有理数的混合运算教学设计最新7篇
《有理数的加减混合运算》是七年级数学上册的内容。读书破万卷下笔如有神,下面众鼎号为您精心整理了7篇《有理数的混合运算教学设计》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。
有理数的加减混合运算 篇一
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略加号与括号的代数和的计算。
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2.关于“去括号法则”,只要学生了解,并不要求追究所以然。
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
教学设计示例一
有理数的加减混合运算(一)
一、素质教育目标
(一)知识教学点
1.了解:代数和的概念。
2.理解:有理数加减法可以互相转化。
3.应用:会进行加减混合运算。
(二)能力训练点
培养学生的口头表达能力及计算的准确能力。
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算。体现了数学的统一美。
二、学法引导
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。
2.学生写法:练习→寻找简单的一般性的方法→练习巩固。
三、重点、难点、疑点及解决办法
1.重点:把加减混合运算算式理解为加法算式。
2.难点:把省略括号和的形式直接按有理数加法进行计算。
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7.
师:(1)读出这两个算式。
(2)“+、-”读作什么?是哪种符号?
“+、-”又读作什么?是什么符号?
学生活动:口答教师提出的问题。
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算。
【教法说明】为了进行有理数的加减混合运算,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础。这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作。
师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的有理数的加减混合运算。(板书课题2.7有理数的加减混合运算(1))
教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成。
(二)探索新知,讲授新课
1.讲评(-9)+(-6)-(-11)-7.
(1)省略括号和的形式
师:看到这个题你想怎样做?
学生活动:自己在练习本上计算。
教师针对学生所做的方法区别优劣。
【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算……这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法。
师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7.
提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成……
学生活动:先自己练习尝试用两种读法读,口答(教师纠正).
【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。
巩固练习:(出示投影1)
1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来。
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)+--.
2.判断
式子-7+1-5-9的正确读法是。
A.负7、正1、负5、负9;
B.减7、加1、减5、减9;
C.负7、加1、负5、减9;
D.负7、加1、减5、减9;
学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答。
【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法。
2.用加法运算律计算出结果
师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加。
-9+6+11-7
=-9-7+6+11.
学生活动:按教师要求口答并读出结果。
巩固练习:(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
学生活动:讨论后回答。
【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点。
师:-9-7+6+11怎样计算?
学生活动:口答
[板书]
-9-7+6+11
=-16+17
=1
巩固练习:(出示投影3)
1.计算(1)-1+2-3-4+5;
(2).
2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
学生活动:四个同学板演,其他同学在练习本上做。
【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。
师小结:有理数加减法混合运算的题目的步骤为:
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算。
(三)反馈练习
(出示投影4)
计算:(1)12-(-18)+(-7)-15;
(2).
学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的。
【教法说明】这两个题目是本节课的重点。采用测验的方式来达到及时反馈。
(四)归纳小结
师:1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法?
学生活动:口答。
【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。
八、随堂练习
1.把下列各式写成省略括号的和的形式
(1)(-5)+(+7)-(-3)-(+1);
(2)10+(-8)-(+18)-(-5)+(+6).
2.说出式子-3+5-6+1的两种读法。
3.计算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
九、布置作业
(一)必做题:1.计算:(1)-8+12-16-23;
(2);
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当时,,,哪个最大,哪个最小?
(2)当时,,,哪个最大,哪个最小?
十、板书设计
随堂练习答案
1.(1)-5+7+3-1;(2)10-8-18+5+6.
2.负3加5减6加1或负3、5、负6、1的和。
3.(1)-4;(2)-10.2;(3)-.
作业 答案
(一)必做题:1.(1)-35;(2);(3)-41;(4)-6.3
有理数的加减混合运算(二)
教学目标
让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。
教学重点和难点
重点:加减运算法则和加法运算律。
难点:省略加号与括号的代数和的计算。
课堂教学过程 设计
一、从学生原有认知结构提出问题
什么叫代数和?说出-6+9-8-7+3两种读法。
二、讲授新课
1.计算下列各题:
2.计算:
(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;
(7)-6-8-2+3.54-4.72+16.46-5.28;
3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:
(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;
(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;
(9)(a-c)-(b-d);(10)a-c-b+d.
请同学们观察一下计算结果,可以发现什么规律?
a-(b+c)=a-b-c;
a-(b+c+d)=a-b-c-d;
a-(b-d)=a-b+d;
(a+b)-(c+d)=a+b-c-d;
(a-c)-(b-d)=a-c-b+d.
