人教版六年级下册数学教案【优秀9篇】
作为一名为他人授业解惑的教育工作者,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。我们应该怎么写教案呢?众鼎号为朋友们整理了9篇《人教版六年级下册数学教案》,希望能够满足亲的需求。
人教版六年级数学下册教案 篇一
一、教学内容:
人教版六年级下册《比例尺》。
二、教学目标:
1、使学生理解比例尺的意义,掌握求比例尺的方法,并能用以解决简单的求比例尺的实际问题。
2、通过小组合作研讨,实践操作,培养学生的合作意识和创新思维能力。
3、体验数学与生活的联系,培养用数学眼光观察生活的习惯。
三、教学重点:
理解比例尺的意义。
四、教学难点:
掌握求比例尺的方法,并能熟练解答比例尺的有关问题。
五、教法要素:
1、已有的知识和经验:
﹙1﹚比的意义
﹙2﹚化简比
2、原型:
﹙1﹚分别画出5厘米和10米长的线段。
﹙2﹚插图内容:中国地图、机器零件图。
﹙3﹚例1将线段比例尺改写成数值比例尺。
3、探究的问题:
﹙1﹚为什么要确定图上距离与实际距离的比?什么叫比例尺?
﹙2﹚线段比例尺怎样改写成数值比例尺?
﹙3﹚怎样求一幅图的比例尺?
六、教学过程:
(一)情境导入
1脑筋急转弯
北京到上海的距离是1200千米,可是一只蚂蚁从北京到上海只用5秒钟,这是为什么?
生:它是在地图上爬的
出示一幅中国地图引出图上距离和实际距离。
2、让学生画一条长5厘米的线段。﹙学生很快画完﹚
3、再画一条长10米的线段。﹙学生迟疑﹚
师:你有什么疑问吗?
生:本子没有那么长,画不出来。
师:那该怎么办呢?
小组讨论,然后在练习本上画一画
组织汇报交流,让学生说说自己画的线段是多少厘米,它是把10米长的线段进行怎样变化得到的。
师:由于你们的标准不一样,因此大家画的`线段长度不一样,所以画图时应该有个统一的标准,这个标准就叫比例尺,今天我们就来研究比例尺的内容,板书:比例尺
二)探究与解决
1、探究比例尺的意义
(1)阅读课本53页上面的内容
(2)你认为什么叫比例尺?
让生说出自己画图的标准即比例尺,并分别说出1:100和1:200的意思。再用自己的语言叙述什么叫比例尺。
师:一幅图的图上距离与实际距离的比,叫做这幅图的比例尺。
板书:图上距离:实际距离=比例尺﹙或分数形式的比例尺﹚
2、认识数值比例尺和线段比例尺
师:有关比例尺的知识在生活中有很多的用处。
﹙1﹚出示:标有数值比例尺的中国地图
让生说出比例尺1:100000000的意思。﹙当学生回答出图上1厘米表示实际距离100000000厘米。师可引导学生说出也就是图上1厘米表示实际距离1000千米。﹚
﹙2﹚出示:机器零件图
说出图中的2:1表示什么意思。﹙图上2厘米表示实际距离1厘米,由于机器零件较小,需要把实际尺寸扩大。﹚
师:像1:100、1:100000000、2:1…这些比例尺有个特点,前项或后项都是1。为什么不是2或3或其他数呢?﹙生…﹚为了计算方便,一般都把前项或后项写成是1的比。像这样用数字比的方式表示的比例尺我们把它叫做数值比例尺。
﹙3﹚出示:标有线段比例尺的北京市地图
让生讨论线段比例尺表示的意思,并介绍线段比例尺。
过渡:那怎样将线段比例尺改写成数值比例尺呢?
3、线段比例尺改写成数值比例尺
学习例1:小组的同学互相讨论尝试改写。师板书例1。
师:谁能说说改写时要注意什么?
师生共同小结:
(1)图上距离与实际距离的单位不同,要把不同单位化成相同单位,50千米改写成用厘米作单位的量时,50后面应补5个0
比例尺是一个比,不带单位名称
(3)比的前项为1。
过渡:通过刚才的学习,我们认识了什么叫比例尺,还知道了有数值比例尺和线段比例尺,那你知道怎么算比例尺吗?
