宽4分米,高2分米。这个油箱可以装汽油多少升?

5×4×2=40(立方分米)40立方分米=40升

答:这个油箱可以装汽油40升。

做一做:一个正方体油箱,从里面量棱长是1、4米。这个油箱装油有多少升?(订正)

小结:计算容积的步骤是什么?

3、我们知道了计算规则物体的体积的方法,如计算长方体的体积是用长乘宽乘高,计算正方体的体积是棱长的3次方。那有些不规则的物体怎么计算它的体积呢?

出示一个西红柿,谁有办法计算它的体积?小组设计方案:

四、巩固练习:

1、生物小组买来一个长方体鱼缸,从里面量长是6分米,宽是4分米,深2.5分米,它的容积是多少升?

2、一个长方体油箱的容积是20升。这个油箱的底长25厘米,宽20厘米,油箱的深是多少厘米?

3、有一个棱长是6分米的正方体水箱,装满水后,倒入一个长方体水箱内,量得水深3分米,这个长方体水箱得底面积是多少?

4、提高题:p55、16

五年级数学教案 篇三

【教学目标】

1.知识与技能:会用计算器计算比较复杂的小数乘、除法,并有利用计算器进行计算的意识。

2.过程与方法:在利用计算器进行计算时,学生能通过观察、分析发现算式中的规律,并能按规律直接填得数。

3.情感、态度与价值观:在引导发现规律、描述规律的过程中,培养学生的逻辑推理能力,让学生体会数学中的美以及探究的乐趣。

【教学重点】

能用计算器探索计算规律,并能应用探索出的规律进行一些小数乘、除法的计算。

【教学难点】

发现规律。

【教学准备】

多媒体课件

【教学过程】

一、导入新课

1.你能发现规律吗?

2.出示:比一比谁算得快。

32.47÷15=63.79÷5.2=

学生自主计算并订正结果。

3.教师引入:在计算这些题目时,同学们是不是感到很麻烦?这时我们可以使用计算器。用计算器还可以帮助我们探索一些规律呢!

(板书课题:用计算器探索规律)

二、新课学习

1.出示教材例9例题。

让学生用计算器计算下列各题。

订正答案:

1÷11=0.0909… 2÷11=0.1818…

3÷11=0.2727… 4÷11=0.3636…

5÷11=0.4545…

师小结:这些都是循环小数。并引导学生观察、比较,你发现了哪些规律?在小

组内交流讨论。

引导学生说出规律:商是循环小数;循环节都是9的倍数。

2.引导学生按规律写结果:同学们,通过用计算器计算,观察计算结果,我们发现了规律。现在大家能不能不计算,用发现的规律直接写出下面几题的商呢?(出示以下例题)

6÷11=7÷11=8÷11= 9÷1l=

学生汇报得出的结果。引导学生说一说,你是根据什么来写这些商的?

(根据1÷11,2÷11,……,5÷11的结果得出的规律来写商的。)

3.检验:同学们写出的`规律对不对?用计算器来检验一下。

学生自主验证计算结果,与自己得出的结果作比较。

三、结论总结

师:这节课学了什么知识?有什么收获?

引导学生总结:

1.用计算器计算省时省力又很精确。

2.观察得到规律,不用计算器也能很快得出结果。

四、课堂练习

1.算一算,找规律:

46×96= 69×64=

14×82= 28×41=

26×93= 39×62=

①等式左边的因数十位和个位上的数字交换位置就是等式右边的因数。

②两个因数十位上数字的乘积等

于个位上数字的乘积。

2.明辨是非:

(1)被除数和除数同时乘或除以一个相同的数(0除外),商不变。()

(2)一个因数不变,另一因数乘或除以一个数(0除外),积也扩大或缩小相同的倍数。()

(3)因为75÷4=18 3,所以750÷40=18 3。()

(4)两个数相除,被除数扩大3倍,除数缩小3倍,商扩大9倍。()

(5)因为360÷15=24,所以3600÷15=240,360÷5=8。()

3.不计算,运用规律直接填出得数,再用计算器验算。

6×0.7=

6.6×6.7=

6.66×66.7=

6.666×666.7=

想一想6.666×666.7整数部分有几个4,小数部分又是多少?

