首页 > 教师教学 > 教案模板 >

高二数学教案优秀3篇

众鼎号分享 127178

众鼎号 分享

随着社会一步步向前发展,我们可以使用讲话稿的机会越来越多,讲话稿可以起到指引或总结会议,传达贯彻上级精神等作用。那么讲话稿一般是怎么写的呢?下面是众鼎号的小编为您带来的3篇《高二数学教案》,希望能够满足亲的需求。

高二数学教案 篇一

教学目标

巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值。

重点难点

理解二元一次不等式表示平面区域是教学重点。

如何扰实际问题转化为线性规划问题,并给出解答是教学难点。

教学步骤

【新课引入】

我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用。

【线性规划】

先讨论下面的问题

设,式中变量x、y满足下列条件

①求z的值和最小值。

我们先画出不等式组①表示的平面区域,如图中内部且包括边界。点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上。

作一组和平等的直线

可知,当l在的右上方时,直线l上的点满足。

即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t,以经过点的直线,所对应的t最小,所以

在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件。

是欲达到值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的值和最小值问题。

线性约束条件除了用一次不等式表示外,有时也有一次方程表示。

一般地,求线性目标函数在线性约束条件下的值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得值和最小值,它们都叫做这个问题的解。

高二数学教案 篇二

一、教学目标

1.知识与技能

(1)理解流程图的顺序结构和选择结构。

(2)能用文字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

2.过程与方法

学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

3情感、态度与价值观

学生通过动手作图,.用自然语言表示算法,用图表示算法。进一步体会算法的基本思想程序化思想,在归纳概括中培养学生的逻辑思维能力。

二、教学重点、难点

重点:算法的顺序结构与选择结构。

难点:用含有选择结构的流程图表示算法。

三、学法与教学用具

学法:学生通过动手作图,.用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

教学用具:尺规作图工具,多媒体。

四、教学思路

(一)、问题引入 揭示课题

例1 尺规作图,确定线段的一个5等分点。

要求:同桌一人作图,一人写算法,并请学生说出答案。

提问:用文字语言写出算法有何感受?

引导学生体验到:显得冗长,不方便、不简洁。

教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

本节要学习的是顺序结构与选择结构。

右图即是同流程图表示的算法。

(二)、观察类比 理解课题

1、 投影介绍流程图的符号、名称及功能说明。

符号 符号名称 功能说明终端框 算法开始与结束处理框 算法的各种处理操作判断框 算法的各种转移

输入输出框 输入输出操作指向线 指向另一操作

2、讲授顺序结构及选择结构的概念及流程图

(1)顺序结构

依照步骤依次执行的一个算法

流程图:

(2)选择结构

对条件进行判断来决定后面的步骤的结构

流程图:

3.用自然语言表示算法与用流程图表示算法的比较

(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。

解:

算法(自然语言)

①把10赋与r

②用公式 求s

③输出s

流程图

(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

算法:(语言表示)

① 输入X值

②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值

③输出Y的值

流程图

小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

(三)模仿操作 经历课题

1.用流程图表示确定线段A.B的一个16等分点

2.分析讲解例2;

分析:

思考:有多少个选择结构?相应的流程图应如何表示?

流程图:

(四)归纳小结 巩固课题

1.顺序结构和选择结构的模式是怎样的?

2.怎样用流程图表示算法。

(五)练习P99 2

(六)作业P99 1

高二数学教案 篇三

(1)平面向量基本定理的内容是什么?

(2)如何定义平面向量基底?

(3)两向量夹角的定义是什么?如何定义向量的垂直?

[新知初探]

1、平面向量基本定理

条件e1,e2是同一平面内的两个不共线向量

结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2

基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底

[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是的;③基底不,只要是同一平面内的两个不共线向量都可作为基底。

2、向量的夹角

条件两个非零向量a和b

产生过程

作向量=a,=b,则∠AOB叫做向量a与b的夹角

范围0°≤θ≤180°

特殊情况θ=0°a与b同向

θ=90°a与b垂直,记作a⊥b

θ=180°a与b反向

[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°。

[小试身手]

1、判断下列命题是否正确。(正确的打“√”,错误的打“×”)

(1)任意两个向量都可以作为基底。()

(2)一个平面内有无数对不共线的向量都可作为表示该平面内所有向量的基底。()

(3)零向量不可以作为基底中的向量。()

答案:(1)×(2)√(3)√

2、若向量a,b的夹角为30°,则向量—a,—b的夹角为()

A、60°B、30°

C、120°D、150°

答案:B

3、设e1,e2是同一平面内两个不共线的向量,以下各组向量中不能作为基底的是()

A、e1,e2B、e1+e2,3e1+3e2

C、e1,5e2D、e1,e1+e2

答案:B

4、在等腰Rt△ABC中,∠A=90°,则向量,的夹角为XXXXXX。

答案:135°

用基底表示向量

[典例]如图,在平行四边形ABCD中,设对角线=a,=b,试用基底a,b表示,。

[解]法一:由题意知,==12=12a,==12=12b。

所以=+=—=12a—12b,

=+=12a+12b,

法二:设=x,=y,则==y,

又+=,—=,则x+y=a,y—x=b,

所以x=12a—12b,y=12a+12b,

即=12a—12b,=12a+12b。

用基底表示向量的方法

将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止;另一种是通过列向量方程或方程组的形式,利用基底表示向量的性求解。

[活学活用]

如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,=a,=b。试以a,b为基底表示。

解:∵AD∥BC,且AD=13BC,

∴=13=13b。

∵E为AD的中点,

∴==12=16b。

∵=12,∴=12b,

∴=++

=—16b—a+12b=13b—a,

=+=—16b+13b—a=16b—a,

=+=—(+)

=—(+)=—16b—a+12b

=a—23b。

以上内容就是众鼎号为您提供的3篇《高二数学教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:幼儿园中班音乐活动小雨沙沙沙教案【最新4篇】

下一篇:返回列表