七年级上册数学优质教学设计优秀6篇
教师可以通过教案选择适当的教学方法、教学策略,采用有效的教学手段,创设良好的教学环境,实施可行的评价方案,从而保证教学活动的顺利进行。它山之石可以攻玉,下面众鼎号为您精心整理了6篇《七年级上册数学优质教学设计》,希望能对您的写作有一定的参考作用。
七年级数学上册教案 篇一
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:
知道什么是正数和负数,理解数0表示的量的意义。
教学难点:
理解负数,数0表示的量的意义。
教学方法:
师生互动与教师讲解相结合。
教具准备:
地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的。0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)
-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地X银行的存折,说出你知道的信息。
巩固提高:练习:课本P5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,X班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
七年级数学上册教案 篇二
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.
二、教学目标分析
(一)知识技能目标
1.目标内容
(1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.
(2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.
2.目标分析
(1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.
(2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.
(二)过程目标
1.目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识.
2.目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.
(三)情感目标
1.目标内容
(1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.
(2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.
2.目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.
四、教学过程分析
(一)教学过程流程图
探究Ⅰ
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1.问题情境
(1) 多媒体展示有关盈亏的新闻报道,感受生活实际.
(2) 据此生活实例,展示探究Ⅰ,引入新课.
考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.
2.讨论交流
(1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.
(2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.
(4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.
3.建立模型
(1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.
(2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的。衣服的进价,另一组计算亏损25%的衣服的进价.
(3) 师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况.
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.
4.小结
一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.
培养学生科学的学习态度与严谨的学习作风.
探究Ⅱ
(三)教学过程Ⅱ
1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.
恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.
启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:
2.列代数式
费用=灯的售价+电费
电费=0.5×灯的功率(千瓦)×照明时间(时)
在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.
节能灯的费用(元):60+0.5×0.011t.
白炽灯的费用(元):3+0.5×0.06t.
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.
3.特值试探
具体感知
学生分组计算:
t=1000、20xx、2500、3000时,这两种灯具的使用费用,填入下表:
时间(小时)
1000
20xx
2500
3000
节能灯的费用(元)
白炽灯的费用(元)
人教版七年级上册数学教案 篇三
教学目标
1 知识与技能:
使学生理解和掌握整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
2 过程与方法:
通过观察、操作、讨论的活动,使学生经历探究口算方法的全过程。
3 情感态度与价值观:
让学生感受数学与生活的联系,培养学生用数学知识解决简单实际问题的能力。
教学重难点
1 教学重点:
掌握用整十数除的口算方法。
2 教学难点:
理解用整十数除的口算算理。
教学工具
多媒体设备
教学过程
1 复习引入
口算。
20×3= 7×50= 6×3=
20×5= 4×9= 8×60=
24÷6= 8÷2= 12÷3=
42÷6= 90÷3= 3000÷5=
2 新知探究
1、教学例1
有80面彩旗,每班分20面,可以分给几个班?
(1)提出问题,寻找解决问题的方法。
师:从中你能获取什么数学信息?
师:怎样解决这个问题?
(2)列式 80÷20
(3)学生独立探索口算的方法
师:怎样算80÷20呢,请同学们先自己想一想、算一算,再说给同桌听一听。
学生汇报:
预设学生可能会有以下两种口算方法:
A.因为20×4=80,所以80÷20=4 这是想乘算除
B.因为8÷2=4, 所以80÷20=4 这是根据计数单位的组成
为什么可以不看这个“0”? ( 80÷20可以想“8个十里面有几个二十?”)
这样我们就把除数是整十数的转化为我们已经学过的表内除法。
(4)师小结:
同学们有的用乘法算除法的,也有用表内除法来想的,都很好,那么你喜欢哪种方法呢?
把你喜欢的方法说给同桌听。
(5)检查正误
师:我们分的结果对不对?请同学们看屏幕(课件演示分的结果)
(6)用刚学会的方法再次口算,并与同桌交流你的想法
40÷20 20÷10 60÷30 90÷30
(7)探究估算的方法
出示:83÷20≈ 80÷19≈
师:你能知道题目要求我们做什么吗?你怎么知道的?你是怎样计算的?和同学们交流一下。
生:求83除以20、80除以19大约得多少,从题目中的约等号看出不用精确计算。
师:谁想把你的方法跟大家说一说。
预设:83接近于80,80除以20等于 4,所以83除以20约等于4。
19接近于20,80除以20等于 4,所以80除以19约等于4。
2、教学例2
(1)创设情境引出问题
师:谁会解决这个问题?
150÷50
(2)小组讨论口算方法
(3)你是怎么这样快就算出的呢?
A.因为15÷5=3,所以150÷50=3。
B.因为3个50是150,所以150÷50=3。
这一题跟刚才分彩旗的口算方法有不同吗?