4、完成53页“做一做”
学生试做后,小组内交流做法。
全班交流,总结方法。﹙首先依据比例尺的意义确定比例尺的前项和后项,写出比,图上距离与实际距离的位置不要写错;前后项单位名称要统一;最后化简比,变成前项是1的比。﹚
(三)训练与应用
1、我会判断
﹙1﹚比例尺是一种测量长度的尺子。﹙﹚
﹙2﹚一幅图的比例尺是80:1,表示把实际距离扩大80倍。﹙﹚
﹙3﹚比例尺的后项一定比前项大。﹙﹚
2、完成练习十第1、2题
学生完成后,让生说一说是怎样想的。
3、完成练习十第3题
学生完成后,让生说说自己的想法。并观察这个比例尺是将实际距离扩大。
(四)小结与提高
引导学生谈谈本节课的收获并对自己的学习表现进行评价。
六年级下册数学教案 篇二
教材说明
综合应用“合理存款”是在完成了第六单元“百分数”的教学之后安排的,旨在让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识,并综合运用这些相关知识解决实际问题。通过这个活动,一方面可以使学生更多地接触实际生活中的百分数,认识到数学应用的广泛性;另一方面可以促使学生了解教育储蓄、国债等相关知识,培养学生的投资意识。
“合理存款”活动共由以下四个部分组成。
1.明确问题。
本活动主要围绕:“妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益?”这一问题展开的。该问题中蕴含着几个很关键的信息:本金、可存款年限以及资金用途。
2.收集信息。
明确问题后,需要收集与该问题相关的信息。教材中呈现了通过去银行咨询以及查阅相关规定的方式获得的信息:(1)人民币储蓄存款利率,包括定期整存整取、零存整取、活期利率等。(2)教育储蓄存款免征存款利息所得税,它可存的期限以及相应利率。(3)国债也是免征利息所得税,有三年期和五年期的……
3.设计方案。
根据上述收集到的信息,让学生设计具体的储蓄存款方案。定期储蓄存款的方案可填在第111页第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。
4.选择方案。
从上述各种可行的方案中选取收益,即化的方案进行合理存款,并计算出到期后总共的收入。
教学建议
1.这部分内容可用1课时进行教学。
2.本活动涉及的调查与收集信息工作,老师可要求学生在课前完成。学生可以通过网络、电话以及银行咨询等多种渠道获得人民币储蓄、教育储蓄以及国债的利率和相关规定。
3.课堂教学时,老师可结合要解决的问题帮助学生进一步明确本活动中存款的本金、可存期限以及这笔存款的用途。这可以促使学生整理信息时更有针对性,特别是为设计教育储蓄存款方案提供合理的理由。
4.在明确学生已经收集到必需的信息之后,可让学生以小组合作学习的方式共同设计方案。教材第一张表格中给定期储蓄存款方案预留了三行,实际上学生在具体设计时可能不仅仅只有三种,如一年期存6次,二年期存3次,三年期存2次,先存五年期再存一年期……多种方案。老师对学生设计的不同方案要恰当的给予鼓励,不能不加指导让学生盲目地停留在对定期储蓄存款方案的罗列中。
5.在对教育储蓄和国债方案的设计之前,建议老师先引导学生充分了解和明确收集来的关于教育储蓄和国债的相关信息与规定。例如:(1)2006年发行的凭证式一期国债,三年期利率为3.14%,五年期利率为3.49%。(2)一年期、三年期教育储蓄按开户日同期整存整取定期储蓄存款利率计息,六年期按五年期整存整取定期储蓄存款利率计息;教育储蓄储户凭存折和学校提供的正在接受非义务教育的学生身份证明(以下简称“证明”)一次支取本金和利息,每份“证明”只享受一次优惠。
6.教师启发学生通过讨论逐步认识到,由于教育储蓄和国债都免征利息税,所以相对同期的定期存款,它们的收益会相对较高。但由于国债和教育储蓄对存期和提取具有一定地限制,所以为了实现本笔存款收益化,可能的方案主要有以下几种:
(1)教育储蓄存六年。
(2)先买三年期国债,到期后再买三年期国债。
(3)先买三年期国债,到期后再存三年期教育储蓄。
(4)先买五年期国债,到期后再存一年期教育储蓄。
在连续存款的方案中,连续存款时仍然只存本金一万元,不包括已经获得的利息(具体见下表)。
1.教师请各组同学选派代表,交流本小组选择的收益的方案,并具体算出到期的收入。这里需要说明的是,本活动在设计方案时国债利率均以2006年发行的凭证式一期国债的年限和利率为准,教育储蓄也以当前的规定和利率为准。实际上,国债以及教育储蓄的利率在不同时期可能会有所调整,但无论利率如何变化,方案设计的思路是一致的。教学时老师可根据当时的情况进行具体的调整。
2.教师在与全班同学共同反馈结果后,还可让学生充分讨论,如果自己有钱,想怎样投资,理由是什么,培养学生的投资意识。
