首页 > 教师教学 > 教案模板 >

小学数学《倒数的认识》教案【优秀8篇】

众鼎号分享 117661

众鼎号 分享

作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,教案有助于顺利而有效地开展教学活动。写教案需要注意哪些格式呢?下面是众鼎号为大伙儿带来的8篇《小学数学《倒数的认识》教案》,可以帮助到您,就是众鼎号小编最大的乐趣哦。

小学数学《倒数的认识》教案 篇一

教学目标:

1、通过观察、比较、概括、抽象,从本质上理解倒数的意义,并能正确地求一个数的倒数。

2、培养学生的数学思维。

教学重点:理解倒数的意义,求一个数的倒数。

教学难点:从本质上理解倒数的意义。

教学过程:

一、呈现数据,先计算,再观察发现。

1、出示:3/8×8/3 7/15×15/7 5×1/5 0。25×4 2、

计算后,这些数据你发现有什么规律?(学生先独立思考,然后组内交流)

二、交流思辨,抽象概念。

1、汇报。乘积都是1。

2、你能根据上面的观察写出乘积是1的另一个数吗?

3/4×( )=1 ( )×9/7=1

说说你是怎样写得,有什么窍门?

你还能写出像这样乘积是1的两个数吗?不过要写得与众不同!(鼓励学生写出整数、小数) 你是怎样想的?

如0。5、1。7 3、抽象概念,乘积是1的两个数,互为倒数。可以说谁和谁是互为倒数,也可以说谁是谁的倒数。

4、让学生说说上面的数(用两种说法)。

5、是互为倒数的它们的积是1,这两个数有特点吗?仔细观察这些数。

学生讨论:分数的分子分母调了一下位置;

师:那么5×1/5 0。2×5乘积也是1哟!怎么?把整数和小数也化成分数。

6、沟通:分子分母倒一下跟乘积是1有联系吗?

7、现在你对倒数有了怎样的。认识?

三、求一个数的倒数。

1、找一个数的倒数。

5/11的倒数是( ),( )的倒数是4/7,( )和15是互为倒数。

你是怎样找一个数的倒数的?说说你的方法。(从倒数的意义和现象)

2、会找了吗?你能找到下列数的倒数吗?

3/5 4/9 6 7/2 1 1.25 1。2 0

学生独立完成,然后交流。

倒数的认识教学反思 篇二

本节课,我注重了贯穿“激趣导学”的基本思想。首先,用三种途径创设情境以激趣:一是口令游戏创设情境,如叙述“你们是宋老师的好朋友,宋老师是你们的好朋友,宋老师和你们互为好朋友。”;二是借助几幅美丽的倒影图画创设情境;三是通过几个特殊汉字,如“呆”和“杏”、“吴”和“吞”,从中国汉字的结构点引入,既沟通了学科间的联系,又形象地激发了互为倒数学习的兴趣。在此基础上,引导学生通过体验,观察,研究等实践活动,让学生经历提出问题,自探问题,使学生产生疑问,通过自主,合作,探究的方法来解决他们心中的疑惑。一上课就抓住了学生的心。

这节课是一节概念课的教学,什么是倒数呢?乘积是1的两个数叫做互为倒数,学生对于“互为”两个字的理解比较难,是教学中的一个难点。在这节课的教学中,我利用学生的生活体验,利用“教师”和“学生”这一关系的多次转化,在自然中创设情境,让学生在具体的情境中知道什么是“互为老师”,什么是“互为同学”,什么是“互为倒数”,不仅调动了同学们学习的积极性,更重要的是让学生在不知不觉中理解了“互为”的含义,分散了教学的难点。

这节课还注意充分发挥学生的主体作用。如新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生观察互为倒数的两个数的变化规律,得出“求一个数的倒数”的方法。

