首页 > 学生学习 > 学习总结 >

最新2022高一数学知识点总结归纳通用9篇

众鼎号分享 51200

众鼎号 分享

高中数学知识点总结 篇一

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1)元素的确定性;

2)元素的互异性;

3)元素的无序性。

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}

1)用拉丁字母表示集合:A={我校的篮球队员}B={12345}。

2)集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_或N+整数集Z有理数集Q实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A。

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

4、集合的分类:

1)有限集含有有限个元素的集合。

2)无限集含有无限个元素的集合。

3)空集不含任何元素的集合例:{x|x2=—5}。

二、集合间的基本关系

1、“包含”关系子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA。

2、“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={x|x2—1=0}B={—11}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B。

①任何一个集合是它本身的子集。AA

②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)

③如果ABBC那么AC

④如果AB同时BA那么A=B

3、不含任何元素的集合叫做空集,记为Φ。

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算

1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集。

记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。

3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作:CSA即CSA={x?x?S且x?A}。

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。

高中数学知识点总结 篇二

一、圆及圆的相关量的定义

1、平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫

做直径。

3、顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

6、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法

圆--⊙ 半径—r 弧--⌒ 直径—d

扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)

1、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

2、圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定

理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5、一条弧所对的圆周角等于它所对的圆心角的一半。

6、直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7、不在同一直线上的3个点确定一个圆。

8、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

10、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

外离P>R+r;外切P=R+r;相交R-r

三、有关圆的计算公式

1、圆的周长C=2πr=πd

2、圆的面积S=s=πr?

3、扇形弧长l=nπr/180

4、扇形面积S=nπr? /360=rl/2

5、圆锥侧面积S=πrl

四、圆的方程

1、圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2、圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

高中数学知识点总结 篇三

一、集合、简易逻辑

1、集合;

2、子集;

3、补集;

4、交集;

5、并集;

6、逻辑连结词;

7、四种命题;

8、充要条件。

二、函数

1、映射;

2、函数;

3、函数的单调性;

4、反函数;

5、互为反函数的函数图象间的关系;

6、指数概念的扩充;

7、有理指数幂的运算;

8、指数函数;

9、对数;

10、对数的运算性质;

11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)

1、数列;

2、等差数列及其通项公式;

3、等差数列前n项和公式;

4、等比数列及其通顶公式;

5、等比数列前n项和公式。

四、三角函数

1、角的概念的推广;

2、弧度制;

3、任意角的三角函数;

4、单位圆中的三角函数线;

5、同角三角函数的基本关系式;

6、正弦、余弦的诱导公式;

7、两角和与差的正弦、余弦、正切;

8、二倍角的正弦、余弦、正切;

9、正弦函数、余弦函数的图象和性质;

10、周期函数;

11、函数的奇偶性;

12、函数的图象;

13、正切函数的图象和性质;

14、已知三角函数值求角;

15、正弦定理;

16、余弦定理;

17、斜三角形解法举例。

五、平面向量

1、向量;

2、向量的加法与减法;

3、实数与向量的积;

4、平面向量的坐标表示;

5、线段的定比分点;

6、平面向量的数量积;

7、平面两点间的距离;

8、平移。

六、不等式

1、不等式;

2、不等式的基本性质;

3、不等式的证明;

4、不等式的解法;

5、含绝对值的不等式。

七、直线和圆的方程

1、直线的倾斜角和斜率;

2、直线方程的点斜式和两点式;

3、直线方程的`一般式;

4、两条直线平行与垂直的条件;

5、两条直线的交角;

6、点到直线的距离;

7、用二元一次不等式表示平面区域;

8、简单线性规划问题;

9、曲线与方程的概念;

10、由已知条件列出曲线方程;

11、圆的标准方程和一般方程;

12、圆的参数方程。

八、圆锥曲线

1、椭圆及其标准方程;

2、椭圆的简单几何性质;

3、椭圆的参数方程;

4、双曲线及其标准方程;

5、双曲线的简单几何性质;

6、抛物线及其标准方程;

7、抛物线的简单几何性质。

九、直线、平面、简单何体

1、平面及基本性质;