括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。
4.用较简便方法计算:
(4)-16+25+16-15+4-10.
三、课堂练习
1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:
(1)两个数相加,和一定大于任一个加数。
(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数。
(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号。
(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和。
(5)两数差一定小于被减数。
(6)零减去一个数,仍得这个数。
(7)两个相反数相减得0.
(8)两个数和是正数,那么这两个数一定是正数。
2.填空题:
(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______.
(2)若a<0,那么a和它的相反数的差的绝对值是______.
(3)若|a|+|b|=|a+b|,那么a,b的关系是______.
(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.
(5)-[-(-3)]=______,-[-(+3)]=______.
这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化。
四、作业
1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:
(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.
2.分别根据下列条件求代数式x-y-z+w的值:
(1)x=-3,y=-2,z=0,w=5;
(2)x=0.3,y=-0.7,z=1.1,w=-2.1;
3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:
(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.
4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?
(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?
5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例。
(1)若a,b同号,则a+b=|a|+|b|.
(2)若a,b异号,则a+b=|a|-|b|.
(3)若a<0、b<0,则a+b=-(|a|+|b|).
(4)若a,b异号,则|a-b|=|a|+|b|.
(5)若a+b=0,则|a|=|b|.
6.计算:(能简便的应当尽量简便运算)
课堂教学设计说明
1.本课时是习题课。通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能。讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2.关于“去括号法则”,只要求学生了解,并不要求追究所以然。
七年级数学上册有理数的加减混合运算教案 篇二
教学目标
1、知识与技能
理解有理数加减法可以互相转化,能把有理数的加减混合运算统一为加加法运算,灵活应用运算律进行运算。
2、过程与方法
经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题和解决问题的能力。
3、情感态度与价值观
体会数学与现实生活的联系,提高学生学习数学的兴趣。
重点:有理数加减法统一为加法运算,掌握有理数加减混合运算。
难点:省略括号和加号的加法算式的运算方法。
关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的有理数的加法形式。
教学过程:
一、复习提问
1、叙述有理数的加法、减法法则。
2、计算。
(1)(-8)+(-6) (2)(-8)-(-6) (3)8-(-6) (4)(-8)-6 (5)5-14
二、新授
我们又已经学习了有理数加、减法的运算,今天我们来研究怎么样进行有理数的加减混合运算。
例1、计算:(-20)+(+3)-(-5)-(+7)
分析:这个式子中有加法,也有减法,可以按照运算顺序,从左到右逐一加以计算,也可以用有理数的减法法则,把它改为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。
解:(-20)+(+3)-(-5)+(-7)
=(-20)+(+3)+(+5)+(-7)
=-19
把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。
归纳:加减混合运算可以统一为加法运算。式子(-20)+(+3)+(+5)-(+7)是-20,+3,+5,-7这四个数的和,为了书写简单,可以省略式子中的括号,把它写为:-20+3+5-7。这个式子读作“负20、正3、正5、负7”或读作“负20加3加5减7”。
例1的运算过程也可简写为:
(-20)+(+3)-(-5)-(+7)
=(-20)+(+3)+(+5)+(-7)(加减法统一为加法)
=-20+3+5-7 (省略式子中的括号和括号前面的加号)