4.用计算器计算前4题,试着写出后2题的积。

3×7=

3.3×6.7=

3.33×66.7=

3.333×666.7=

3.3333×6666.7=

3.33333×66666.7=

3.333333×666666.7=

你能用发现的规律接着写出下面一个算式吗?

5.用计算器计算下面各题。

1÷7=2÷7=

3÷7=4÷7=

5÷7=6÷7=

(1)你能用发现的规律把后面两道算式的商写出来吗?

(2)你发现了什么?

五、作业布置

1.先用计算器计算前面3题,仔细观察,再试着写出后面的得数。(保留6位小数)

1÷7=2÷7=

3÷7=4÷7=

5÷7=6÷7=

2.根据规律不计算直接写得数。

5×5=25

15×15=225

25×25=625

35×35=

45×45=

55×55=

六、板书设计

用计算器探索规律

计算器:省时、省力、精确

1122÷34=33

111222÷334=333

11112222÷3334=3333

1111122222÷33334=33333

11111112222222÷33333334=333333

五年级数学教案 篇四

教学内容:

小数四则混合运算和简便算。

教学目标:

通过复习使学生进一步掌握小数四则混合运算的顺序和计算的方法,能正确、合理、灵活、迅速地进行四则混合运算和简便计算。

教学过程:

一、挂出小黑板视算。

4.8÷81.6÷0.412.12÷120.32÷0.4

4÷0.51÷250.25×400.13×5

2.5×4÷40.1×0.8÷1004.2÷0.6÷7

0.125×1.5×88.4÷8.4+61-0.25÷0.5

二、先说出运算顺序,再计算。

课本第34页的第7题,请4个学生板演后,师讲评。

比一比,看谁算得又对又快。把得数直接填在课本第35页的第4题上,请一个学生报得数,其他同学对得数,检查视算的情况,表扬好的,激励差的。

三、简便计算。

引导学生看课本第34页的第8题,讨论各题怎样算简便,再独立算。(指名板演,集体讲评)

整数的运算定律对于小数同样适用。在计算中能简便的要自觉用简便方法计算。

四、幻灯演示课本第36页的第7题。

这是一张不完整的发货票,指导学生根据总价、单价、数量之间的关系以及金额与总计金额的关系来推想,先算什么,再算什么,课内完成。

五、独立作业

第35--36页的第5、6题。

五年级数学教案 篇五

1、教学目标

1.使学生在具体情境中认识列、行的含义,逐步制定统一规则,初步理解数对的含义,会用数对表示物体的位置;

2.使学生经历由具体的座位图抽象成用列、行表示的平面图的过程,提高抽象思维能力,发展空间观念;

3.使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察生活的意识。

2、学情分析

从学生已有知识经验出发,创设现实情境,增加学生参与、体验的机会,让其在实践中加深理解,在活动中感受数学与生活的紧密联系,培养学生的空间观念。

3、重点难点

教学重点:

体验创建数对的过程,掌握数对的书写形式,会用数对确定位置。

教学难点:

观察者角度的理解,方格线上和方格中位置描述的异同理解。

4、教学过程

4.1教学过程

4.1.1教学活动

活动1【讲授】用数对确定位置

一、探讨描述位置两要素

师:今天,谢老师的好朋友带来一份神奇的礼物。有请X先生

第一关:找地鼠

师:请描述小地鼠的位置。

师:还能怎么说?

生:从右往左数第2个。

师:这只地鼠的位置呢?

生:从上往下数第3个,从下往上数第2个。

师:看来,描述一条线上的位置,我们只需要一个数。

师:(平面上的一个地鼠)现在还能用一个数字来描述位置吗?不能。为什么?

师:我们全班来玩一个小游戏,请一位同学上台背对屏幕,其他同学描述地鼠的位置帮助他猜?

师:你来说,谁有不同的说法,还有吗?