人教版六年级数学下册教案 篇三
一、教学目标
(一)知识与技能:使学生认识圆柱的底面、侧面和高,掌握圆柱的基本特征。
(二)过程与方法:
1.让学生经历探索圆柱基本特征的过程,提高学生观察、操作、分析和概括的能力。
2.通过学生自主研究,使学生掌握研究立体几何的一般方法,提高学生学习数学的积极性。
(三)情感态度和价值观:进一步培养学生主动探索精神,发展学生的空间观念,提高学生的。学习兴趣。
二、教学重难点
教学重点:掌握圆柱的基本特征。
教学难点:高的认识。
三、教学准备
教师:课件,长方体模型,圆柱模型。
学生:每生自带一个圆柱形物体,草稿纸。
四、教学过程
(一)复习旧知,引出课题
1.师:同学们,我们学过哪些立体图形?它们各有几个面?这些面是什么形状?生回答。(根据学生回答板书研究方法)动手操作:画、剪、比、量。
2.(课件出示)师:那下面的这些物体你认识吗?它们是什么形状?如果把这些物体的形状画下来会是什么样子的呢?课件演示:从实物图抽象出圆柱图形。
3.小结:上面这些物体的形状都是圆柱体。揭题:今天我们要一起来研究圆柱。(板书课题)
(二)自主学习
学生仔细观察手中的圆柱模型,边看书边思考:
①圆柱的上、下两个面叫做什么?
②用手摸一摸圆柱周围的面,你发现什么?
③圆柱一共有几个面?是哪几个面?
④圆柱两个底面之间的距离叫做什么?在哪里?
及时练习(课件出示):让学生根据圆柱的特点判断下面的图形。
【设计意图】学生通过看一看,摸一摸,找一找,初步了解圆柱的特征,为后面突破难点打下基础。
人教版六年级下册数学教案 篇四
一、游戏导入
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
六年级下册数学教案 篇五
一、教学内容
运用比解决问题。(教材第54页例2)
二、教学目标
1、能运用比的意义解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。
3、掌握按比分配问题的结构特点及解题方法,发展分析、概括能力。
三、重点难点
重点:理解并掌握按比分配问题的特点和解题方法。
难点:根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
教学过程:
一、复习引入
1、师:比的意义是什么?
引导学生回顾比是什么。
2、一盒糖果有50颗,平均分给甲、乙两人,甲、乙两人各得多少颗糖果?他们所得糖果数的比是多少?(课件出示题目)
点名学生回答,回顾平均分的特点。
3、引出新课。
师:这是一道平均分的问题,生活中,很多问题运用到了平均分,但有时为了分配合理,往往需要把一个数量分成不等的几部分,即把一个数量按照一定的比来进行分配。这种方法通常叫按比分配,就是我们今天要学习的比的应用。(板书课题:比的应用)
二、学习新课
教学教材第54页例2。
六年级数学下册教学计划人教版 篇六
一、本班学生情况分析:
本学期继续担任六(1)班的数学教学工作。从上半学年的教学情况来看,六(1)班的学生在数学学习上两极分化比较严重,大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展。基础知识掌握比较牢固,有一定的学习数学的能力。但也有十来个学生基础知识不牢固,上课不认真听讲,不能独立完成学习任务,需要老师督促并辅导。还有一部分比较认真但解决问题的能力较差,只能掌握一些基础知识,稍稍拐个弯就不知所措。本学期重点还是抓好学习上有困难的学生教学,在教学中,面向全体学生,创设愉快情境教学,激发他们的学习动机,进入最佳学习的动态。
二、本册教学内容:
这一册教材包括位置,分数乘法,分数除法,圆,百分数,统计,数学广角和数学实践活动等。
三、教学目标:
1、理解分数乘除法的意义,掌握分数乘除法的计算方法,会进行简单的四则混合运算。
2、理解倒数的意义,掌握求倒数的方法。
3、理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。
4、掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能够正确计算圆的周长和面积。
5、能在方格纸上用数对表示位置,初步体会坐标的思想。
6、理解百分数的意义,比较熟练的进行有关百分数的计算,能够解决有关百分数的简单实际问题。
7、认识扇形统计图,能根据需要选择合适的统计图表示数据。
四、教学重难点:
经历从实际生活中发现问题,提出问题,解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的饿魅力。形成发现生活中的数学的意识,初步形成观察,分析及推理的能力。
