首页 > 教师教学 > 教案模板 >

方程的认识【优秀7篇】

众鼎号分享 129164

众鼎号 分享

做一份好的教案,可以让老师在教学中游刃有余,显现出足够强大的自信。下面是小编精心为大家整理的7篇《方程的认识》,希望朋友们参阅后能够文思泉涌。

解方程 篇一

§5.2(1)

教学目标 

1、学会利用等式性质1;

2、理解移项的概念;

3、学会移项。

教学重点:利用等式性质1及移项法则;

教学难点 :利用等式性质1来解释方程的变形。

教学准备

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程 :

(一)引入新课:

1、  上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

①    5x+6=9x②3x+5③7+5×3=22④4x+3y=2

由学生小议后回答:①、④是方程。

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

①    2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)、讲解新课:

1、  等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:"两边"、"都"、"同"、"等式"。

2、  利用等式性质1:

x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意: 解题格式。

例1 5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x+2=5                         5x=7+4x

x=5-2                       5x-4x=7

思考:⑴把+2从方程的一边移到另一边,发生了什么变化?

⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变

3、  移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项

注意:①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。

例2 :3x+4=2x+7

解:移项,得3x-2x=7-4,

合并同类项,得x=3。

∴x=3是原方程的解。

归纳:①格式:时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②与计算不同:不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页  1(口答),2(板演),想一想。

(三)、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业 :见作业 本。

解方程 篇二

(一)教学目标:

(1)让学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

(2)初步理解等式的基本性质,能用等式的性质解简易方程。

(3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

(4)重视良好书写习惯的培养。培养学生自觉检验的习惯。

(二)教学重、难点:

利用天平平衡的道理理解比较简单的方程的方法。

(三)教学过程:

一、 演示操作,提出目标

师:(天平演示)老师在天平的左边放了一杯水,杯重100克,水重x克,一杯水重多少?(100+x)克

师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

师:请你根据图意列一个方程。100+x=250

师:这个方程怎么解呢?有什么问题我们要研究呢?

(1) 运用等式性质把x等于多少求出来。

(2) “解方程”和“方程的解”有什么区别。

[设计意图:从复习天平保持平衡的道理入手,引出学习目标,引导学习质疑,有利于激发学生主动探究、深入学习的积极性。]

二 展示成果,理解归纳

(一)小组内个人展示

1.学生自学课本例1、例2,并完成“做一做”。(教师深入指导,收集信息)

2.小组内互相交流、讲评。

学生:(1):可以用250-100=150,所以x=150.

学生;(2):因为100+150=250,所以x=150

学生:(3):我是这样想的,假如方程的两边同时减去100,就能得出x=150

学生演示:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。为:100+x-100=250-100就可以求出未知数x的值是多少?x=150

师:是的,同学们的想法是正确的,方程左右两边同时减100,就能得出x=150。

师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

师: 指着方程100+x=250说:“x=150是这个方程的解。

100+x=250    100+x-100=250-100

指着方框说:这是求方程的解的过程,叫解方程。

(二)全班展示(以小组为单位进行)

1、算法展示

a:        x+3=9                            b:         3 x=18

解:x+3-3=9-3                               解:3 x ÷3=18÷3

x=6                                          x=6

c、方程的检验方法。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

2、对学生在自主学习中的出现的错例展示。如:书写格式等。

三、 激发冲突,验算结果(把这个环节融入学生展示中)

师:你发现“方程的解”和“解方程”有什么不同吗?

师:在解方程的过程要注意什么?

师:这个方程会解。我们怎么知道x=6一定是以上x+3=9和3 x=18方程的解呢?

师:怎样验算?让学生说出过程。(分别说出以上两方程的验算过程。)

师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

[设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

四 拓展知识外延

1  判断题

x=3是方程5x=15的解。(      )

x=2是方程5x=15的解。(      )

2  考考你的眼力,能否帮他找到错误所在呢?

x+1.2=4                 x+2.4=4.6

x+1.2-1.2=4-1.2                  =4.6-2.4

x=2.8                    =2.2

3  填空题

x+3.2=4.6

x+3.2○( )=4.6○( )

x=(  )

4  将课本59页做一做的第1题的左边一小题写在单行纸上。

[设计意图:游戏练习形式有趣,有利于激发学生的学习兴趣,活跃课堂气氛。让学生在轻轻松松中,及时有效地巩固强化概念。]

小学五年级数学《方程》教案范例 篇三

教学内容:

p53--54练习十一1,2,3

教学目标:

1、 通过观察天平演示,使学生初步理解方程的意义;

2、 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;

3、 培养学生观察、描述、分类、抽象、概括、应用等能力。

教学重点:

判断一个式子是不是方程;初步理解方程的意义。

课前准备:

课件,习题板

教学过程:

一、复习旧知,激趣导入

同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!