师:看来同学们都认为,描述平面上某个位置需要两个数,这个发现很重要。

师:(面向猜的同学)听了这么多说法,能猜到位置吗?

师:你是怎样猜的?大家分析分析他为什么会猜错?(描述位置的方向不一样)怎样让你的描述更加准确些。(说清楚方向:从左往右数第2排,从下往上数第3个)(板书说法)

师:经过不断完善,终于能消除误解,并赢取第一块拼图。听(X先生录音)

二、从列和行引出数对确定位置

师:在第一关,我们发现由于每人所定规则不同,导致描述方法不一致,甚至有可能会出错。这时,我们就需要统一规定。

师:(我们进入第二关,确定你的位置)从游戏回到教室里,像同学们的座位有的竖着排,有的横着排,数学中统一规定,像这样的竖排,我们称作列(板书:列),确定第几列一般是从左往右数,请第一列同学起立。你是怎样数的?有道理。这位同学,我看出了你的犹豫,有什么想说的?

师:勇于表达自己的想法,真了不起。两个第一列!这个时候又需要规定,列要站在观察者的角度从左往右数,教室里的观察者就是(老师),那你们就是被观察者。站在我的角度从左往右请第一列同学起来,第二列,第三列,原来你们是第6列。请记住自己是第几列了。

师:竖排是列。像这样的横排,我们称作行(板书:行)确定第几行一般从前往后数(手势从前向后点),第一行同学在哪?第二行,第三行……同样,记住自己是第几行。

师:列和行的观察方向已经确定了,请用列和行表示自己的位置。写在草稿纸上。你的位置是、你的位置是、你的位置是。都很准确。

师:回到大屏幕,当教室中的座位画在图上就成了这样。面对这幅图,谁是观察者?站在我们的角度,从左往右数第一列在哪里?第二列,接着……

师:教室中行是从前往后数,到了这幅图上就变成了从下往上数了。第一行在哪?第二行……张亮的位置是?还可以怎么说。

师:发现张亮的位置在从左往右第2列,从下往上数第3行的交点处。图上,还有两位同学的位置,谁来说。同意吗?看来,大家用列和行描述位置的已经比较熟练了。

师:把座位图变化一下,用图形代替了桌子,还能描述张亮的位置吗?(能)来个小考验把,能快速记下包括张亮在内的四个位置吗?拿出草稿纸,准备。怎么了?(太快了)想想有没有快速记录的方法,再来一次?准备。这次好些了。以张亮的位置为例,谁来说说你的好方法。(2 3)什么意思?(2表示第2列,3表示第3行)还可以怎么说(3 2)。这个想法很好,更加简洁了。

师:这些都是张亮位置的描述方法,你喜欢哪一种?

(1、列和行的方法,很具体但数学应该追求简洁明了,2、两个数字的方法,很简洁但容易误解。)都有道理,但是数学家还是选了其中的一种方法来描述位置。你觉得是那种?(手势上下移动)这种。

师:数学家也发现了漏洞,怎么办呢?干脆,一不做二不休,来了个规定:以后凡是用两个数表示位置时,都先说列(板书),再说行。中间用逗号隔开,再用括号把他们括起来,最后给它取个名字,叫做数对,而今天我们就重点研究用数对确定位置。(板书课题)

师:所以张亮的位置用数对表示是(指板书对的)读作数对(2,3)。

师:剩下的三个位置也用数对表示吧。写在草稿纸上。

师:四个数对中有两个比较特别,谁来说?

师:归纳的真准确,(3,4)不能表示赵雪的位置(4,3)也不能能表示王艳的位置。我们说一个数对只能确定一个位置,也就是说数对和位置一一对应。以后,一看到这样表示的形式,就知道是数对,是用来确定位置的。这也是数学符号的独特性。

师:回到同学中间(指向同学)请用数对表示自己的位置。你的位置是、你的位置是、和张亮同一个位置的是谁?(课件强调张亮)。

师:你是怎样判断的?