提倡小组合作是否本课的一个重要特点,在讨论中,老师真正以一个组织者、引导者的身份出现,实现互动对话式教学。在求倒数方法之后,我出示了小组讨论题(以两个同学的争论为载体):引出怎样求一个整数的倒数?1的倒数是几?哪些数可能没有倒数?由此学生展开激烈的讨论交流,整数的倒数就用1除以整数,1的倒数是1,0没有倒数。 “1的倒数为什么是1?”“0为什么没有倒数?” “0没有倒数是因为任数乘0都得0而不可能等于1,且“0作除数无意义。因此,0没有倒数。”

新课程标准中指出既要关注学生的学习结果,又要关注学生的学习过程,更要关注他们在活动过程中所表现出来的情感与态度。在本课中,学生对同伴提出的问题赋予很大的探究热情,比老师直截了当地给予要强烈得多。作为新课程的实施者应更好地保护学生的这种求知欲,保护学生提问的信心,这样才能让我们的课堂更有人情味,更有生气,更有参与性,学生才能真正地脱离教师的疆绳,不总是被教师牵着鼻子走。

这节课中,学生从观察中比较,从比较中发现,从发现中提问“整数有倒数吗?小数有倒数吗?”这是一个从历来顺受到“叛逆”的福音,我们就是要打破这种陈规,把学生置于学习的最高领域,我们应当持积极的态度顺应、保护并提倡学生提问的习惯。并引导学生主动去把握探究的乐趣。只有历经思维磨砺,他们才能深刻体会到其中的挫折、失败、乐趣和成功。

《倒数的认识》这一课内容比较简单,学生容易接受,是在学生已经熟练掌握分数乘法的计算方法的基础上进行教学的,为下章节分数除法教学打好基础。我在备课时考虑到学生情况,改变了以往的教学方式,充分发挥学生的主体作用,创设情境,让学生自主提出问题,自主解决。让学生经历提问、验证、争论、交流等获取知识的过程。让学生经历提出问题、自探问题、应用知识的过程,理解倒数的意义自主总结出求倒数的方法。为了让学生获得充分的经历感知,取得良好的情感体验。

通过本节课的教学,大部分学生能够很好的理解倒数的意义,掌握求一个数的倒数的方法,但有一部分学生对于倒数的认识,可能仅仅是停留在是不是分子分母颠倒这一表面形式上,忽略了两个数的乘积为1这一条件。因此还应在后面分数除法的计算等内容中及时复习以巩固。

倒数的认识教学反思 篇三

在学校举行的教师“课堂大练兵”教学活动中,我上的是《倒数的认识》,现就这节课的整个教学环节做如下反思:

《倒数的认识》是在学习了分数乘法的基础上进行教学的,主要是为后面学习分数除法做准备。核心内容是“倒数的意义和求法”。“倒数的意义”属于概念的教学,我认为,只有让学生关注基础知识本身,让学生在深入剖析“倒数的意义”的过程中,学会数学思考,体会解决问题所带来的成功体验,才能使学习真正成为学生的需要。本节课的教学难度不大,但是因为学生基础太差,所以我在设计教学时力求所有的学生能听得懂,学得进去,尽量引导学生能在交流合作中再现知识发生的过程,提高学生的观察分析和概括归纳的能力。

本节课的优点:

1、复习题合理,紧扣这节课的学习内容,为这节课的学习做了很好的铺垫。

2、学生能深入了解倒数的意义。明白“乘积是1的两个数叫做互为倒数”,理解相互依存的概念。

3、归纳全面,教学紧凑,由简入繁介绍了整数、小数、带分数、分数的倒数;0没有倒数,1的倒数是它本身。

4、丰富练习的形式。在充分利用教材的练习同时,我还适当地补充了练习的内容,使学生在练习中巩固,在练习提高。

本节课的不足:

1、在教学倒数的定义时,对于倒数的相互关系教学不够深入,应该让学生多说。

2、学生活动环节不够,参与太少。

3、在问题导入时提问不够精准,应明确分类条件。

4、小组合作效果不佳,反响不好。

5、知识点归纳留给学生自主完成,教师点拨即可,不要讲太多。

小学数学《倒数的认识》教案 篇四

教学目标:

1、使学生理解倒数的意义,掌握求不同种类数的倒数的方法,并能发现一些规律。

2、培养学生的分析、推理、判断等思维能力,发展学生的思维。

教学重点:理解倒数的意义,会求不同种类数的倒数。

教学难点:熟练正确的求小数、带分数的倒数,发现不同种类数的倒数的一些特征。

教学过程设计:

一、激发兴趣,揭示课题。

1、(投影)这节课老师就要把这里面的奥秘告诉你们,相信你们得知后比老师说得还快。

2、同学们认真观察这些算式,你有什么发现?

