首页 > 教师教学 > 教案模板 >

相反数教案【最新8篇】

众鼎号分享 148547

众鼎号 分享

相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。相反数的性质是他们的绝对值相同。它山之石可以攻玉,以下内容是众鼎号为您带来的8篇《相反数教案》,可以帮助到您,就是众鼎号小编最大的乐趣哦。

相反数 篇一

教学目标

1.使学生理解相反数的意义;

2.使学生掌握求一个已知数的相反数;

3.培养学生的观察、归纳与概括的能力.

教学重点和难点

重点:理解相反数的意义,理解相反数的代数定义与几何定义的一致性.

难点:多重符号的化简.

课堂教学过程设计

一、从学生原有的认知结构提出问题

二、师生共同研究相反数的定义

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为相反数,如+5与

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为相反数.这个概念很重要,它帮助我们直观地看出相反数的意义,所以有的书上又称它为相反数的几何意义.

相反数教案 篇二

教学目标

1.了解相反数的意义,会求有理数的相反数;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

3.初步认识对立统一的规律。

教学建议

一、重点、难点分析

本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

相反数的定义 相反数的性质及其判定 相反数的应用

三、教法建议

这节课教学的主要内容是互为相反数的概念。

由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、相反数的相关知识

相反数 篇三

一、素质教育目标

(一)知识教学点

1.了解:互为相反数的几何意义.

2.掌握:给出一个数能求出它的相反数.

(二)能力训练点

1.训练学生会利用数轴采用数形结合的方法解决问题.

2.培养学生自己归纳总结规律的能力.

(三)德育渗透点

1.通过解释相反数的几何意义,进一步渗透数形结合的思想.

2.通过求一个数的相反数,使学生进一步认识对应、统一规律.

(四)美育渗透点

1.通过求一个数的相反数知道任何一个数都有它的相反数,学生会进一步领略到数的'完整美.

2.通过简化一个数的符号,使学生进一步体会数学的简洁美.

二、学法引导

1.教学方法:利用引导发现法,教师注意过渡导语 的设置,充分发挥学生的主体地位.

2.学生学法:感性认识→理性认识→练习反馈→总结.

三、重点、难点、疑点及解决办法

1.重点:求已知数的相反数.

2.难点:根据相反数的意义化简符号.

四、课时安排

1课时

五、教具学具准备

投影仪、三角板、自制胶片.

六、师生互动活动设计

学生演示,教师点拨,师生共同得出相反数的概念,教师出示投影,学生以多种形式练习反馈.

七、教学步骤

(一)探索新知,导入  新课

1.互为相反数的概念的引出

演示活动:要一个学生向前走5步,向后走5步.

提出问题“如果向前为正,向前走5步,向后走5步各记作什么?

学生活动:一个学生口答,即向前走5步记作+5;向后走5步记作-5步.

[板书]

+5, -5

师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.

[板书]2.3  相反数

【教法说明】由于有了正负数的学习,进行以上演示,学生们非常容易地得出+5,-5两数,并能根据演示过程体会出这两个数的联系与区别,在轻松愉悦的活动中获得了知识,认识了互为相反数.

师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数(一个学生板演,其他学生自练)

师:这样的两个数即互为相反数,你能试述具备什么特点的两数是互为相反数?(学生讨论后举手回答)

[板书]只有符号不同的两个数,其中一个叫另一个的相反数.

【教法说明】在演示活动后,已出现了+5,-5这两个数,教师及时阐明它们就是互为相反数的两数,这时不急于总结互为相反数的概念,而是又提供了一个学生体会概念的机―利用数轴任找一组互为相反数的两数,先观察在数轴上表示这两个数的点的位置关系,再观察两个数本身的特点.更形象直观地引导学生自己得出相反数的概念.

2.理解概念

(出示投影1)

判断:(1)-5是5的相反数( )

(2)5是-5的相反数( )

(3)与互为相反数( )

(4)-5是相反数( )

学生活动:学生讨论.

【教法说明】对概念的理解不是单纯地强调,根据学生判断的结果加深对相反数“互为”的理解,提高学生全面分析问题的能力.

师:0的相反数是0.

(出示投影2)

1.在前面画的数轴上任意标出4个数,并标出它们的相反数.

2.分别说出9,-7,0,-0.2的相反数.

3.指出-2.4,,-1.7,1各是什么数的相反数?