师:其实,从图上到教室里,观察者角度转变了,同学们还能灵活的用数对来确定位置,非常棒。听。(X先生评价)

三、点子图中的位置表示

师:祝贺大家,回到大屏幕,座位图再次发生变化,变成了(用点)来表示位置,再把这些点用线连起来,形成了一个方格图,规范的方格图会多出这样一列和一行(课件强调),我们把它们叫做起始列和起始行,他们的交点我们用0来表示,称作起始点。从起始点开始,我们可以数出列数和行数。在这里你还能确定张亮的位置吗?数对(2,3)。

师:X先生又有话说:(第三关找场馆。)这是动物园的平面图,我们一起来看看。大门的位置是(数对(3,0))什么意思?

师:图上的四个场馆,能用数对表示他们的位置吗?第二题呢?翻开书第20页,直接写在图上。

师:老师也有感兴趣的场馆,先给个提示(,4)能确定是哪个场馆吗?为什么?)能确定的只是(在第4行上)。换个提示,这个场馆在(1,)上,可能是哪些场馆。老师感兴趣的场馆其实就是(大象馆)。也就是第4行和第1列的交点处。

师:再次请出X先生:第四关摆放花盆(课件出示第四关)确定花盆的位置需要知道什么?(确定行列)

师:随意指两个位置提问。(单击课件)这四盆草围成一个长方形,能找出这四盆小草的位置吗?X表示几,Y表示几。请拿出练习纸,用圆圈表示4盆小草的位置。

师:根据已知数对可以很快确定三个点的位置,根据长方形的特性找到第四个点的位置。同学们都做对了吗?掌声送给自己。

四,数对的日常运用

师:数对的运用的确广泛。日常生活中还有那些地方会用到数对呢?像同学们说到的电影票、围棋棋盘等等。

国际象棋棋盘上也有行和列,这是白王,它的位置用数对表示是?(g,2)

这是南昌的经纬图,南昌位置可以用数对(116,25)来表示,在这里116表示的是?29表示的是?(经度和纬度)

师:学到这里我不禁想问:这么简单准确的数对又是谁发明的呢?数对背后又隐藏着怎样的故事呢?感兴趣的同学可以课后百度:笛卡尔和蜘蛛

五、拓展总结。

师:同学们我们还差一块拼图了,听听X先生带来了什么问题:第五关:确定位置,需要几个数?)

生:需要两个数。

师:什么情况下用两个数?(平面上的位置)(课件出图)一个数不行吗?(课件出示打地鼠图片)行。

师:什么情况下我们用一个数就能确定位置?(直线上的)。

师:直线上的点用一个数字确定位置,平面上的点用数对确定位置,那有没有用三个数确定位置的可能?(出现省略号)这个就留到以后学习了。

师:听听X先生对大家的最终评价吧。

师:其实,老师给大家带来的神奇的礼物就是一句话?齐读。学好数学将会是一个让你终生受益的财富。这节课就上到这里。下课。

五年级数学教案 篇六

教学目标

进一步计算长方体和立方体的表面积和体积(容积),并能熟练解答有关的实际问题。

教学重点、难点

重难点:

能熟练解答有关的实际问题。

教具、学具准备

教学过程

备 注

一、计算长方体和立方体的表面积和体积。

二、解答实际问题

1、一个长方体木箱,长8分米,宽6分米,高4.5分米。如果在它的外表涂上油漆(底面不涂),涂的面积有读书平方分米?如果每平方分米用油漆0.25千克,漆这个木箱要用油漆多少千克?

2、把一块棱长是0.4米的立方体钢,锻造成横截面面积是0.08平方米的长方体钢,锻造成的钢有多长?

3、用8个棱长是3厘米的立方体积木,搭成大立方体。求搭成的大立方体的表面积和体积。

4、一个长方体的汽油桶,厂分米,宽3.2分米,高6分米。如果1升汽油重0.74千克,这个油桶可以装汽油多少千克?

5、一个立方体油箱,容积是216立方分米。把这一箱油倒入另一个长8分米,宽5分米的长方体油箱内,油深多少分米?

6、一个长方体形状的水池,长60米,宽30米,池内原来水深1.5米。如果用水泵向外排水,每分排水2.5立方米,要求在15小时内把水池中的水排完,可能吗?