板书:乘积是1的两个数

3、你能很快说出乘积是1的两个数吗?你为什么说的这么快?有什么窍门?

板书:分子、分母颠倒位置

4、起名。(师指着分子、分母颠倒位置的两个分数)你能给这样的两个分数起个名吗?

5、根据学生的评价,引出“倒数”一词,板书课题。

(设计说明:通过师生比赛“看谁填得快”这一情境的创设,激发了学生的学习兴趣和强烈的探究欲望。让学生很快说出乘积是1的两个数,并说说有什么窍门,目的是让学生初步感受互为倒数的两个数的特征,即分子、分母颠倒位置。此时让学生给倒数起名,已是水到渠成,同时也让学生获得了积极的情感经验。)

二、探究新知

(一)教学倒数的意义

1、你能根据自己的理解说说怎样的两个数叫互为倒数吗

学生此时回答有两种可能:一种是乘积是1的两个数互为倒数,一种是分子、分母颠倒位置的两个数互为倒数。

3、注重学生的评价,引出并板书倒数的意义:乘积是1的两个数互为倒数。

4、进一步理解意义:在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?请举例说明。

5、(投影)辨析:下面的说法对吗?为什么?

(1)、是倒数。()

(2)、得数为1的两个数互为倒数。()

(设计说明:让学生根据自己的理解说说怎样的两个数叫互为倒数,并找出概念中的关键词语,举例说明对“互为”一词的理解,处处无不显示出学生是学习活动中的主体,教师是学习活动中的组织者和引导者。)

(二)教学倒数的求法

1、通过刚才的学习,我们已经知道了什么是倒数。那你会求一个数的倒数吗?你会求什么数的倒数呢?怎么求的?能举例说明吗?

生:我会求分数的倒数,如,把分子、分母颠倒位置就是,所以的倒数是。

师:是个真分数,这位同学求的是一个真分数的倒数,还有谁能说出几个真分数的倒数的?(师板书三、四个例子)

(设计说明:通过“你会一个数的倒数吗?你会求什么数的倒数?”这一问题,激起了学生思维的涟漪。此时,同学们首先想到的是求一个分数的倒数,教师强调求的是一个真分数的倒数,并让学生再举几个例子,目的是为了后面让学生发现不同种类数的倒数的特征做准备。)

师:真分数有什么特点?那真分数的倒数有什么特征?

板书:真分数的倒数都大于1。

2、求假分数的倒数,研究假分数的倒数的特征。

师:你还会求什么数的倒数?怎么求的?能举例说明吗?

生举三、四个例子。师板书。

师:假分数有什么特点?假分数的倒数有什么特征呢?

组织学生讨论、交流。

板书:假分数的倒数都大于或等于1。

4、求整数的倒数,讨论“0”和“1”的倒数。

继续问“你还会求什么数的倒数?”当学生说会求整数的倒数时,让学生举几个例子说说怎么求的。

师:“1”也是整数,谁会求“1”的倒数的?怎么想的?

板书:1的倒数还是1。

师:有没有哪个整数的倒数你不会求的呢?

组织学生讨论:0为什么没有倒数?

师:仔细观察:整数的倒数有什么特征?

板书:非0、非1的整数的倒数都是分数单位。

追问:那分数单位的倒数呢?(都是整数)

5、求小数、带分数的倒数。

师:你还会求什么数的倒数?怎么求的?能举例说明吗?