4.的相反数是什么?

学生活动:1题同桌互相订正,2、3题抢答.

【教法说明】1题注意培养学生运用数形结合的方法理解相反数的概念,让学生深知:在数轴上,原点两旁,离开原点相等距离的两个点,所表示的两个数互为相反数.2、3、4题是对相反数的概念的直接运用,由特殊的数到一般的字母,紧扣“只有符号不同的两数即互为相反数”这一概念,又得出一个非常代数性的结论“的相反数是.”

[板书]a的相反数是-a.

师:的相反数是,可表示任意数―正数、负数、0,求任意一个数的相反数就可以在这个数前加一个“-”号.

提出问题:若把分别换成+5,-7,0时,这些数的相反数怎样表示?

提出问题:前面加“-”号表示的相反数,-(+1.1)表示什么?-(-7)呢,-(-9.8)呢?它们的结果应是多少?

学生活动:讨论、分析、回答.

【教法说明】利用相反数的概念化简符号是这节课的难点.这一环节,紧紧抓住学生的心理及时提问:“既然的相反数是,那么+5,7,0的相反数怎样表示呢?”学生的思维由一般再引到特殊能答出-(+5),-(-7),-0的结果,让学生自己尝试得出结果,突破难点.

巩固练习

(出示投影3)

1.是______________的相反数,.

2.是_____________的相反数,.

3.是_____________的相反数,.

4.是_____________的相反数,.

学生活动:思考后口答.

学生回答后教师引导:在一个数前面加上“-”号表示求这个数的相反数,如果在这些数前面加上“+”号呢?

[板书]

如:

学生回答:在一个数前面加上“+”仍表示这个数,“+”号可省略.并答出以上式子的结果.

【教法说明】根据以上题目学生对一数前面加“-”号表示这数的相反数和一数前面加“+”号表示这数本身都已非常熟悉,这时可根据做题情况要学生及时分析观察规律的存在,这样可以从学生思维的不同角度,指引学生解决问题,并同时也暗示学生在做题时不是单纯地演练,一定要注意规律的总结.

巩固练习:

1.例题2   简化-(+3)-(-4)的符号.

2.简化下列各数的符号

3.自己编题

学生活动:1、2题抢答,3题分组训练.1、2题一定要让学生说明每个式子表示的含义,有助于对相反数概念的理解.3题活跃课堂气氛,同时考查了学生对这一知识的理解掌握程度.

(三)归纳小结

师:我们这节课学习了相反数,归纳如下:

1.________________的两个数,我们说其中一个是另一个的相反数.

2.表示求的_____________,表示______________.

学生活动:空中内容由学生填出.

【教法说明】通过问题形式归纳出本节的重点.

(四)回顾反馈

1.-1.6是__________的相反数,

____________的相反数是0.3.

2.下列几对数中互为相反数的一对为( ).

A.和B.与C.与

3.5的相反数是________________;的相反数是___________;的相反数是________________.

4.若,则;若,则.

5.若是负数,则是___________数;若是负数,则是___________数.

学生活动:分组互相回答,互相讨论,3、4、5题每组出一个同学口答.

【教法说明】1,2题是对本节课的重点知识进行复习.3、4、5题是从不同角度考查学生对相反数概念的理解情况,对学有余力的同学是一个提高.

八、随堂练习

1.填表

原数

0

相反数 篇四

教学目标

1.了解相反数的意义,会求有理数的相反数;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力.

3.初步认识对立统一的规律。

教学建议

一、重点、难点分析

本节的重点是了解相反数的意义,理解相反数的代数定义与几何定义的一致性.难点是多重符号的化简.“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为相反数。另外,“0的相反数是0”也是相反数定义的一部分。关于“数a的相反数是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

相反数的定义 相反数的性质及其判定 相反数的应用

三、教法建议

这节课教学的主要内容是互为相反数的概念。

由于教材先讲相反数,后讲绝对值,所以相反数的定义只是形式上的描述,主要通过相反数的几何意义理解相反数的概念。教学中建议,直接给出相反数的几何定义,通过实例了解求一个数的相反数的方法。按着数轴――相反数――绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、相反数的相关知识

1.相反数的意义

(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。如5与-5是互为相反数。

(3)0的相反数是0。也只有0的相反数是它的本身。

(4)相反数是表示两个数的相互关系,不能单独存在。

2.相反数的表示

在一个数的前面添上“-”号就成为原数的相反数。若 表示一个有理数,则 的相反数表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。