二、出示学习目标

1、初步理解方程的意义,会判断一个式子是否是方程

2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。

三、学习过程。

(一)认识天平

(二)新课学习

自学指导(一)。

自学p53, 分别说一说图1,图2,,显示的信息。

图1天平两边平衡,一个空杯重100克。

图2在空杯里加一杯水后天平不平衡了。

自学指导(二)

再看图3说说图3 显示的信息。

天平1杯子和里面的水比200克法码重

天平2杯子和里面的水比300克法码轻

自学指导(三)

请用算式表示图3数量关系。

天平1、100+x>200

天平2、100+x<300

自学指导(四)

再看图4说说图4 显示的信息,请用算式表示图4数量关系

100+x=250

自学指导(五)

观察比较下列算式说说你的发现

观察比较

100+x>200

100+x<300

100+x=250

前面两个算式两边不相等,后面一个算式两边是相等的。

教师总结:像这样两边相等的算式我们把它叫做等式。(板书)

课堂练习(一)

写出几个等式

自学指导(六)

请学生把这里的等式分类,并说说你们是如何分类的?

20+30=50

20+χ=100

50×2=100

14-8=6

3y=180

78× 3=234

100+2y=3×50

学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)

教师总结:含有未知数的等式,称为方程。(板书)

课堂练习(二)

请大家写出几个方程。

四、小结:回答什么是方程?

解方程 篇四

教学目标:1、学会利用等式性质1解方程; 2、理解移项的概念; 3、学会移项。 教学重点:利用等式性质1解方程及移项法则; 教学难点:利用等式性质1来解释方程的变形。 教学准备: 1、投影仪、投影片。 2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。 教学过程:(一)引入新课: 1、  上节课的想一想引入新课:等式和方程之间有什么区别和联系? 方程是等式,但必须含有未知数; 等式不一定含有未知数,它不一定是方程。 2、下面的一些式子是否为方程?这些方程又有何特点? ①    5x+6=9x②3x+5③7+5×3=22④4x+3y=2 由学生小议后回答:①、④是方程。 分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。 我们先来研究最简单的(只含有一个未知数的)的一元一次方程。 3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。 注意:一次方程可以含有两个或两个以上的未知数:如上例的④。 4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。 5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答) ①    2x+3=11②y2=16③x+y=2④3y-1=4y 6、什么叫方程的解?怎样解方程? 关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程 (二)、讲解新课: 1、  等式性质1: 出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。 强调关键词:"两边"、"都"、"同"、"等式"。 2、  利用等式性质1解方程:                 x+2=5 分析:要把原方程变形成x=?只要把方程两边同时减去2即可。 注意: 解题格式。 例1 解方程5x=7+4x 分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。 (解略) 解完后提问:如何检验方程时的计算有没有错误?(由学生回答) 只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验) 观察前面两个方程的求解过程:      x+2=5                         5x=7+4x x=5-2                       5x-4x=7                                            思考:⑴把+2从方程的一边移到另一边,发生了什么变化?       ⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变) 3、  移项: 从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。 注意:①移项要变号;       ②移项的实质:利用等式性质1对方程进行变形。 例2 解方程:3x+4=2x+7 解:移项,得3x-2x=7-4,         合并同类项,得x=3。 ∴x=3是原方程的解。 归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项; ②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式; ③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。 练习:书本105页  1(口答),2(板演),想一想。 (三)、课堂小结: ①什么是一次方程,一元一次方程? ②等式性质1(找关键词); ③移项法则; ④应用等式性质1的注意点(例2归纳的三条)。 (四)、布置作业:见作业本。

§5.2解方程(2)教学目标    1. 通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要。正确理解和使用乘法分配律和去括号法则解方程。     2. 领悟到解方程作为运用方程解决实际问题的组成部分。     3. 进一步体会同一方程有多种解决方法及渗透整体化一的数学思想。     4. 培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践。 教学重点: 正确去括号解方程 教学难点: 去括号法则和分配律的正确使用。教学设计