(1)学生独立完成

(2)小组交流

(3)反馈,说解题思路。

三、思考题

想一想,议一议:怎样求出土豆的体积?

四、课后反思:

在教学时,教师要多创造机会让学生探索比如可以拿一个大土豆,让学生想一想,议一议:怎样求出土豆的体积?在教师的引导下,学生想出了许多解决问题的办法。有的同学说,把土豆煮熟后,挤压成一个长方体,就可求出它的体积;有的同学说,从大土豆切出一个1立方厘米的小土豆,测出它的重量,根据大土豆和小土豆重量之间的倍数关系,可以求出大土豆的体积;有的同学说,把土豆放在长方体水槽里,水上升的体积,就是土豆的体积。

五年级数学教案 篇七

一、本班学生情况分析

我负责的五年级学生的基础参差不齐,两级分化现象严重。学习的主动性远远不够。当然,班上也有很多积极向上的学生,也有很多思维活跃、善于思考的学生。针对班级的实际情况,在下学期的数学教学应重点采取以下措施:

1、帮助后进生树立学习数学的信心,加强课后辅导,对其作业降低要求。

2、深入调查学生的作业要求,改进作业的布置及检查方式,增加趣味性、开放性、实践性作业。

3、强化培养、训练学生良好的学习态度和习惯,把学习习惯的好坏与期末数学成绩的评价相结合。

4。多鼓励和表扬学生,多开展一些数学竞赛活动,激发学生学习数学的积极性和主动性。坚持课堂“数学之星”的评选,严格要求的同时鼓励学生上进。

二、教学内容

图形的变换,因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计,数学广角和综合应用等。

在数与代数方面,这一册教材安排了因数与倍数、分数的意义和性质,分数的加法和减法。因数与倍数,在前面学习整数及其四则运算的基础上教学初等数论的一些基础知识,包括因数和倍数的意义,2、5、3的倍数的特征,质数和合数。教材在三年级上册分数的初步认识的基础上教学分数的意义和性质以及分数的加法、减法,结合约分教学公因数,结合通分教学最小公倍数。

在空间与图形方面,这一册教材安排了图形的变换、长方体和正方体两个单元。在已有知识和经验的基础上,通过丰富的现实的数学活动,让学生获得探究学习的经历,认识图形的轴对称和旋转变换;探索并体会长方体和正方体的特征、图形之间的关系,及图形之间的转化,掌握长方体、正方体的体积及表面积公式,探索某些实物体积的测量方法,促进学生空间观念的进一步发展。

在统计方面,本册教材让学生学习有关众数和复式折线统计图的知识。在学习平均数和中位数的基础上,本册教材教学众数。平均数、中位数和众数都是反映一组数据集中趋势的特征数。平均数作为一组数据的代表,比较稳定、可靠,但易受极端数据的'影响;中位数作为一组数据的代表,可靠性比较差,但不受极端数据的影响;众数作为一组数据的代表,也不受极端数据的影响。当一组数据中个别数据变动较大时,适宜选择众数或中位数来表示这组数据的集中趋势。

在用数学解决问题方面,教材一方面结合分数的加法和减法、长方体和正方体两个单元,教学用所学的知识解决生活中的简单问题;另一方面,安排了“数学广角”的教学内容,引导学生通过观察、猜测、实验、推理等活动向学生渗透优化的数学思想方法,体会解决问题策略的多样性及运用优化的方法解决问题的有效性,感受数学的魅力。

本册教材根据学生所学习的数学知识和生活经验,安排了两个数学综合应用活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的'乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。

三、教学目标

1、理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分。

2、掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的公因数和最小公倍数。

3、理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题。

4、知道体积和容积的意义及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义。

5、结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法。

6、能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90°;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案。