3.相反数的特性

若 互为相反数,则 ,反之若 ,则 互为相反数。

4.多重符号化简

(1)相反数的意义是简化多重符号的依据。如 是-1的相反数,而-1的相反数为+1,所以 。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

相反数 篇五

3

-7

倒数

-1

2.选择题

(1)下列说法中,正确的是( )

A.一个数的相反数一定是负数

B.两个符号不同的数一定是相反数

C.相反数等于本身的数只有零

D.的相反数是-2

(2)下列各组九中,是互为相反数的组数有( )

①和②-(-1)和+(-1)

③-(-2)和+(+2) ④和

A.4组 B.3组 C.2组 D.1组

(3)下列语句中叙述正确的是( )

A.是正数

B.如果,那么

C.如果,那么

D.如果是负数,那么是正数

九、布置作业

(一)必做题:课本第61页A组2、3.

(二)选做题:课本第62页B组1、2.

十、板书设计

2.3   相反数

1.只有符号不同的两个数其中一个是另一个的相反数.

相反数教案 篇六

相反数

一、学习与导学目标:

知识与技能:借助数轴理解相反数的好处,懂得数轴上表示相反数的两个点关于原点对称,会求有理数的相反数;

过程与方法:经历概念的生成、应用,体会相反数的好处,简化数的符号,学习观察、归纳、概括的策略与方法;

情感态度:透过师生、生生合作学习,促进交流,激发兴趣。

二、学程与导程活动:

A、准备活动:

1、师生游戏“唱反调”:我们明白在小学学过的0以外的数前面加上负号“-”的数就是负数。此刻我说一个正数,你们给它添上“-”号说出来,我如果说一个负数,你们反过来说出对应的正数。+3、+1、-1/2、-18.4、0.75,学生很快说出-3、-1、1/2、18.4、-0.175。

2、上述“唱反调”的两个数3与-3,1与-1,-1/2与1/2……,在数轴上对应的点的位置如何?可推荐生择两组在数轴上表示以后作答(在原点两侧到原点的距离相等,真可谓从原点背道而驰“唱反调”)。

提问:数轴上与原点距离是4的点有几个?这些点表示的数是多少?

归纳:设a是一个正数,数轴上与原点距离是a的点有两个,分别在原点左右表示-a和a,我们说这两点关于原点对称。

B、学习概念:

1、像3和-3,1和-1,-1/2和1/2这样,只有负号不同的两个数给它一个什么样的关系名称适宜呢?生:互为相反数,师:很好,我们把上述只有负号不同的两个数叫做互为相反数(oppositenumber)。也就是说3的相反数是-3,-3的相反数是3。可见:相反数是成对出现的,不能单独存在。

一般地,a和-a互为相反数。“-a”可读成“a的相反数”。

2、在数轴上看,表示相反数的两个点和原点有什么关系?(关于原点对称)

3、从上述好处上看,你看如何规定0的相反数更为合理?

商讨得:0的相反数仍是0,即0的相反数等于它本身。

C、应用举例:

1、两人一组,一人任说一个有理数,请同伴说出它的相反数。

2、如果a=-a,那么表示数a的点在数轴上的什么位置?a=?(a=0)。

3、在正数前面添上“-”号,就得到这个数的相反数,同样地,在任意一个数前面添上“-”号,新的数就表示原数的相反数,如:-(+5)=-5,-(-5)=5,-0=0。

结合前面相反数好处的量的学习,还可赋予-(-5)怎样的好处,从而帮忙自己理解-(-5)=5吗?

4、化简下列各数P124练习,你愿意继续尝试化简下列各式吗?

+(-2/3),-(-2/3),-(+2/3),+(+2/3)

你能试着总结规律吗?(括号内外同号结果为正,括号内外异号结果为负)。

5、若a=-5,则-a=;若-x=7,则x=。

三、笔记与板书提纲:

课题应用举例中的2

活动引例应用举例中的4(学生练习),5

概念

四、练习与拓展选题:

1、教科书P18/3;

2、如图是正方形纸盒的侧面展示图,请你在正方形内分别填上6个不同的数,使折成正方体后相对的面上的两个数互为相反数(写出满足条件的一种情形即可)。

数学《相反数》教案 篇七

教学目标 1, 掌握相反数的概念,进一步理解数轴上的点与数的对应关系;

2, 通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;

3, 体验数形结合的思想。

教学难点 归纳相反数在数轴上表示的点的特征

知识重点 相反数的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 问题1:请将下列4个数分成两类,并说出为什么要这样分类

4, -2,-5,+2

允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)

思考结论:教科书第13页的思考

再换2个类似的数试一试。

归纳结论:教科书第13页的归纳。 以开放的形式创设情境,以学生进行讨论,并培养分类的能力

培养学生的观察与归纳能力,渗透数形思想

深化主题提炼定义 给出相反数的定义

问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?

