首页 > 学生学习 > 学习方法 >

高二数学必背知识点总结(通用7篇)

众鼎号分享 9478

众鼎号 分享

在年少学习的日子里,说到知识点,大家是不是都习惯性的重视?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。为了帮助大家掌握重要知识点,这次漂亮的小编为亲带来了7篇《高二数学必背知识点总结》,亲的肯定与分享是对我们最大的鼓励。

高二数学知识点总结 篇一

正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py

直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h

正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2

圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=s*h圆柱体V=p*r2h

乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理

判别式:

b2-4ac=0注:方程有两个相等的实根

b2-4ac>0注:方程有两个不等的实根

b2-4ac<0注:方程没有实根,有共轭复数根

高二数学知识点总结 篇二

1.有向线段的定义

线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的方向。像这样,具有方向的线段叫做有向线段。记作:。

2、有向线段的三要素:有向线段包含三个要素:始点、方向和长度。

3、向量的定义:(1)具有大小和方向的量叫做向量。向量有两个要素:大小和方向。

(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量。书写时,则用带箭头的小写字母,,,来表示。

4、向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||。

5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=。

6.相反向量:与向量等长且方向相反的向量叫做的相反向量,记作:-.

7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线。向量平行于向量,记作//。规定: //。

8.零向量:长度等于零的向量叫做零向量,记作:。零向量的方向是不确定的,是任意的。由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量。

9.单位向量:长度等于1的向量叫做单位向量。

10.向量的加法运算:

(1)向量加法的三角形法则

11.向量的减法运算

12、两向量的和差的模与两向量模的和差之间的关系

对于任意两个向量,,都有|||-|||||+||。

13.数乘向量的定义:

实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作。

向量的长度与方向规定为:(1)||=|

(2)当0时,与方向相同;当0时,与方向相反。

(3)当=0时,当=时,=。

14.数乘向量的运算律:(1))= (结合律)

(2)(+) =+(第一分配律)(3)(+)=+。(第二分配律)

15.平行向量基本定理

如果向量,则//的充分必要条件是,存在唯一的实数,使得=。

如果与不共线,若m=n,则m=n=0.

16.非零向量的单位向量:非零向量的单位向量是指与同向的单位向量www.1126888.com,通常记作。

=||,即==(,)

17.线段中点的向量表达式

点M是线段AB的中点,O是平面内任意一点,则=(+)。

18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则

+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2)。

19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1)。

20、两向量相等和平行的条件:若=(a1,a2),=(b1,b2) ,则

=a1=b1且a2=b2.

//a1b2-a2b1=0.特别地,如果b10,b20,则// =。

21.向量的长度公式:若=(a1,a2),则||=。

22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=。

23.中点公式

若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y= 。

24.重心公式

在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则

x=,y=

25.(1)两个向量夹角的取值范围是[0,p],即0,p.

当=0时,与同向;当=p时,与反向

当= 时,与垂直,记作。

(3)向量的内积定义:=||||cos.

其中,||cos叫做向量在向量方向上的正射影的数量。规定=0.

(4)内积的几何意义

与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在 方向上的正射影数量的乘积

当0,90时,0;=90时,

90时,0.

26.向量内积的运算律:

(1)交换率

(2)数乘结合律

(3)分配律

(4)不满足组合律

27.向量内积满足乘法公式

29.向量内积的应用:

高二数学知识点总结 篇三

一、集合、简易逻辑(14课时,8个)

1、集合;

2、子集;

3、补集;

4、交集;

5、并集;

6、逻辑连结词;

7、四种命题;

8、充要条件。

二、函数(30课时,12个)

1、映射;

2、函数;

3、函数的单调性;

4、反函数;

5、互为反函数的函数图象间的关系;

6、指数概念的扩充;

7、有理指数幂的运算;

8、指数函数;

9、对数;

10、对数的运算性质;

11、对数函数。

12、函数的应用举例。

三、数列(12课时,5个)

1、数列;

2、等差数列及其通项公式;

3、等差数列前n项和公式;

4、等比数列及其通顶公式;

5、等比数列前n项和公式。

四、三角函数(46课时,17个)

1、角的概念的推广;

2、弧度制;

3、任意角的三角函数;

4、单位圆中的三角函数线;

5、同角三角函数的基本关系式;

6、正弦、余弦的诱导公式;

7、两角和与差的正弦、余弦、正切;

8、二倍角的正弦、余弦、正切;

9、正弦函数、余弦函数的图象和性质;

10、周期函数;

11、函数的奇偶性;

12、函数的图象;

13、正切函数的图象和性质;

14、已知三角函数值求角;

15、正弦定理;

16、余弦定理;