2、平面图形直观图的画法;

3、平面直线;

4、直线和平面平行的判定与性质;

5、直线和平面垂直的判定与性质;

6、三垂线定理及其逆定理;

7、两个平面的位置关系;

8、空间向量及其加法、减法与数乘;

9、空间向量的坐标表示;

10、空间向量的数量积;

11、直线的方向向量;

12、异面直线所成的角;

13、异面直线的公垂线;

14、异面直线的距离;

15、直线和平面垂直的性质;

16、平面的法向量;

17、点到平面的距离;

18、直线和平面所成的角;

19、向量在平面内的射影;

20、平面与平面平行的性质;

21、平行平面间的距离;

22、二面角及其平面角;

23、两个平面垂直的判定和性质;

24、多面体;

25、棱柱;

26、棱锥;

27、正多面体;

28、球。

十、排列、组合、二项式定理

1、分类计数原理与分步计数原理;

2、排列;

3、排列数公式;

4、组合;

5、组合数公式;

6、组合数的两个性质;

7、二项式定理;

8、二项展开式的性质。

十一、概率

1、随机事件的概率;

2、等可能事件的概率;

3、互斥事件有一个发生的概率;

4、相互独立事件同时发生的概率;

5、独立重复试验。

必修一函数重点知识整理

1、函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(—x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3、函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;

4、函数的周期性

(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5、方程k=f(x)有解k∈D(D为f(x)的值域);

6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7、(1)(a>0,a≠1,b>0,n∈R+);

(2)l og a N=(a>0,a≠1,b>0,b≠1);

(3)l og a b的符号由口诀“同正异负”记忆;

(4)a log a N= N(a>0,a≠1,N>0);

8、判断对应是否为映射时,抓住两点:

(1)A中元素必须都有象且唯一;

(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10、对于反函数,应掌握以下一些结论:

(1)定义域上的单调函数必有反函数;

(2)奇函数的反函数也是奇函数;

(3)定义域为非单元素集的偶函数不存在反函数;

(4)周期函数不存在反函数;

(5)互为反函数的两个函数具有相同的单调性;

(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。

11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13、恒成立问题的处理方法:

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解。

拓展阅读:高中数学复习方法

1、把答案盖住看例题

例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。

所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。

经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。

2、研究每题都考什么

数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。

3、错一次反思一次

每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。

学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。

4、分析试卷总结经验

每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

高中数学知识点全总结 篇四

一、求动点的轨迹方程的基本步骤

⒈建立适当的坐标系,设出动点M的坐标;

⒉写出点M的集合;

⒊列出方程=0;

⒋化简方程为最简形式;

⒌检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

-直译法:求动点轨迹方程的一般步骤

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高中数学知识点总结 篇五

一、圆及圆的相关量的定义

1、平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫

做直径。

3、顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

6、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法

圆--⊙ 半径—r 弧--⌒ 直径—d

扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)

1、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

2、圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定

理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5、一条弧所对的圆周角等于它所对的圆心角的一半。

6、直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7、不在同一直线上的3个点确定一个圆。

8、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

10、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

外离P>R+r;外切P=R+r;相交R-r

三、有关圆的计算公式

1、圆的周长C=2πr=πd

2、圆的面积S=s=πr?

3、扇形弧长l=nπr/180

4、扇形面积S=nπr? /360=rl/2

5、圆锥侧面积S=πrl

四、圆的方程

1、圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2、圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

五、圆与直线的位置关系判断

平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

讨论如下2种情况:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离

(2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴)

将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2

令y=b,求出此时的两个x值x1,x2,并且我们规定x1

当x=-C/Ax2时,直线与圆相离

当x1

当x=-C/A=x1或x=-C/A=x2时,直线与圆相切

圆的定理:

1、不在同一直线上的三点确定一个圆。

2、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧

推论1.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

推论2.圆的两条平行弦所夹的弧相等

3、圆是以圆心为对称中心的中心对称图形

4、圆是定点的距离等于定长的点的集合

5、圆的内部可以看作是圆心的距离小于半径的点的集合

6、圆的外部可以看作是圆心的距离大于半径的点的集合

7、同圆或等圆的半径相等

8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

9、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等

10、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

11、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角

12、①直线L和⊙O相交 d

②直线L和⊙O相切 d=r

③直线L和⊙O相离 d>r

13、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14、切线的性质定理 圆的切线垂直于经过切点的半径