7、通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征。

8、认识复式折线统计图,能根据需要选择合适的统计图表示数据。

9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

10、体会解决问题策略的多样性及运用优化的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。

11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12、养成认真作业、书写整洁的良好习惯。

日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

四、教学重点

因数与倍数,长方体和正方体,分数的意义和性质,分数的加法和减法,统计。

五、教学中需要准备的教具和学具

1、长方体和正方体实物及模型

2、演示分数用的教具

3、其他教具教师还可以根据各部分教学内容的需要自己准备或设计制作一些教具和学具。如教学体积时制备1 m3、1dm3模型,容纳1 L、100 ml液体的量杯;教学因数与倍数时,可根据教科书上的图制成教具等。教师还可以根据需要自己制作其他适用的教具。

六、课时安排

根据《义务教育阶段国家数学课程标准(征求意见稿)》中的“各学段课程内容参考教学时间一览表”,实验教材的编者为五年级下学期数学教学安排了60课时的教学内容。各部分教学内容教学课时大致安排如下,教师教学时可以根据本班具体情况适当灵活掌握。

(一)、图形的变换(4课时)

(二)、因数与倍数(6课时)

1、因数和倍数2课时左右

2、2、5、3的倍数的特征…………………………3课时左右

3、质数和合数………………………………………1课时左右

(三)、长方体和正方体(12课时)

1、长方体和正方体的认识…………………………2课时左右

2、长方体和正方体的表面积………………………2课时左右

3、长方体和正方体的体积…………………………7课时左右

整理和复习1课时

粉刷围墙1课时

(四)、分数的意义和性质(20课时)

1、分数的意义——————4课时左右

2、真分数和假分数—————3课时左右

3、分数的基本性质—————2课时左右

4、约分—————4课时左右

5、通分—————4课时左右

6、分数与小数的互化——2课时左右

整理和复习1课时

(五)、分数的加法和减法(7课时)

1、同分母分数加、减法——2课时左右

2、异分母分数加、减法——3课时左右

3、分数加减混合运算——2课时左右

(六)、统计(3课时)

打电话—————1课时

(七)、数学广角(2课时)

(八)、总复习(4课时)

五年级数学教案 篇八

1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。

2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。

3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。

教学重点:

除数是整数,商是小数的小数除法的计算方法。

教学难点:

除得的结果有余数,补“0”继续除。

教学过程:

一、复习导入

课件出示情境主题图

开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?

引导学生列出算式并独立计算:18.6÷6 24÷4

计算后说一说整数除法与小数除法的异同。

二、对比中探索,交流中生成

师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?

教师把情境题中的18.6改成18.9,把24改成26.

1、初步尝试,发现问题。

请你尝试计算这两题,你发现了什么?

2、独立思考,尝试解决。

师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6

3、讨论交流,异中求同。

(1)在小组内汇报自己的计算方法。

(2)展示汇报。(可能出现第4页中几种不同的方法)

(3)对比这几种方法:有什么相同的地方?

引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个 共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6 个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就 是3.15元。

4、应用方法,归纳总结。

竖式计算26÷4

(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。

(2)尝试总结除数是整数的小数除法的计算方法。

三、巩固练习。

1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?

2、错题诊所。

209÷5=418 10÷25 =4 1.26÷18=0.7

3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。

32÷8 12÷25 2.45÷3

4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?

四、课堂总结

本节课你有哪些收获?

五年级数学教案 篇九

【教学目标】

1、使学生掌握因数、倍数、质数、合数等概念,知道有关概念之间的联系和区别。

2、使学生通过自主探索,掌握2、5、3的倍数的特征。

3、逐步培养学生的数学抽象思维能力。

【重点难点】

1、掌握因数、倍数、质数、合数等概念的联系及其区别。

2、掌握2、5、3的倍数的特征。

3、质数和奇数的区别。

【教学指导】

由于本单元内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度,所以教学应注意以下两点:

1、加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。本单元中因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的,倍数的个数是无限的等结论自然也就掌握了。对于后面的公因数、公倍数等概念的理解也就水到渠成了,要引导学生用联系的方法去掌握这些知识,而不是机械地记忆一堆支离破碎,毫无关联的概念和结论。