五、教学方法及措施:
1、加强基础知识教学,重视发展学生智力和培养学生能力。遵循学生的认知规律,重视学生获取知识的思维过程,通过学生操作观察演示,实验的方法,培养学生创新能力和自主学习能力。
2、教学中对学生进行思想教育。明确学习目的,培养学生学习数学的兴趣。使学生乐于学习,以全面提高全班学生的数学,注重培养和发展学习的空间观念,注重逻辑教学,让学生多实际操作。
人教版六年级数学下册教案 篇七
教学内容:新人教版六年级下册教材第16页综合实践课《生活与百分数》
教学目标:调查银行最新利率,了解利率调整的原因;了解普通储蓄存款和购买国债两种理财方式,知道如何是收益最大,学会理财;了解千分数、万分数的概念;
通过活动更多地接触实际生活中的百分数,体会数学应用的广泛性,提高在生活中发现数学、运用数学的意识和能力;
通过小组合作交流,培养向他人学习,与他人沟通和交流的习惯,提高实践能力。
教学重点:深化百分数的意义和运用,掌握百分数问题的解决办法。
教学难点:强调生活体验和社会实践,培养分析和解决问题的能力。
教学过程:
一、谈话导入
师:同学们喜欢过新年吗?
生:喜欢。
师:为什么呢?
生:因为有许多好吃的。
生:因为有压岁钱。
师:哇,说到压岁钱大家如此开心!那你收到压岁钱之后怎么处理呢?
生:买我喜欢的东西。
生:用来交生活费、学习费用等。
生:交给爸爸妈妈存入银行。
师:你的想法真不错!我们把钱存入银行就是在进行储蓄,而储蓄中的利率和百分数是息息相关的。其实,生活中许多方面都离不开百分数。今天,我们将继续和大家一起来研究生活与百分数。打开幻灯片1,板书课题:生活与百分数。
设计意图:这个环节从学生感兴趣的话题入手,设计了学生们喜闻乐见的情景,吸引学生的注意力,充分让学生在熟悉、亲切的生活背景素材中自然而然地抓住新旧知识的衔接点,启发学生的思维,激发学生内在的学习动力,同时也验证了“数学源于生活,也用于生活”的道理。
二、新授
1、活动一:调查利率,对比利率,了解国家调整利率的原因。
师:昨天,老师给大家布置了一个作业,让同学们去调查一下附近银行整存整取的最新利率,你调查的是哪家银行的利率呢?请拿出活动一的表格跟我们分享一下吧!
生:我调查的是建设银行的利率情况:活期利率是0.30﹪;三个月的利率是1.43﹪;六个月的利率是1.69﹪;一年的利率是1.95﹪;二年的利率是2.73﹪;三年的利率是3.575﹪;五年的利率是3.575﹪
师:打开幻灯片2,谢谢你汇报的如此详细,请坐。调查其它银行利率情况的同学们,你们的结果与他调查的利率相同吗?
生:相同。
师:接下来,请同学们翻开课本第11页,这是20xx年的利率,我们把它和大家调查的最新利率进行对比,请抬头看黑板,为了便于观察,老师把它们放在了一块儿,我们先横向的看看20xx年活期利率与定期利率,你有什么发现呢?20xx年活期利率与定期利率呢?现在如果你去存钱,你会优先考虑活期还是定期呢?我们再纵向的看看20xx年与20xx年相同存期的利率,你又有什么发现呢?打开幻灯片3。
生: 相同存期,利率下调了许多。
师:你非常善于发现问题,真了不起!打开幻灯片4,利率下调,人们可获得的利息减少,人们便不愿把钱存入银行,而是用于各项投资与消费,这样就会促进经济增长;反之,利率上调,人们便会把更多的钱存入银行来换取较大的收益,而不愿去冒投资房地产或炒股的风险。
设计意图:此环节从生活实际入手,让学生调查银行最新的利率,采用学生自主探究为主,教师点拨引导为辅的策略,让学生在生活实例中感知,在积极思辨中发现:银行利率是在动态调整的,每次调整背后一定存在国家经济状况和政策的变化。这样的活动不可能非常深入,但对于学生理解数学在现实生活中的应用价值以及形成在生活中发现数学、运用数学的意识和能力,具有不可忽视的作用。
2、活动二:寻找最大收益方案
师:虽然利率可调,但计算利息的方法却是不变的。那就是:利息=本金×利率×存期(板书在黑板上)。打开幻灯片5。隔壁李阿姨替儿子积攒了20000元压岁钱,李阿姨想存入银行供他六年后上大学,银行给李阿姨提供了二种理财方式,普通储蓄存款和购买国债。请你帮李阿姨想一想,她有几种存款方案?哪种方案六年后的收益最大?老师有3个疑问:李阿姨想存多少钱?存几年?要求是什么?(学生回答,老师板书)
师:第一种理财方式是普通储蓄,普通储蓄和教育储蓄的年利率是相同的,只是教育储蓄没有利息税,但国家从20xx年开始就停止了对普通储蓄收取5﹪的利息税,这样一来,教育储蓄便没有了优势,所以后来取消了教育储蓄这种理财方式。普通储蓄有一年期、二年期、三年期和五年期。相关利率就是大家昨天去银行调查到的利率,打开幻灯片6,现在只选择普通储蓄,如果你是李阿姨,你会怎样存钱呢?