都是运用想乘算除和表内除法这两种方法来口算的。
师:在解决分彩旗和刚才的问题中,我们共同探讨了除法的口算方法,(板题:口算除法)口算时,可以用自己喜欢的方法来口算。
口算练习:150÷30 240÷80 300÷50 540÷90
3、估算
(1)探计估算的方法
师:你能知道题目要求我们做什么吗?
你能估吗?请先估算,再把你的估算方法与同伴交流,看看能否互相借鉴。
(2)谁想把你的方法跟大家说一说。
(3)总结方法:把被除数和除数都看作与原数比较接近的整十数再用口算方法算。
(4)判断估算是否正确:122÷60=2 349÷50≈8 为什么不正确?
3 巩固提升
1、独立口算
观察每道题,怎样很快说出下面除法算式的商?
如果估算的话把谁估成多少。
2、算一算、说一说。
(1)除数不变,被除数乘几,商也乘几。
(2)被除数不变,除数乘几,商反而除以几。
3、解决问题
(1)一共要寄240本书,每包40本。要捆多少包?
你能找到什么条件、问题。你会解决吗?
240÷40 = 6(包)
答:要捆6包。
(2)这个小朋友也是一个爱看书的好孩子,她在看一本故事书。
出示条件:一共有120个小故事,每天看1个故事。
问题:看完这本书大约需要几个月?
问:要求看完这本书大约需要几个月?必须要知道哪些条件,你会求吗?
120÷30 = 4(个)
答:看完这本书大约需要4个月。
课后小结
这节课你有什么收获?还有什么问题?
本节课学习了整十数除整十数、几百几十数(商一位数)的口算方法,能正确地进行计算。
板书
口算除法
有80面彩旗,每班分20面,可以分给几个班?
80÷20=
七年级数学上册教案 篇四
教学内容:
第89页例3、例4,90页课堂活动,练习二十二第5、6、7、8题。
教学目标:
1.在熟悉的生活情境中,进一步理解负数的意义,会用正负数表示相反意义的量。
2.感受负数在生活中的广泛应用,会解释生活中的一些负数的实际意义。
教学重点:
会用正、负数表示相反意义的量。
教学难点:
会用正、负数解决生活中的实际问题。
教具准备:
多媒体课件
教学方法:
合作交流、师生互动
教学过程:
一、游戏激趣
教师:我们来玩个游戏轻松一下,游戏名叫《我反,我反,我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。谁先试一试?
向上看 向前走200米 电梯上升15层 我在银行存入了500元
二、复习旧知
我们已经学习了负数,你能举几个负数的例子吗?
通过前面内容的学习,你还知道哪些知识?
三、学习新知
1.教学例3。
出示例3的情境:小明向东走200米,小军向西走200米。
教师问:你准备怎样来表示这两个不同意思的量?
学生1:向东走200米记作+200米,向西走200米就记作-200米。
学生2 1126888.com 众鼎号…:向西走200米记作+200米,向东走200米就记作-200米。
教师对这两种记法都应给予肯定。
学生独立试一试
(1)如果汽车向正北方向行驶50m记作+50m,那么汽车向正南方向行驶100m该怎样记?
(2)如果体重减少2kg记作-2kg,那么+5kg表示什么?
学生完成后,集体订正并小结:由此可见,我们可以用正数、负数来表示相反意义的量。
(3)练习:课堂活动第2题:说出表中正数、负数表示的意义。
项目 父母工资 电话费 父母奖金 水、电、气费 伙食费
收支情况(元) 4500 -130 1000 -280 -1750
2.教学例4。
教师:其实,正、负数在生活中有着广泛的应用。如某农用物资商场把下半年的盈亏情况做了一个表:(出示例4)
月份 7月 8月 9月 10月 11月 12月
盈亏情况(元) +6500 -2700 0 -750 +9500 +16700
教师:表中的正数,负数各表示什么意思?(正数表示盈利,负数表示亏损。)
教师:从表中你获得了哪些信息?
学生小组内交流,然后全班汇报。
教师:盈和亏也是两个相反意义的量,我们用正数、负数来表示,简洁而准确。
3.讨论生活中的负数。
教师出示存折和电梯图上的负数,让学生讲讲表示的是什么意思。
教师:存折上的-800表示什么意思?
学生:取出800元记作-800;存入了1200元记作1200元,还可以记作+1200元
电梯里的1和-1表示什么意思?(以地面为界线,地面以上一层我们用1或+1来表示,-1就表示地下一层)
老师现在要到33层应该按几啊?要到地下3层呢?