15、推论1 经过圆心且垂直于切线的直线必经过切点

16、推论2 经过切点且垂直于切线的直线必经过圆心

17、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18、圆的外切四边形的两组对边的和相等 外角等于内对角

19、如果两个圆相切,那么切点一定在连心线上

20、①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-rr)

④两圆内切 d=R-r(R>r) ⑤两圆内含dr)

21、定理 相交两圆的连心线垂直平分两圆的公共弦

22、定理 把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24、正n边形的每个内角都等于(n-2)×180°/n

25、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26、正n边形的面积Sn=pnrn/2 p表示正n边形的周长

27、正三角形面积√3a/4 a表示边长

28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29、弧长计算公式:L=n兀R/180

30、扇形面积公式:S扇形=n兀R^2/360=LR/2

31、内公切线长= d-(R-r) 外公切线长= d-(R+r)

32、定理 一条弧所对的圆周角等于它所对的圆心角的一半

33、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

35、弧长公式 l=a*r a是圆心角的弧度数r>0 扇形面积公式 s=1/2*l*r

高一数学知识点总结归纳 篇六

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数

当K<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

高一数学知识点总结归纳 篇七

方程的根与函数的零点

1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

→www.1126888.com←2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根,函数的图象与坐标轴有交点,函数有零点。

3、函数零点的求法:

(1)(代数法)求方程的实数根;

(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。

4、二次函数的零点:

(1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。

(2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

(3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。

高中数学知识点总结 篇八

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性。

3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2)。用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4

.集合的表示方法:列举法与描述法。

常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R

5、关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表

示某些对象是否属于这个集合的方法。6、集合的分类:

(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合

(3).空集不含任何元素的集合例:{x|x2=-5}=Φ

二、集合间的基本关系

1、“包含”关系—子集注意:A?B有两种可能

(1)A是B的一部分,;

(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?

2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。即A?A

②如果A?B,且A?B那就说集合A是集合B的真子集,记作A B(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3、不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。

记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}。

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}。

3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,看作一个全集。通常用U来表示。

(3)性质:

⑴CU(CUA)=A

⑵(CUA)∩A=Φ

⑶(CUA)∪A=U二、函数的有关概念

合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次方根的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1。

(5)如果函数是由一些基本函数通过四则运算结合而成的。那么,它的定义域是使各部分都有意义的x的值组成的集合。

(6)指数为零底不可以等于零

(7)实际问题中的函数的定义域还要保证实际问题有意义。

2、构成函数的三要素:定义域、对应关系和值域

再注意:

(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:

①表达式相同;

②定义域一致(两点必须同时具备)

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示。

4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应

①集合A、B及对应法则f是确定的;

②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;

③对于映射f:A→B来说,则应满足:

(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;

(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

5、常用的函数表示法:解析法:图象法:列表法:

6、分段函数在定义域的不同部分上有不同的解析表达式的函数。

(1)分段函数是一个函数,不要把它误认为是几个函数;

(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

7.函数单调性

(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间

如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数。区间D称为y=f(x)的单调减区间。

注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;

(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。

(3)。函数单调区间与单调性的判定方法

(A)定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)X注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集。

8.函数的奇偶性

(1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称。

总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.9、函数的解析表达式

(1)。函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域。

(2)。求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。

补充不等式的解法与二次函数(方程)的性质

高考的知识板块 篇九

集合与简单逻辑:5分或不考

函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)

平面向量与解三角形

立体几何:22分左右

不等式:(线性规则)5分必考

数列:17分(一道大题+一道选择或填空)易和函数结合命题

平面解析几何:(30分左右)

计算原理:10分左右

概率统计:12分----17分

复数:5分

以上内容就是众鼎号为您提供的9篇《最新2022高一数学知识点总结归纳》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:高三常用的数学公式总结4篇

下一篇:返回列表