=-20-7+3+5 (加法交换律交换时,要连同符号一起交换)
=-27+8 (利用结合律进行同号两数相加)
=-19 (异号两数相减)
让学生正确理解“-”号含义,“-”号具有双重含义,减号,负号。如2-7中“-”号可以理解为负号,读作正2、负7的和,也可以理解为减号,读作2减去7。具体选用哪种含义,要结合具体情况而定,如-2-7中,前一个“-”显然只能作负号,而后一个“-”则可看作负号,也可看作减号。但“-”号只能一用,即一个“-”号视为某种含义后,就不能再具备另一个含义了,不能一号两用。如-2-5理解为-2减去-5,就犯了“-号两用”的错误了。
三、巩固练习
课本第24页练习
四、课堂小结
有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:
1、凡相加是整数的。,可以先加;
2、分母相同或易于通分的分数相结合;
3、有互为相反数可以互相抵消的,先相加;
4、正、负数分别相加。总之要认真观察,灵活运用运算律。
五、作业布置
课本第25页至第26号习题第5、6、13题
课后反思:
有理数的加减混合运算只讲了一道例题,至于小结的2、3、4这三点在下一节课中还要举例说明,就学生练习的情况来看,大多数学学生掌握得还不错,只是仍然有小部分同学在运算或运用交换律时把符号弄错。应加强这方面的练习。
有理数的加减混合运算 篇三
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算。
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2.关于“去括号法则”,只要学生了解,并不要求追究所以然。
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
第 1 2 3 页
有理数的加减混合运算 篇四
有理数的加减混合运算
【【同步达纲练习】
1.选择题:
(1)把-2-(+3)-(-5)+(-4)+(+3)写成省略括号和的形式,正确的是( )
a.-2-3-5-4+3 b.-2+3+5-4+3
c.-2-3+5-4+3 d.-2-3-5+4+3
(2)计算(-5)-(+3)+(-9)-(-7)+ 所得结果正确的是( )
a.-10 b.-9 c.8 d.-23
(3)-7,-12,+2的代数和比它们的绝对值的和小( )
a.-38 b.-4 c.4 d.38
(4)若 +(b+3)2=0,则b-a- 的值是( )
a.-4 b.-2 c.-1 d.1
(5)下列说法正确的是( )
a.两个负数相减,等于绝对值相减
b.两个负数的差一定大于零
c.正数减去负数,实际是两个正数的代数和
d.负数减去正数,等于负数加上正数的绝对值
(6)算式-3-5不能读作( )
a.-3与5的差 b.-3与-5的和
c.-3与-5的差 d.-3减去5
2.填空题:(4′×4=16′)
(1)-4+7-9=- - + ;
(2)6-11+4+2=- + - + ;
(3)(-5)+(+8)-(+2)-(-3)= + - + ;
(4)5-(-3 )-(+7)-2 =5+ - - + - .
3.把下列各式写成省略括号的和的形式,并说出它们的两种读法:(8′×2=16′)
(1)(-21)+(+16)-(-13)-(+7)+(-6);
(2)-2 -(- )+(-0.5)+(+2)-(+ )-2.
4.计算题(6′×4=24′)
(1)-1+2-3+4-5+6-7;
(2)-50-28+(-24)-(-22);
(3)-19.8-(-20.3)-(+20.2)-10.8;
(4)0.25- +(-1 )-(+3 ).
5.当x=-3.7,y=-1.8,z=-1.5时,求下列代数式的值(5′×4=20′)
(1)x+y-z; (2)-x-y+z; (3)-x+y+z; (4)x-y-z.
【素质优化训练】
(1) (-7)-(+5)+(+3)-(-9)=-7 5 3 9;
(2)-(+2 )-(-1 )-(+3 )+(- )
=( 2 )+( 1 )+( 3 )+( );
(3)-14 5 (-3)=-12;
(4)-12 (-7) (-5) (-6)=-16;
(5)b-a-(+c)+(-d)= a b c d;
2.当x= ,y=- ,z=- 时,分别求出下列代数式的值;
(1)x-(-y)+(-z); (2)x+(-y)-(+z);
(3)-(-x)-y+z; (4)-x-(-y)+z.
3.就下列给的三组数,验证等式:
a-(b-c+d)=a-b+c-d是否成立。
(1)a=-2,b=-1,c=3,d=5;
(2)a=23 ,b=-8,c=-1 ,d=1 .
4.计算题
(1)-1-23.33-(+76.76);
(2)1-2*2*2*2;
(3)(-6-24.3)-(-12+9.1)+(0-2.1);
(4)-1+8-7
【生活实际运用】
某水利勘察队,第一天向上游走5 千米,第二天又向上游走5 ,第三天向下游走4 千米,第四天又向下游走4.5千米,这时勘察队在出发点的哪里?相距多少千米?
参考答案:
【同步达纲练习】
1.(1)c;(2)b;(3)d;(4)a;(5)c;(6)c 2.(1)4,(-7),(-9) (2)(-6),(-11),(-4),2; (3)-5,8,2,3; (4)3,7,2;
3.略4.(1)-4; (2)-80; (3)-30.5 (4)-5
5.(1)-4; (2)4; (3)0.4; (4)-0.4.
【素质优化训练】
1.(1)-,+,+; (2)-,+,-,-; (3)+,+; (4)-,+,+; (5)-,+,-,-.