2、由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。虽然我们强调从生活的角度引出数学知识,但在过去的数学教学中,一些老师往往忽视概念的本质,而让学生死记硬背相关概念或结论,导致学生无法理清各概念间的前后承接关系,达不到融会贯通的程度,而学生到了五年级,抽象能力已经有了进一步提高,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数的个数都是无限的结论,逐步形成从特殊到一般的归纳推理能力等等。

【课时安排】

建议共分7课时

1、因数和倍数2课时

2.2、5、3的倍数的特征3课时

3、质数和合数2课时

【知识结构】

因数和倍数(1)

学习内容认识因数和倍数(教材第5页内容,以及第7页练习二的第1题)。第1课时课型新授

学习目标1.从操作活动中理解因数和倍数的意义,会

2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3.培养学生的合作意识、探索意识,以及热爱数学学习的情

教学重点理解因数和倍数的含义

教学难点判断一个数是不是另一个数的因数或倍数。

教具运用课件

教学方法二次备课

教学过程

【复习导入】

1、教师用课件出示口算题。

10÷5=16÷2=12÷3=100÷25=150×4=

220÷4=18×4=25×4=24×3=20×86=

学生口算

2、导入:在乘法算式中,两个因数相乘,得到的结果叫做它们的积。乘法算式表示的是一种相乘的关系,在除法算式中,两个数相除,得到的结果叫做它们的商。除法算式表示的是一种相除的关系,在整数乘法和除法中还有另一种关系,这就是我们这一节课要学习探讨的内容。

(板书课题:因数和倍数(1)

【新课讲授】

1、学习因数和倍数的概念

(1)教师用课件出示教材第5页例1,引导学生观察图上的算式,把这些算式分为两类。

学生说出自己的分类方法,商是整数的分为一类,商不是整数的分为一类。教师以商是整数的第一题为例,板书:12÷2=6。

教师:在这道除法算式中,被除数和除数都是整数,商也是整数,这时我们就可以说12是2和6的倍数,2和6是12的因数。

谁来说一说其他的式子?

学生回答。

教师板书:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

(2)说一说第一类的算式中,谁是谁的因数?谁是谁的倍数?

学生回答,如:在20÷10=2中,20是10和2的倍数,10和2是20的因数。或:20是10的倍数,20是2的倍数,10是20的因数,2是20的因数。(3)通过刚才同学们的回答,你发现了什么?

学生回答,教师板书:倍数与因数是相互依存的。

2、举例概括

教师:请同学们注意,为了方便,我们在研究因数和倍数时,所说的数一般指的是自然数,而且其中不包括0。

教师:在自然数中像这样的例子还有很多,我们每个同学都在心中想一个,想好了说给大家听。学生举例,并说出谁是谁的因数,谁是谁的倍数。

教师同时板书。

教师小结:像这样的例子举也举不完,那能不能用比较简洁的方式来叙述因数与倍数的关系呢?

引导学生根据“用字母表示数”的知识表述因数与倍数的关系。

如:m÷N=P,m、N、P都是非0自然数,那么N和P是m的因数,m是N和P的倍数。

A×B=c,A、B、c、都是非0自然数,那么A和B是c的因数,c是A和B的倍数。

你能从这些数中挑出两个数,说出谁是谁的因数,谁是谁的倍数吗?

3、9、15、21、36

学生独立思考并回答。

【课堂作业】

1.完成教材第5页“做一做”。

2.完成教材第7页练习二第1题。

3.下面每一组数中,谁是谁的倍数,谁是谁的因数。16和24和2472和820和5

4.下面的说法对吗?说出理由。

(1)48是6的倍数。

(2)在13÷4=3……1中,13是4的倍数。

(3)因为3×6=18,所以18是倍数,3和6是因数。

【课堂小结】

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

【课后作业】

完成练习册中本课时练习。

板书设计因数和倍数(1)

在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。

因数和倍数一般指的是自然数,而且其中不包括0。

倍数与因数是相互依存的。

教学反思

【作业设计】

它山之石可以攻玉,以上就是众鼎号为大家带来的9篇《五年级数学教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:《预防传染病》教案【优秀9篇】

下一篇:返回列表