学生的回答有两种可能:一是求小数的倒数;二是求带分数的倒数。

(1)、让学生讨论如何求小数的倒数。

学生会想出两种求法:第一种:把小数化成分数,再颠倒分子、分母的位置,继而求出倒数;第二种:根据倒数的意义,用1除以这个小数。

引导比较两种求法,得出第一种方法比较通用。

(2)、让学生讨论如何求带分数的倒数。

(3)出示几个小数(0.15、2.5、1.25等)和几个带分数让学生求出它们的倒数。

(设计说明:人的思维活动往往由简单到复杂的,小学生更是这样。所以在老师提出“你会求什么数的倒数时”,他们首先想到的是怎样求一个分数的倒数,然后在考虑整数的倒数的求法,最后想到小数、带分数倒数的求法。这样层层深入,丝丝入扣,有效的突出了重点,突破了难点。教师教得轻松,学生学得兴趣昂然。)

(三)学生自行总结求倒数的方法。

板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

三、巩固练习

1、呼应开头。现在你知道老师为什么填的这么快了吗?谁愿意在和老师比一次。(投影出示复习题)

2、下面哪两个数互为倒数?(做练习六第二题)

3、辨析(用手势判断对错)。投影出示练习六第5题。

4、谁会填?

(1)×()= ×( )=3×( )=025×( )

(2)×()= ÷()= +()= -()

师:你是根据什么填的?

(设计说明:练习设计,力求扎实而质朴,平淡中透新意。开放题的设计,给学生广阔的思维空间,学生综合运用已学知识解决问题,让课堂教学既有“深度”,又有“温度”。)

四、反思

这节课你有什么收获?印象最深的是什么?

(设计说明:通过回顾,引导学生对本节课学到的知识和方法进行总结,让学生亲身感受到数学学习是有意义的。)

五、课后作业

练习六第6、7题。

倒数的认识教学反思 篇五

《数学课程标准(实验稿)》的第二部分部分课程目标中指出学生的情感目标是:能积极参与数学学习活动,对数学有好奇心和求知欲,在学习活动中获得成功的体验。要实现这一目标我们还要细细地研究数学,你会发现数学它本身亦是有感情的。

一、数学的情感蕴含于教材之中。

这节课中,学生在观察自己所说的数的特点时,都带着浓厚的求知欲来认识倒数,从觉得有趣好玩到给数取名为倒数,这一教材本身就蕴藏着一种魅力,让人想去深入地研究它,了解倒数到底有哪些特征。数学在学生眼里是有血有肉的,是有感情的,再如,“握手”这个环节,学生们理解了必须有“两”才能握手,又快乐的感受到数学就在我们身边。由此,我又联想到在质数和合数这一课中,让学生说说自己的学号,其中2号同学这样说道:“我是2号,2是个双数,好事总是成双的,你看我的中队长标志也是2道杠,多好!如果考试能得第2名的话也不错。我喜欢2,2是我的好朋友。”像这样的例子还有许多,我们应该不断地钻研教材,发掘教材中的数学情感,让负载于教材后的黯淡的感情色彩体现出来。

二、数学的情感体现于生生间的互动。

卡特金说过:“未经过人的积极感情强化和加温的知识,将使人变得冷漠,由于它不能拨动人的心弦,很快就会被人遗忘。”因此作为一名数学教师应想方设法还原数学的感情色彩,让学生对数学产生浓厚持久的兴趣。在本堂课教师紧紧抓住了倒数这个概念中的重点字词,与学生一起展开新知识的探索。在探索的过程中教师的提问精心设计,为学生创设了情境,提供了合作交流的机会,学生的思维和方法得到充分的展示。让学生思维的火花不时受到碰撞,学生之间互相帮助,对问题的解答互相补充,配合默契,从而共同解决了问题,培养了学生的合作能力和听、说、思、辩的能力,还让学生从中体会到了集体智慧的魅力是无穷的,使数学的情感在不知不觉中渗透于学生与学生之间的互动之中。