2.(1) (2) (3) (4)-
3.(1) (2)都成立。
4.(1)-
(2)
(3)-29.5
(4)-1 第(4)题注意同号的数、互为相反数先分别结合。
【生活实际运用】
1.上游1 千米
上一篇:有理数的混合运算(1)
下一篇:有理数的混合运算
有理数的加减混合运算 篇五
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算。
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算。
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2.关于“去括号法则”,只要学生了解,并不要求追究所以然。
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
教学设计示例一
(一)
一、素质教育目标
(一)知识教学点
1.了解:代数和的概念。
2.理解:有理数加减法可以互相转化。
3.应用:会进行加减混合运算。
(二)能力训练点
培养学生的口头表达能力及计算的准确能力。
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想。
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算。体现了数学的统一美。
二、学法引导
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题。
2.学生写法:练习→寻找简单的一般性的方法→练习巩固。
三、重点、难点、疑点及解决办法
1.重点:把加减混合运算算式理解为加法算式。
2.难点:把省略括号和的形式直接按有理数加法进行计算。
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片。
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈。
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7.
师:(1)读出这两个算式。
(2)“+、-”读作什么?是哪种符号?
“+、-”又读作什么?是什么符号?
学生活动:口答教师提出的问题。
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算。
【教法说明】为了进行,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础。这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作。
师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的。(板书课题2.7(1))
教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成。
(二)探索新知,讲授新课
1.讲评(-9)+(-6)-(-11)-7.
(1)省略括号和的形式
师:看到这个题你想怎样做?
学生活动:自己在练习本上计算。
教师针对学生所做的方法区别优劣。
【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算……这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法。
师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7.
提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成……
学生活动:先自己练习尝试用两种读法读,口答(教师纠正).
【教法说明】教师根据学生所做的方法,及时指出最具代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力。
巩固练习:(出示投影1)
1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来。
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)+--.
2.判断
式子-7+1-5-9的正确读法是。
A.负7、正1、负5、负9;
B.减7、加1、减5、减9;
C.负7、加1、负5、减9;
D.负7、加1、减5、减9;
学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答。
【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法。
2.用加法运算律计算出结果
师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加。
-9+6+11-7
=-9-7+6+11.
学生活动:按教师要求口答并读出结果。
巩固练习:(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
学生活动:讨论后回答。
【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点。
师:-9-7+6+11怎样计算?
学生活动:口答
[板书]
-9-7+6+11
=-16+17
=1
巩固练习:(出示投影3)
1.计算(1)-1+2-3-4+5;
(2).
2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
学生活动:四个同学板演,其他同学在练习本上做。
【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中。
师小结:有理数加减法混合运算的题目的步骤为:
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算。
(三)反馈练习
(出示投影4)
计算:(1)12-(-18)+(-7)-15;
(2).
学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的。
【教法说明】这两个题目是本节课的重点。采用测验的方式来达到及时反馈。
(四)归纳小结
师:1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法?
学生活动:口答。
【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统。
八、随堂练习
1.把下列各式写成省略括号的和的形式
(1)(-5)+(+7)-(-3)-(+1);
(2)10+(-8)-(+18)-(-5)+(+6).
2.说出式子-3+5-6+1的两种读法。
3.计算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
九、布置作业
(一)必做题:1.计算:(1)-8+12-16-23;
(2);
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当时,,,哪个最大,哪个最小?
(2)当时,,,哪个最大,哪个最小?
十、板书设计
随堂练习答案
1.(1)-5+7+3-1;(2)10-8-18+5+6.
2.负3加5减6加1或负3、5、负6、1的和。
3.(1)-4;(2)-10.2;(3)-.
作业 答案
(一)必做题:1.(1)-35;(2);(3)-41;(4)-6.3
(二)
教学目标
让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。
教学重点和难点
重点:加减运算法则和加法运算律。
难点:省略加号与括号的代数和的计算。
课堂教学过程 设计
一、从学生原有认知结构提出问题
什么叫代数和?说出-6+9-8-7+3两种读法。
二、讲授新课
1.计算下列各题:
2.计算:
(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;
(7)-6-8-2+3.54-4.72+16.46-5.28;
3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:
(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;
(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;
(9)(a-c)-(b-d);(10)a-c-b+d.
请同学们观察一下计算结果,可以发现什么规律?
a-(b+c)=a-b-c;
a-(b+c+d)=a-b-c-d;
a-(b-d)=a-b+d;
(a+b)-(c+d)=a+b-c-d;
(a-c)-(b-d)=a-c-b+d.
括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。
4.用较简便方法计算:
(4)-16+25+16-15+4-10.