生:2个三年期。
师:你真棒,掌声送给你!马上在副黑板板书:3+3.老师像这样写,大家能看懂吗?(能)好的。
那还有其它不同的存法吗?请6人为小组进行讨论,由各小组长把讨论结果记录在活动二的表中。
生:6个一年期;3个二年期
师:马上板书1+1+1+1+1+1和2+2+2
生:1个五年期+1个一年期;1个二年期+4个一年期
师:马上板书5+1和2+1+1+1+1
生:1个三年期+3个一年期;2个二年期+2个一年期
师:马上板书3+1+1+1和2+2+1+1
若没有学生举手了,老师引导学生补充
师:还可以1个一年期+1个二年期+1个三年期,并快速板书1+2+3同学们请看,老师把大家讨论的8种方案基本上按照次数从大到小的顺序填入了这张表中,唯独这里,为了便于大家的观察,稍微做了一下调整。
以上8种方案,哪一种收益最大呢?我们先来看看存6次和存5次谁的收益更大?我们发现,到第四次,它们的收益相同,实际上我们只需比较1年+1年与2年谁的收益大就可知道结果了。以20000元为例,1年+1年的收益是20000×1.95﹪×1=390(元)
(20000+390)×1.95﹪×1≈398(元)(保留整数)390+398=788(元);2年的收益是20000×2.73﹪×2=1092(元)所以结果是?(学生答)1年+1年的收益<2年的收益。那存5次与存4次谁的收益大呢?(生:存4次)
师:为什么呢?
生:因为1年+1年的收益<2年的收益。
师:你真的很会活学活用,我非常佩服你!那存4次与存3次谁的收益大呢?
生:存3次。
师:对呀!还有哪些能这样比较出收益的大小呢?
生:存4次与存3次。
师:真的是这样,大家看看,剩下的这些方案还能像刚才那样一下就比较出大小吗?
生:不能了。
师:好,那我们就动动手,算一算。请每个小组中,3人列式,3人计算,分工合作,我们比比谁的速度最快?各小组汇报结果,分别是:3459;3809;4035;4520
师:只选择普通储蓄,8种方案中收益最大的是:3+3
那存钱次数与收益之间有没有关系呢?观察得知,学生答,存钱次数越少,收益越大。【设计意图】在这个环节中,学生的任务是学习普通储蓄这种理财方式,通过小组合作,运用前面所学求利息的方法得到了普通储蓄8种方案中收益最大的存法以及存钱次数与收益之间的关系,这为探究下一种理财方式做了铺垫。学生们在这个环节所学到的不仅仅是怎样解题,更重要的是增强了团队意识,体会到同学之间互相学习的优越性。
师:第二种理财方式是购买国债。国债是国家通过向社会筹集资金所形成的债权、债务关系。国债有一年期(现不发行)、三年期和五年期。相关利率如下表,打开幻灯片7,教育储蓄三年期利率是3.575%,国债三年期利率比它高0.425%,国家对国债的发行时间和发行量有严格的限制,不是随时随地都能买到。如果只选国债,可以怎样存钱呢?
生:2个三年期。
师:真厉害!你叫什么名字呢?老师很想认识你!点开活动二的表中,国债3+3。那这种方案的收益是多少呢?请各小组动手算一算,比比谁算得又对又快?
生:5088元。
师:刚才李阿姨分别选择了普通储蓄和国债来存钱,那她可以同时选择普通储蓄和国债来存钱吗?能。大家还记得存钱次数与收益有什么关系吗?学生回答。要让收益最大,你认为李阿姨最好存几次呢?