三、数学的情感体现于师生间的互动

这节课中,教师不再是知识的传授者,而是一个成功的引导者、合作者。如用本年级的数学老师为载体,互说一句话,互说一个数,在相互的合作中学生们不知不觉地进入了学习的状态。再如,在判别0.1111……有没有倒数时,教师既是合作者,又是引导者,引导学生们去回忆、去思考,通过师生间的不断交流合作,顺利成章地感知到循环小数也是有倒数的。整节课中,教师不停地的调动着学生的学习积极性,不断地和学生们合作交流,使他们真正成为学习的主人,清楚地感受到获得知识的全过程,清楚地感受到学习数学的快乐,清楚地感受到成功的喜悦。

数学的数字、运算符号、几何图形、公式、定理等这些数学的构成要素都源于人们的日常生活,它们是带有感情色彩的,我们要善于捕捉他们的闪光之处,让这些蕴涵着的丰富的感情色彩放射出更加绚丽夺目的光芒来。

六年级数学《倒数的认识》教案 篇六

教学内容:

苏教版义务教育教科书《数学》六年级上册第36页例7、练一练,第39页练习六第16~21题。

教学目的要求:

认识倒数的概念,掌握求倒数的方法,能熟练得求一个数的倒数。

教学重点难点:

掌握求倒数的方法,能熟练得求一个数的倒数。

教学过程:

一、导入新课

问:每个算式中两个数相乘的积有什么共同的地方?你还能举几个这样的例子吗?

二、新授

教学例题

(1)出示例7

下面的几个分数中,哪两个数的乘积是1?

(2)学生回答。

(3)引出概念。

乘积是1的两个数互为倒数。例如和互为倒数。可以说是的倒数,是的倒数。

(4)学生举例来说。进行及时的评议。

(5)追问:怎样的两个数互为倒数?为什么要说“互为”倒数?

归纳方法

小组讨论:

观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?

全班交流。

求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

问:5的倒数是几?1的倒数是几?

学生回答,并说原因。

追问:0有倒数吗?为什么?

指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。

除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

教学“练一练”

学生回答。

提醒学生正确地书写格式。

三、巩固练习。

1、做练习六第17题

学生填书上后,集体订正,并说说是怎样想的。

2、做练习六第18题

指名口头回答,选择两题让学生说说思考的过程。

3、做练习六第19题

重点引导学生讨论每一组数的规律。

4、做练习六第21题

5、做思考题

联系倒数的意义想一想,要使三个分数乘积是1,必须符合什么条件?

四、全课总结

这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

五、作业

练习六第20题

板书设计:

(略)

小学数学《倒数的认识》教案 篇七

教材分析:

本课的内容是第十一册第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

2、采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

3、提高学生学习数学的兴趣,发展学生质疑的习惯。

教学重点:知道倒数的意义和会求一个数的倒数

教学难点:1、0的倒数的求法。

教具准备:课件

教学过程:

一、导入

师:上课前啊,老师发现许多同学是结伴来到多媒体教室的,比如说~~~~~~~你们俩是不是好朋友啊?(请点到名字的两名学生分别表述一下两人之间的关系)

师:好朋友是双向的,可以说成“XXXX为好朋友(也可以说XXXX好朋友)

教师找一对儿同桌,让他们也说说相互间的关系。(XXXX为同桌,一起来上数学课)

二、揭示倒数的意义

师:那今天咱们来学点儿什么呢?

1、(课件出示例7)

请学生动手找找哪两个数的乘积是1?

学生回答教师演示。

2、师:你知道吗?像这样的乘积是1的两个数,我们把它称之为互为倒数。(课件展示:乘积是1的两个数互为倒数。)板书课题:倒数的认识。

教师请学生提炼一下,然后板书:乘积是1、两个数、互为倒数

3、举例子说清两数之间的关系。比如3/8和8/3的乘积是1,我们就说3/8和8/3互为倒数。(师板书3/8和8/3互为倒数)

师:还可以怎么说呢?像刚才我们表述朋友、同桌关系一样。

引导学生说:3/8的倒数是8/3;8/3的倒数是3/8。

师:我们能不能说3/8是倒数?“互为”是什么意思呢?你是怎样理解这两个字?