学生思考讨论交流,教师归纳总结。

规律:一般地,数a的相反数可以表示为-a

思考:数轴上表示相反数的两个点和原点有什么关系?

练一练:教科书第14页第一个练习 体验对称的图形的特点,为相反数在数轴上的特征做准备。

深化相反数的概念;“零的相反数是零”是相反数定义的一部分。

强化互为相反数的数在数轴上表示的点的几何意义

给出规律

解决问题 问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?

学生交流。

分别表示+5和-5的相反数是-5和+5

练一练:教科书第14页第二个练习 利用相反数的概念得出求一个数的相反数的方法

小结与作业

课堂小结 1, 相反数的定义

2, 互为相反数的数在数轴上表示的点的特征

3, 怎样求一个数的相反数?怎样表示一个数的相反数?

本课作业 1, 必做题 教科书第18页习题1.2第3题

2, 选做题 教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征。这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用。所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想。

2,教学引人以开放式的问题人手,培养学生的分类和发散思维的能力;把数在数轴上表示出来并观察它们的特征,在复习数轴知识的同时,渗透了数形结合的数学方法,数与形的相互转化也能加深对相反数概念的理解;问题2能帮助学生准确把握相反数的概念;问题3实际上给出了求一个数的相反数的方法。

3,本教学设计体现了新课标的教学理念,学生在教师的引导下进行自主学习,自主探究,观察归纳,重视学生的思维过程,并给学生留有发挥的余地。

相反数 篇八

教学目标

1.了解的意义,会求有理数的;

2.进一步培养学生分类讨论的思想和观察、归纳与概括的能力。

3.初步认识对立统一的规律。

教学建议

一、重点、难点分析

本节的重点是了解的意义,理解的代数定义与几何定义的一致性。难点是多重符号的化简。“只有符号不同的两个数”中的“只有”指的是除了符号不同以外完全相同(也就是下节课要学的绝对值相同)。不能理解为只要符号不同的两个数就互为。另外,“0的是0”也是定义的一部分。关于“数a的是-a”,应该明确的是-a不一定是正数,a不一定是正数。关于多重符号的化简,如果一个正数前面有偶数个“-”号,可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简符号后只剩一个“-”号。

二、知识结构

的定义 的性质及其判定 的应用

三、教法建议

这节课教学的主要内容是互为的概念。

由于教材先讲,后讲绝对值,所以的定义只是形式上的描述,主要通过的几何意义理解的概念。教学中建议,直接给出的几何定义,通过实例了解求一个数的的方法。按着数轴————绝对值的顺序教学,可充分利用数轴使数与形更好地结合起来。

四、的相关知识

1.的意义

(1)只有符号不同的两个数叫做互为,如-1999与1999互为。

(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为。如5与-5是互为。

(3)0的是0。也只有0的是它的本身。

(4)是表示两个数的相互关系,不能单独存在。

2.的表示

在一个数的前面添上“-”号就成为原数的。若 表示一个有理数,则 的表示为- 。在一个数的前面添上“+”号仍与原数相联系同。例如,+7=7,特别地,+0=0,-0=0。

3.的特性

若 互为,则 ,反之若 ,则 互为。

4.多重符号化简

(1)的意义是简化多重符号的依据。如是-1的,而-1的为+1,所以。

(2)多重符号化简的结果是由“-”号的个数决定的。如果“-”号是奇数个,则

果为负;如果是偶然数个,则结果为正。可简写为“奇负偶正”。

例如, 。由此可见,化简一个数就是把多重符号化成单一符号,若结果是“+”号,一般省略不写。

读书破万卷下笔如有神,以上就是众鼎号为大家整理的8篇《相反数教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:最后一头战象教案【8篇】

下一篇:返回列表