生:2次。
师:具体存法是?
生:国债1个五年期+普通储蓄1个一年期;国债1个三年期+普通储蓄1个三年期
师:快速点出5+1和3+3因为教育储蓄三年期利率比国债三年期利率少0.425%,所以这种方案的收益小于国债2个三年期的收益,我们将它排除。那我们算一算5+1的收益吧!各小组赶紧行动起来!4896元。
师:只选普通储蓄,只选国债和两种都选这三类,还有其它类不同的方案吗?没有了。现在我们可以发现:李阿姨共有11种存款方案,包括了普通储蓄8种,国债1种,混合2种。其中,让李阿姨收益最大的存法是:国债2个三年期(板书在黑板上)如果买不到国债,我们选择哪种方案呢?普通储蓄:3+3
设计意图:此环节通过解决一个实际问题,引导学生通过各种理财方式的比较,设计合理的存款方案,实际应用数学,学会科学理财,将提高学生的实践能力落到实处。
3.了解千分数和万分数
师:我们已经认识到百分数表示一个数是另一个数的几分之几,你知道千分数表示的意义吗?万分数呢?请看课本第16页,我们一起听听它的介绍。播放课文录音,打开幻灯片8。
设计意图:这一环节采用倾听的方式,一改往日齐读的方法,介绍了千分数和万分数的含义和应用实例,使学生知道当数据之间的比率比较小时,用千分数和万分数表示更方便,进一步拓宽学生视野。
三、实践活动
打开幻灯片9,学了这节课,老师给大家布置一个课外作业:请你给自己的压岁钱设计一种收益最大的方案,供自己六年后上大学,并计算到期后的本息。
设计意图:此练习环节引导学生展开多角度、多层次的比较,将知识迁移到存压岁钱上大学这一问题上,进一步巩固新知,提高数学思维过程。
四、课堂小结
师:这节课同学们通过观察、分析、发现规律,并掌握了用规律解决实际问题,使复杂的问题简单化的学习方法。希望大家运用本节课学到的本领,一直用它来合理规划自己的生活,那么老师相信:二十年、三十年后,我们班一定会出现像马云和李嘉诚那样的财富大亨!打开幻灯片10,下课,谢谢同学们的积极参与与配合,同学们,再见!
设计意图:数学课不仅是知识的传递,更是思想的传递。本节课中渗透的类比、转化等数学思想方法,对学生的后续学习真正受用。
五、板书设计
生活与百分数
利息=本金×利率×存期
20000元 存六年
收益最大:国债2个三年期
普通储蓄:
1年+1年的收益 20000×1.95﹪×1=390(元)
(20000+390)×1.95﹪×1≈398(元)(保留整数)390+398=788(元);
2年的收益 20000×2.73﹪×2=1092(元)
1年+1年的收益<2年的收益
六、教学反思
其实百分数在生活中的运用非常广范,但学生实际接触的却比较少,特别是这节讲银行利率百分数的课,经过深思熟虑之后,最后我选择了“创设情境、导出课题-主动探究、自主建构-灵活应用、拓展延伸”的教学流程。整个教学设计把学生已有的经验和知识自然地融合在一起,让学生在实际生活中学习数学。学生不仅掌握了知识,提高了能力,而且形成了积极的情感、态度和价值观,这也正是新一轮课程改革要追求的一种境界。
人教版六年级数学下册教案 篇八
教学内容:
教材第10页
教学目标:
1、知道纳税的含义和重要意义,理解应纳税额和税率的含义。学会根据具体的税率计算税款。
2、在计算税率的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3、增强学生的法制意识,使每个学生都知道每个公民都有依法纳税的义务。
教学重点:
掌握税额的计算方法。
教学难点:
理解税收时的专有名词,理解税率的含义。
教法学法:
教法:引导阅读、例题讲解、练习巩固。
学法:课前预习、独立思考、合作交流。
教学准备:
多媒体课件
教学过程:
(一)创设情境,引入新课
1、(课件出示教材第10页主题图)同学们,我们的祖国正在蓬勃发展中,为了让祖国更强大,人民生活更美好,国家投入了大量的人力、物力来进行建设,你知道这些钱是哪来的呢?