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。

比如5/4和4/5的积是1,我们就说……7/10和10/7的乘积是1,我们就说……(生齐说)

4、请你再举个例子和你的同桌说一说。

(学生活动)

5、师:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。根据对倒数意义的理解你们能不能找出3/5和2/3的倒数呢?

(学生写并汇报师板书。)

三、探索求一个倒数的方法

1、师:我们来进行一个小小的比赛。请你写出更多的乘积是1的任意两个数,看谁写得多。四人一小组,怎么分工呢?(请学生说建议)准备好了吗?一分钟倒计时开始!

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。)

师:这么短的时间内就能写出这么多乘积是1的两个数,真不错。如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个。

2、师:其实我知道大家在刚才的比赛过程中啊,一定有窍门,所以才会写得那么快,那么多,是什么窍门?谁来说说看?

(学生畅所欲言,但是一定不规范。)

教师引导学生观察每组互为倒数的两个数分子和分母的位置发生了什么变化?规范说法。

3、师:正因为分子和分母调换了位置,(师指黑板)相乘时分子分母就可以完全约分,得到乘积是1。所以很快就可以找出一个数的倒数来,对不对?

4、师生一起小结:也就是说求一个数的倒数,只要把分子分母调换位置。(板书)

5、学生自主探索5和1的倒数。

学生先独立思考,在小组交流。

师根据学生的回答及时板书。

6、0的倒数呢?

启发思考,允许讨论。

因为0和任何数相乘都得0,不可能得1。

四、归纳小结

师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个分数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。)

五、巩固练习

1、完成练习十一第一题。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(7/12=12/7)

师:为什么?规范书写,要写清谁是谁的倒数,或谁的倒数是谁。

3、完成练习十一第二题。

4、完成练习十一第三题。

5、完成练习十一第四题。

师:请你仔细观察每组数,你发现了什么?

同桌可以先互相说一说。

应该有的汇报是:

生1:我从第一组中发现真分数的倒数都是假分数(大于1)。

生2:大于1的假分数的倒数都是真分数(小于1)。

生3:几分之一的倒数都是整数。

生4:非0整数的倒数都是几分之一。…………

五、全课总结

今天我们学习了什么?你有什么收获?

认识倒数这一小节,就像是一篇文章里的过渡段一样,既承上又启下,是学习下一章分数除法的必要基础,请同学们课后认真练习,掌握倒数的意义和求一个数的倒数的基本方法,为下一章的学习做好准备。

小学数学《倒数的认识》教案 篇八

教学目标:

1、学生通过观察算式的特点,引出倒数的意义,并能够真正的理解和掌握。

2、学习求一个数的倒数的方法,使学生能够正确地求出一个数的倒数。

3、培养学生的观察能力和概括能力。

教学重点和难点:

1、正确理解倒数的意义及“互为”的含义。

2、正确地求出一个数的倒数。

教学过程设计:

(一)激发兴趣,引出概念

1、投影。哪个同学和老师比赛?谁说得快?

师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?这节课老师就要把这中间的奥秘告诉你们,相信你们得知后比老师说得还快。这节课我们一起学习倒数的认识。(板书课题)

2、同学认真观察每个算式,你发现了什么?同桌互相说一说。指名说。

板书:乘积是1两个数

3、你还能很快说出乘积是1的两个数吗?你为什么说得这么快,有什么窍门吗?

生:两个数分子、分母颠倒位置就可以了。

师:说得好,因此我们把乘积是1的两个数叫做互为倒数。(把板书补充完整)

4、举例说明,什么叫互为倒数?

师:3是倒数这句话对吗?为什么?

你们说得对,谁能说出几组倒数?

同桌互相说,每人说两组。(指名说)

问:怎样判断他们说得是否正确?

生:看这组数的乘积是否是1。如果乘积是1,这两个数是互为倒数;如果乘积不等于1,这两个数不是互为倒数。

5、思考:1的倒数是几?为什么?0有倒数吗?为什么?