四、课堂练习
1.下图每段表示1m,小丽刚开始的。位置在0处。
(1)小丽从0处向东行5m表示+5m,那么她从0点向西行4m表示为( )
(2)如果小丽的位置是+8m,说明她是从0点向( )行了( )m。
(3)如果小丽的位置是-6,说明她是从0点向( )行了( )m。
(4)如果小丽先向西行6m,再向东行9m,这时小丽的位置表示为( )m。
(5)如果小丽先向东行3m,再向西行7m,这时小丽的位置表示为( )m。
2.如果顺时针方向旋转90°记作+90°,那么逆时针方向旋转90°记作( )。
3.如果-20分表示比平均分低20分,那么+15表示( )
4.如果比规定任务多做5个记作+5个,那么-5表示( )
5.2.如果在银行存入10000元记作+10000,那么-5000表示( )。
五、自学“你知道吗?”
学生阅读教科书92页内容,说说有什么收获?
六、课堂小结
通过今天的学习,你有什么收获?
七、课堂作业
练习二十二第6、7题。
家庭作业:90页课堂活动第3题,练习二十二第5、8题
板书设计:
认识具有相反意义的量及其简单应用
向东走200米记作+200米,向西走200米就记作-200米
正数、负数来表示相反意义的量。
七年级上册数学教案 篇五
教学目标
1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;
2.培养学生动手操作的能力,启发思维,开阔思路;
3.渗透初步的辩证唯物主义思想。
教学重点和难点
圆面积公式的推导方法。
教学过程设计
(一)复习准备
我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?
已知半径,圆周长的一半怎么求?
(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)
这节课我们一起来学习圆的。面积怎么计算。
(板书课题:圆的面积)
(二)学习新课
1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。
决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。
展示曲变直的变化图。
2.动手操作学具,推导圆面积公式。
为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。
思考:
(1)你摆的是什么图形?
(2)所摆的图形面积与圆面积有什么关系?
(3)图形的各部分相当于圆的什么?
(4)你如何推导出圆的面积?
(学生开始动手摆,小组讨论。)
指名发言。(在幻灯前边说边摆。)
①拼出长方形,学生叙述,老师板书:
②还能不能拼出其它图形?
学生可以拼出:等等刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。
例1一个圆的半径是4厘米,它的面积是多少平方厘米?
S=r2=3.1442=3.1416=50.24(平方厘米)
答:它的面积是50.24平方厘米。
想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?
(三)巩固反馈
1.求下面各圆的面积。
r=2(单位:分米) d=6(单位:分米)
2.选择题。
用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?
(1)3.1422=12.56(米)
(2)3.1422=12.56(平方米)
(3)3.1432=28.26(平方米)
3.思考题:
已知正方形的面积是18平方米,求圆的面积。(如图)
课堂教学设计说明
1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。
2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。
3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
七年级数学上册教案 篇六
一、教材分析
(一)教材的地位和作用
本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.
(二)教材的重难点
本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.
二、教学目标分析
(一)知识技能目标
1.目标内容
(1) 结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.
(2) 培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.
2.目标分析
(1) 本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.
(2) 七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.
(二)过程目标
1.目标内容
在活动中感受方程思想在数学中的作用,进一步增强应用意识.
2.目标分析
利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.
(三)情感目标
1.目标内容
(1) 在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.
(2) 通过对实际问题的解决,进一步体会“数学来源于生活,且服务于生活”的辩证思想.
2.目标分析
七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.
三、教材处理与教法分析
本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.
四、教学过程分析
(一)教学过程流程图
探究Ⅰ
(二)教学过程Ⅰ
(以探究为主线、形式多样化)
1.问题情境
(1) 多媒体展示有关盈亏的新闻报道,感受生活实际.
(2) 据此生活实例,展示探究Ⅰ,引入新课.
考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.
2.讨论交流
(1) 学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.
(2) 学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)
(3) 要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.
(4) 师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.
让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.
3.建立模型
(1) 学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.
(2) 学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.
(3) 师生互动:①两件衣服的进价和为 ;②两件衣服的售价和为 ;③由于进价 售价,由此可知两件衣服的盈亏情况.
(教师及时给出完整的解答过程)
学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.
4.小结
一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.
培养学生科学的学习态度与严谨的学习作风.
探究Ⅱ
(三)教学过程Ⅱ
1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.
恰当的问题情境激发学生探索的欲望,同时让学生体会到数学来源于生活,又服务于生活的实用性.
启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:
2.列代数式
费用=灯的售价+电费
电费=0.5×灯的功率(千瓦)×照明时间(时)
在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.
节能灯的费用(元):60+0.5×0.011t.
白炽灯的费用(元):3+0.5×0.06t.
分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.
3.特值试探
具体感知
学生分组计算:
t=1000、2000、2500、3000时,这两种灯具的使用费用,填入下表:
时间(小时)
1000
2000
2500
3000
节能灯的费用(元)
白炽灯的费用(元)
上面内容就是众鼎号为您整理出来的6篇《七年级上册数学优质教学设计》,希望对您的写作有所帮助。