2. 渗透法制教育:
(1)《宪法》第五十六条规定中华人民共和国公民有依照法律纳税的义务。
(2)《中华人民共和国税收征收管理法》第四条规定法律、行政法规规定负有纳税义务的单位和个人为纳税人。法律、行政法规规定负有代扣代缴、代收代缴税款义务的单位和个人为扣缴义务人。纳税人、扣缴义务人必须依照法律、行政法规的规定缴纳税款、代扣代缴、代收代缴税款。
(3) 《中华人民共和国个人所得税法》
第一条 在中国境内有住所,或者无住所而在境内居住满一年的人,从中国境内和境外取得的所得,依照本法缴纳个人所得税。
【设计意图】通过图片展示,课前信息的收集和交流,引导学生理解依法纳税的意义和重要性。渗透法制教育,引导学生学法、知法、懂法、用法。
(二)结合情境,探索新知
1.理解“税率”的含义(自学教材第10页)
(1)纳税的意义。
(2)根据自己的理解说说什么是纳税?什么是应纳税额?什么是税率?
(3)介绍自己所了解的纳税项目并进行简单介绍。
2.结合实例(www.1126888.com),进一步理解概念,并解决问题。
(1)课件出示教材第10页例3。
一家饭店10月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税多少万元?
①读题,说说“营业额的5%”是什么意思?
这里的5%就是指的是税率。
②学生独立解答。
③集体交流,明确在这种情况下有如下关系成立:
营业额×税率=营业税。
(2)练习:出示教材第10页“做一做”。
李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税。她应缴个人所得税多少元?
①读题,重点引导理解“扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税”这句话的意思。这里3%的税率是所有月工资的3%吗?
②学生独立解决问题。
③集体交流反馈,知道在这种情况下有如下关系成立:
(总收入-免征收部分)×税率=个人所得税
(3)对比两道题,了解税收的算法各不相同,要根据实际情况进行计算。
(三)巩固练习
1、基本练习课件出示教材第14页练习二第6、10两题。
(1)李老师为某杂志审稿,得到300元审稿费。为此她需要按照3%的税率缴纳个人所得税,她应缴纳个人所得税多少元?
(2)小明的爸爸得到一笔3000元的劳务费用。其中800元是免税的,其余部分要按20%的税率缴税。这笔劳务费用一共要缴税多少元?
①学生独立完成。
②集体交流反馈。
③对比两题,看看两种交税方式有什么不同,想想计算时要注意什么。
(四)课堂总结,课外拓展。
1.今天这节课我们学了什么?在解决这类问题时我们要注意什么?
2、课后调查:
问一问爸爸妈妈每月收入是否需要缴纳个人所得税?了解我国对个人所得税的税收规定。
板书设计:
税率
应纳税额与各种收入的比率叫做税率。
应纳税额=营业额×营业税税率
例3:30×5%=1.5(万元)
六年级数学下册教案 篇九
教学目标
1、知识与技能使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,了解常见税种。
2、过程与方法能运用百分数的知识进行有关应纳税额的计算。
3、情感、态度与价值观通过对纳税的认识,增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
学情分析
六年级上册学过了的百分数(一)的知识,对百分数有一定的基础,本节课税率的知识是六年级下册百分数(二)中百分数应用的一种。所以学生接受起来应该不会太困难。
重点难点
教学重点:理解“纳税”“税率”及其相关概念的含义,并会正确计算应纳税额。
教学难点:会正确计算应纳税额和个人所得税,并能灵活解决实际问题。
教学过程
(一)创设情境,引入新课
课件出示:
平时同学们每天上下学,使用的日常交通工具,离不开城市的基础设施;到了假期,很多家庭利用节假日外出旅游,选择不同的出行方式,离不开国家建设的基础设施。让学生知道是谁修建了这些基础设施?(国家)
为了让祖国更繁荣富强,人民生活更幸福美好,国家投入了大量的人力、物力和财力来进行建设。
展示图片:国防、教育、卫生、公共服务机构的维持和基础设施建设等等。国家拿出的这些巨额资金是从哪里来的?
引入今天的课题。(板书:税率)
(二)结合情境,学习新知
国家收入的主要来源之一就是:税收
税收的主要项目分为:增值税、消费税、营业税和个人所得税。
1.理解三个专业术语的含义。
纳税:是根据国家税法的有关规定,按照一定的比率把集体或个人收入的`一部分缴纳给国家。
应纳税额:缴纳的税款叫做应纳税额。
税率:应纳税额与各种收入(如销售额、营业额“”)的比率叫做税率。
(1)举例子理解:
一家饭店10月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税1.5万元。
在这里:收入是()税率是()应纳税额是()
(2)考考你:说出下面每条信息中应纳税额、各种收入和税率分别是多少?