板书:1的倒数是1。0没有倒数。

(二)求一个数的倒数

同学们已经掌握了倒数的意义,也能正确地判断出两个数是不是互为倒数。那么怎样找出一个数的倒数呢?

1、出示前面的投影,找特点。

观察互为倒数的两个数有什么特点,把观察到的结果同前后同学交流一下。

问:谁来说说你发现了什么?

生:互为倒数的两个数,是分子、分母交换了位置。

师:你们观察得很仔细。根据这一规律,你们试着做一做下面的题。

学生说老师板书:

3、同学们想一想,怎样求一个数的倒数?前后、左右的同学互相说一说。

谁来给同学们汇报一下?(2~3名)

板书:求一个数( )的倒数,只要把这个数的分子、分母调换位置。

问:老师为什么要空出一些地方?

生:0除外。

问:为什么要加上0除外?(板书:0除外。)

问:你们现在知道一上课时,老师为什么说得那么快了吗?奥秘在哪儿?你们已经知道了方法。如果给你一个数,你能很快写出它的倒数吗?比一比看。

4、课堂练习。

写出下面各数的倒数:

35的倒数是怎么想的?

问:2的倒数是几?10的倒数呢?怎样又对又快地写出一个自然数的倒数呢?

5、写出1、5的倒数,怎样做?

(三)课堂总结

我们学习了哪些知识?倒数的意义是什么?怎样判断两个数是不是互为倒数?怎样求一个数的倒数?还有什么问题?

下面我们一起做几道题,检验一个我们这节课的知识是否真正掌握了。

(四)巩固练习

1、投影。

问:怎么填得这么快,你是根据什么填的?

问:①谁能回答?

②你根据什么填的?

③为什么根据倒数的意义填?

看下一组题:

问:怎么填?根据什么?与(2)有什么不同?

师:所以做题时要认真审题,看清符号,千万不能出审题错误。

2、下面哪两个数互为倒数?(课本24页第2题做在书上,用线连接,投影订正。)

3、判断下面各题。对的举“√”,错的举“×”,并说明理由。

投影出示:

(1)乘积是1的两个数互为倒数。 (√)

(2)2。5和0。4互为倒数。 (√)

师:你们是怎么想的?

生:2。5和0。4乘积是1,所以是对的。

(3)因为1的倒数是1,所以0的倒数是0。 (×)

问:错在哪里?

问:错在何处?

问:这道题错在哪了?

生:乘积是1的两个数互为倒数。这道题是3个数的乘积是1,所以错了。

4、游戏。

每个组第一个同学手里有一块小黑板,上面都有6个数字。每人写一个数的倒数,写完后传给你后面的同学。如果后面同学发现前面的题做错了,你可以改,再做下一题再向后传。最后一名同学做完后迅速把小黑板拿到前面来。哪一组又对又快做完,哪一组就是优胜。

评比表扬优胜,找出谁给前面的同学改了错。

(五)作业

课本24页第3,5,6题。

课堂教学设计说明

1、这节课的设计思想首先从如何激发学生的学习兴趣入手。一上课就采取了师生比赛填空的方法,使学生产生疑问:老师为什么说得那么快?有什么窍门?学生的兴趣一下子起来了,他们迫切地想听完这节课,解决他们心中的疑惑。这样,一上课就抓住了学生的心。在课的最后,又用小组比赛的形式设计练习,把课堂气氛推向了高潮。这样既检查了学生知识的掌握情况,又培养了学生的集体荣誉感。

2、这节课还注意充分发挥学生的主体作用。如,新授一开始,就让学生观察每道算式,找出共同点,引出倒数的意义。而后又让学生自己观察互为倒数的两个数的变化规律得出求一个数的倒数的方法。

以上就是众鼎号为大家整理的8篇《小学数学《倒数的认识》教案》,希望对您的写作有所帮助。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:八年级物理上册教案(优秀6篇)

下一篇:返回列表