三、课堂练习
1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:
(1)两个数相加,和一定大于任一个加数。
(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数。
(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号。
(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和。
(5)两数差一定小于被减数。
(6)零减去一个数,仍得这个数。
(7)两个相反数相减得0.
(8)两个数和是正数,那么这两个数一定是正数。
2.填空题:
(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______.
(2)若a<0,那么a和它的相反数的差的绝对值是______.
(3)若|a|+|b|=|a+b|,那么a,b的关系是______.
(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.
(5)-[-(-3)]=______,-[-(+3)]=______.
这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化。
四、作业
1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:
(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.
2.分别根据下列条件求代数式x-y-z+w的值:
(1)x=-3,y=-2,z=0,w=5;
(2)x=0.3,y=-0.7,z=1.1,w=-2.1;
3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:
(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.
4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?
(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?
5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例。
(1)若a,b同号,则a+b=|a|+|b|.
(2)若a,b异号,则a+b=|a|-|b|.
(3)若a<0、b<0,则a+b=-(|a|+|b|).
(4)若a,b异号,则|a-b|=|a|+|b|.
(5)若a+b=0,则|a|=|b|.
6.计算:(能简便的应当尽量简便运算)
课堂教学设计说明
1.本课时是习题课。通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能。讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。
2.关于“去括号法则”,只要求学生了解,并不要求追究所以然。
《混合运算》教学设计 篇六
【单元教材分析】
关于混合运算,《标准》在1~3年级学段内容标准中没有提出具体要求,4~6年级学段内容标准阐述为:能结合现实素材理解运算顺序,并进行简单的整数四则混合运算(以两步为主,不超过三步)。但考虑到1~3年级学段,探索长方形、正方形的计算公式时,要用到两级混合运算,同时,根据学生的生活经验和知识背景,三年级的学生也能够解决一些需要两步计算的简单问题。所以在本册安排混合运算,主要内容是两级两步运算。这是本套教材第一次以单元形式独立编排混合运算。主要内容包括不带括号的两级混合运算、带括号的两级混合运算和简单的三步(可以两步解答)混合运算等。结合单元内容,还安排了“探索乐园”。
另外五年级以上还要再安排一次,主要学习三步计算问题和运算顺序。本套教材关于混合运算内容的安排有以下特点:第一,同级混合运算结合有关计算单元安排。如,加、减混合运算(包括带小括号的加、减混合运算),都是结合加、减法的计算学习的。第二,在知识内容构建上,打破“先学混合运算的计算方法,再解决应用问题”的传统教材体系,而是让学生在尝试解决问题的过程中理解混合运算的计算顺序。在混合运算的编排和活动设计上,都采取“呈现生活中的实际问题——学生自主尝试解决——试着写成一个算式”的过程来学习的。需要说明的是,学完相应的运算顺序后,再解决简单问题时,不要求学生必须列出综合算式。
【学情分析】
本单元教材是在学生认识了小括号、掌握了带小括号的加减混合运算的基础上学习的。此时的学生已经能够解决一些需要两步计算的简单问题了。这里主要是让学生经历将分步计算改写成混合运算的过程,使其体悟出混合运算的运算顺序。
【单元教学目标】
1.结合现实素材,理解两级混合运算的顺序,会进行两级混合运算的计算。
2.能灵活运用不同的方法解决生活中的简单问题,能进行简单的、有条理的思考。
3.了解同一问题有不同的解决办法,初步学会表达解决问题的大致过程和结果。
4.在解决实际问题的过程中,感受数学运算与思考过程的合理性。
【单元教学重点】
理解两级混合运算的顺序,会进行两级混合运算的计算。
【单元教学难点】
了解同一问题有不同的解决办法,能灵活运用不同的方法解决生活中的简单问题。
第1课时不带括号的两级混合运算(P56~P57)
【课时教材分析】
第1课时(P56~P57),不带括号的两级混合运算。教材编排了两个解决问题的数学活动。活动一,教材呈现了饮料瓶的情境图和一共有多少瓶饮料的问题,让学生用原有的知识和生活经验尝试解决,在交流个性化计算方法的基础上,通过蓝灵鼠的“你能写成一个算式吗?”的问题,指导学生将分步计算的算式改写成一个算式,了解两级混合运算和分步计算的关系。再结合解决问题的过程,说一说改成后的算式怎样计算,理解含有乘、加的混合运算要先算乘法的道理。活动二,教材安排了常见的鞋子价钱问题,放手让学生尝试解决。鼓励学生通过将含有减、除的算式改成一个算式,并自己确定运算顺序进行计算。然后,通过上面的两个活动,引导学生归纳两级混合运算的计算顺序。
【教学目标】
1、在解决实际问题的过程中,经历自主探索,并尝试将分步计算改写成不带括号的两级混合运算的过程。
2、理解两级混合运算的顺序,会进行两级混合运算。
3、在自主解决问题、改写算式等活动中,初步感受混合运算顺序在实际应用中的合理性。
【教学重难点】
正确掌握两级混合运算的顺序。
【课堂实录】
一、出示练习,检查铺垫。
1、教师投影出示下列练习,学生独立完成。
把两个算式合成一个算式
236+254=490490-370=120——————
550-330=220120+220=440——————
2、学生汇报交流,并说说自己的想法。
3、教师卡片出示下列题目,指名说说先算哪一步。
227-291+126119+208-303227-(560-410)
二、创设情境,提出问题。
1、(教师课件出示课本56页的主题图):请同学们仔细观察情景图,说说从图上你都发现了哪些数学信息?