①晨光文具店20xx年全年的销售额是44万元,按销售额的5%缴纳增值税2.2万元。
②长城宾馆20xx年上半年营业额是840万元,按营业额的4%向国家缴纳营业税33.6万元。
③王老师家在20xx年购买了一套售价120万元的两居室商品房,按实际房价的1.5%缴纳购房契税1.8万元。
2.结合实例,进一步理解概念,并解决问题。
(1)出示教材第10页例3。
一家饭店10月份的营业额是30万元。如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税多少万元?
①先读题,再指名说说“营业额30万元”是指什么,“营业额的5%”是什么意思?
②学生独立完成。
③集体交流反馈,并总结出关系式:
应纳税额=收入×税率
(2)练习:
妈妈买了一瓶售价为100元的化妆品,其中消费税大约占25%,妈妈为此支付消费税大约多少元?
(3)介绍个人所得税
个人所得税是一种非常专业的经济学术语,是一种法律规范的总称。
简单的说,个人所得税是国家对本国公民、居住在本国境内的个人的所得和境外个人来源于本国的所得征收的一种所得税。
《中华人民共和国个人所得税税法》于1980年9月10
日公布,是我国建国以来颁布的第一部个人所得税税法。
个人所得税从诞生到现在一共经历了三次修改历程,其中最后一次是在20xx年4月20日的全国人民代表大会上确定的。20xx年9月1日起个人所得税免征额调整至3500元。
(4)个人所得税的求法(出示教材第10页“做一做”。)
李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税,她应缴个人所得税多少元?
①读题,重点引导理解“扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税”这句话的意思。这里3%的税率是所有月工资的3%吗?
②学生独立解决问题
③集体交流反馈,知道如下关系:个人所得税=(总收入-免征收部分)×税率
(5)对比分析练习
①小明的爸爸得到一笔3000元的劳务费用。其中800元是免税的,其余部分要按20%的税率缴税。这笔劳务费用一共要缴税多少元?
②李老师为某杂志社审稿,得到300元审稿费。为此她需要按照3%的税率缴纳个人所得税,她应缴纳个人所得税多少元?
(三)课堂练习
1.填空
(1)缴纳的税款叫做(),应纳税额与各种收入(销售额、营业额“)的比率叫做()。
(2)收入、税率、应纳税额之间的关系是:应纳税额=()×()
(3)某商店去年的营业额是40万元,去年缴纳税款共2万元,则去年的税率是()%。
(4)纳税是每个公民自愿做的事情,想交就交,不想交就可以不交。这句话的说法是()。
2.选择
(1)天津商场四月份的营业额是580万元,按5%的税率缴纳营业税,应缴纳营业税多少万元。列式正确的是()。
A.580×(1-5%)B.580×5%C.580÷5%D.580÷(1-5%)
(2)高经理的月工资是6800元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税,他这个月应缴个人所得税多少元?列式正确的是()。
A.6800×3%B.3500×3%C.(6800-3500)×3%D.6800×(1-3%)
(3)某饭店九月份的营业额是150万元,按规定要缴纳5%的营业税,还要按营业税的7%缴纳城市维护建设税。二月份缴纳的营业税是()万元,二月份缴纳的城市维护建设税是()万元。将正确算式的选项填进括号。
A.150×5%B.150×(1-5%)C.150×5%×7%D.150×(1-5%)×7%
(四)课堂总结
1.今天这节课我们学了什么?
2.课后作业教材第14页,第6、7、8、11题。
教学反思:
税率问题平时学生接触的不多,通过这节课的教学发现学生对这一内容特别感兴趣。本节课的教学主要分为四个环节。第一环节是课题的导入。通过创设问题的情境,很顺利的引入本节课所学的内容,学生们的积极性得到了提高。第二环节是结合情境,学习新知。在教学过程中结合实例,让学生进一步理解纳税,应纳税额和税率等相关专业术语,并掌握应纳税额和个人所得税的计算公式。第三环节是课堂练习。不同梯度的填空题和选择题,增加了学生的学习兴趣,提高了学生的学习效率。第四环节是课堂总结。这节课的重点是使学生明确税率问题与百分数之间的密切联系。通过这节课的学习,学生也感受到很多数学问题都是从生活中来,再运用数学知识去解决这些实际问题,从而体现了数学的应用价值,增进了学生学好数学的信心
读书破万卷下笔如有神,以上就是众鼎号为大家整理的9篇《人教版六年级下册数学教案》,希望对您有一些参考价值。