17、斜三角形解法举例。

五、平面向量(12课时,8个)

1、向量;

2、向量的加法与减法;

3、实数与向量的积;

4、平面向量的坐标表示;

5、线段的定比分点;

6、平面向量的数量积;

7、平面两点间的距离;

8、平移。

六、不等式(22课时,5个)

1、不等式;

2、不等式的基本性质;

3、不等式的证明;

4、不等式的解法;

5、含绝对值的不等式。

七、直线和圆的方程(22课时,12个)

1、直线的倾斜角和斜率;

2、直线方程的点斜式和两点式;

3、直线方程的一般式;

4、两条直线平行与垂直的条件;

5、两条直线的交角;

6、点到直线的距离;

7、用二元一次不等式表示平面区域;

8、简单线性规划问题;

9、曲线与方程的概念;

10、由已知条件列出曲线方程;

11、圆的标准方程和一般方程;

12、圆的参数方程。

高二数学知识点总结 篇四

一、导数的应用

1、用导数研究函数的最值

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2、生活中常见的函数优化问题

1)费用、成本最省问题

2)利润、收益最大问题

3)面积、体积最(大)问题

二、推理与证明

1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式

对于含有参数的一元二次不等式解的讨论

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

四、坐标平面上的直线

1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。

2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

五、圆锥曲线

1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。

2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线,上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。

3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

高二数学知识点总结 篇五

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。

当 时, ; 当 时, ; 当 时, 不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式: 直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式: ,直线斜率为k,直线在y轴上的截距为b

③两点式: ( )直线两点 ,

④截矩式:

其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。

⑤一般式: (A,B不全为0)

注意:各式的适用范围 特殊的方程如:

平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

(二)垂直直线系

垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系: ,直线过定点 ;

(ⅱ)过两条直线 , 的交点的直线系方程为

( 为参数),其中直线 不在直线系中。

(6)两直线平行与垂直

当 , 时,;

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点

相交

交点坐标即方程组 的一组解。

方程组无解 ; 方程组有无数解 与 重合

(8)两点间距离公式:设 是平面直角坐标系中的两个点,

(9)点到直线距离公式:一点 到直线 的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

二、圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程 ,圆心 ,半径为r;

(2)一般方程

当 时,方程表示圆,此时圆心为 ,半径为

当 时,表示一个点; 当 时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆 ,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当 时两圆外离,此时有公切线四条;

当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当 时,两圆内切,连心线经过切点,只有一条公切线;

当 时,两圆内含; 当 时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

几何特征:①上下底面是相似的平行多边形;②侧面是梯形;③侧棱交于原棱锥的顶点。

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:V = ; S =

4、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:

公理2的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理3及其推论作用:

①它是空间内确定平面的依据

②它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

空间直线与直线之间的位置关系

①异面直线定义:不同在任何一个平面内的两条直线

②异面直线性质:既不平行,又不相交。

③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

B、证明作出的角即为所求角

C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:a α a∩α=A a‖α

(9)平面与平面之间的位置关系:平行——没有公共点;α‖β

相交——有一条公共直线。α∩β=b

5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行 线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行 线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题

(1)直线与直线所成的角

①两平行直线所成的角:规定为 。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角

①平面的平行线与平面所成的角:规定为 。

②平面的垂线与平面所成的角:规定为 。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

在解题时,注意挖掘题设中两个主要信息:

(1)斜线上一点到面的垂线;

(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

高二数学答题技巧 篇六

1.掌握时间

由于,基础中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。在平时当中一定要求自己选择填空一分钟一道题。用数学思想方法高速解答选择填空题。

2.先易后难

在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分冲刺。

3.后三题尽量多得分

第二段是解答题的前三题,分值不到40分。这样前两个阶段的总分在110分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。

高二数学知识点总结 篇七

1.解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。

2.数列

(1)数列的概念和简单表示法

了解数列的概念和几种简单的表示方法(列表、图象、通项公式)。

了解数列是自变量为正整数的一类函数。

(2)等差数列、等比数列

理解等差数列、等比数列的概念。

掌握等差数列、等比数列的通项公式与前项和公式。

能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。

了解等差数列与一次函数、等比数列与指数函数的关系。

3、不等式与不等关系

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式

会从实际情境中抽象出一元二次不等式模型。

通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系。

会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题

会从实际情境中抽象出二元一次不等式组。

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组。

会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。

(4)基本不等式:

了解基本不等式的证明过程。

会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点

它山之石可以攻玉,以上就是众鼎号为大家带来的7篇《高二数学必背知识点总结》,希望对您有一些参考价值。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:2023年河南高考一分一段表公布【3篇】

下一篇:初一下册数学知识点总结梳理(通用4篇)