2、生交流,师板书:有3箱饮料,每箱有24瓶,箱外有8瓶。
3、那谁能算一算一共有多少瓶饮料?(师边提问边板书问题:一共有多少瓶饮料?)
4、生自己试着解决问题。
5、指名交流解决问题的方法,并请学生到前面板演。
6、(教师提出蓝灵鼠的问题):谁能试着将两个算式改写成一个算式。
7、生试着在练习本上进行改写,教师巡视并进行相应指导。
8、指名汇报改写后的算式并板演。
9、现在谁来说一说改写后的算式该怎样进行计算?当学生回答出先算乘法后教师要追问:为什么?这一步运算求的是什么?下面该算什么?这里又求的是什么?
10、(教师出示课后练一练第1题的第2道小题40×5-162)同桌讨论一下,如果遇到这道题,你会怎样解决?
11、同桌讨论运算顺序并交流汇报。
12、(教师引导学生比较两个算式):仔细观察这两个算式,在运算顺序方面你发现了什么?它们有什么共同点?
13、生小结:一个算式里,既有乘法又有加、减法,我们应先算乘法。
三、自主探究,解决问题。
1、(教师课件出示例2情境图):请同学们仔细观察这幅图,看看从这幅图上你又了解到了哪些数学信息和要解决的问题?
2、生交流汇报。
3、你能用你所学会的知识,独立解决这个问题吗?
4、生独立在练习本上解决。
5、师:谁来说说你的解决办法?
有理数的混合运算教学反思 篇七
对于有理数的混合运算,关键要把握两点:第一,运算问题;第二,符号问题。如果这两点弄清楚了,对于有理数的混合运算也就基本掌握了。上完这节课后,我感到有优点,也有不足。为了进一步搞好教学,特对这节课做了以下反思总结:举范例,让学生自主学习。加强了对混合运算的认识和了解。首先让学生自主学习弄清有理数的混合运算顺序:加减是第一级运算;乘除是第二级运算;乘方和开方是第三级运算;以及有括号时先算括号里面的。然后给同学们几个混合运算,并提出:你能读出这个式子吗?你能快速找出出它的运算符号吗?你能快速说出它的运算程序吗?然后让学生在组内采取你答我评的方式,使学生既掌握了运算顺序,又培养了学生的语言表达能力,最后再进行运算,比一比谁的计算更快更准确。同时培养了学生的参与意识和竞争意识,并且板演。这样,不仅能更好地激发学习兴趣和热情,更能培养学生发现问题、解决问题的能力。
不足:
1、对于学生出现的问题,老师应再次强调,讲明道理,并进行总结,最后再加强几个同种类型的训练题,效果可能会更好些。
2、对于学生的激励不足。比如在进行24点游戏中,后来陆续得出正确答案的同学也应给予赞扬和鼓励,他们锲而不舍的精神,体现了坚持就是胜利!
3、教学的安排未能更好的结合本班的实际情况,有部分学生对于有理数的混合运算还有疑虑,后期还得加强练习,分批过关。
总之,反思是教师成长的必经之路,只有不断地反思,才能使学生得以成长,教师得以发展,才能再教学上取得更大的进步。
读书破万卷下笔如有神,以上就是众鼎号为大家整理的7篇《有理数的混合运算教学设计》,希望对您有一些参考价值。