教师活动

学生活动

说明

教师引入 (读教材156页引例),教师引导学生根据画面内容探讨解决问题的方法。针对学生情况,如有困难教师直接讲解。    如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3 教师组织学生讨论 教材“想一想”中的内容①首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的方法列方程并解释其中的道理。     出示例题3并引导学生探讨问题的解决方法。     引导学生对自己所列方程的解的实际意义进行解释。     出示随堂练习题,鼓励学生大胆互评。     出示例题4,教师首先鼓励学生独立探索解法,并互相交流。然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解。(后一种解法不要求所有学生都必须掌握。)     出示随堂练习题。     出示自编练习题:下面方程的解法对不对?如果不对应怎样改正? ①解方程: 2(x+3)--5(1--x)=3(x-1) ②解方程:       6(x+8)一6=0     教师给予评价:     教师引导学生做出本节课小结。     布置作业:填写成长记录卡及课本158页习题 ①学生观看画面:两名同学到商店买饮料的情景。 ②自主完成问题。 1、学生回答问题(1)用自己的语言表述理由。 2、小组内交流各自所列的方程。 ①学生研讨并交流各自解决问题的过程。 ②学生独立完支”想一想”中的问题(2). ①独立完成随堂练习。 ③四名同学板演。 ③纠正板演中的错误并总结注意事项。 1、自主完成例题 2、小组内交流各自解方程的方法。 3、总结数学思想。 ①独立完成练习题。 ②同桌互相检查。 ①小组间比赛找错误。 ②讨论交流各自看法。 ③选代表说出错误的原因,并总结解本节所学方程的注意事项。 1、做出本节课小结并交流。 2、说出自己的收获。    让学生感知生活,体会数学与现实生活的联系,激起学生的学习兴趣。   不限制方法拓展学生思维空间,进一步提高学生分析问题解决问题的能力,   调动学生主动参与的积极性,体会数学的应用价值。   通过学习交流,思维方面的沟通乃至思维碰撞达到共同提高的目的。  巩固教学内容。   一题多解,培养学生发散思维,初步渗透将(x-l)作为一个整体的思想。 巩固教学内容。 培养学生思维的批判性和深刻性,养成良好的学习习惯。 培养学生归纳总结的能力。 巩固教学内容。

§5.2解方程(3)教学目标    1. 经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程。进一步理解并掌握如何去分母的解题方法。     2. 通过解方程时去分母过程,体会转化思想。     3. 进一步体会解方程方法的灵活多样。培养解决不同问题的能力。     4. 培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯,团结合作的精神。 教学重点    解方程时如何去分母。 教学难点    解方程时如何去分母。 教学设计

教师活动

学生活动

说明

教师用小黑板出示一组解方程的练习题。     解方程     1、8=7-2y     2、5x-2=7x+8     3、4x-3(20-x)=3     4、-2(x-2)=12     (根据学生做题情况,教师给予评价). 出示例题7,鼓励学生到黑板板演,教师给予评价。 针对学生的实际,教师有目的引导学生如何去掉分母。去分母时要引导学生规范步骤,准确运算。     组织学生做教材159页“想一想”,鼓励并引导学生总结解一元一次方程有哪些步骤。     出示例题6,并鼓励学生灵活运用解一元一次方程的步骤解方程。     教师给予评价。     出示快速抢答题:有几处错误,请把它们—一找出来并改正。 见教参p159 教师给予评价。 出示随堂练习题(根据学生情况做部分题或全部题).     教师引导学生总结本节的学习内容及方法。 布置作业:填写成长记录卡及课本160页习题5—5.1、自主完成解题。 2、同桌互批。 3、哪组同学全对人数多。     一名同学板演,其余同学在练习本上做。 分组讨论、合作交流得出结论:方程两边都乘以所有分母的最小公倍数去掉分母。 ①先自己总结。 ②互相交流自己的结论,并用语言表述出来。 ①自主完成解方程 ②互相交流自己的结论,并用语言表述出来。 ③自觉检验方程的解是否正确。 (选代表到黑板板演). ①学生抢答。 ②同组补充不完整的地方。 ③交流总结方程变形时容易出现的错误。 ①独立完成解方程。 ②小组互评,评出做得好的同学。 ①做出本节课小结共交流。 ②说出自己的收获及最困惑的地方温故将知新。     激起学生的学习热情。     巩固所学知识为去分母做铺垫。 通过组内交流、合作,达到团结协作精神。     培养学生归纳、概括及语言表达能力。     把“复杂”转化为“简单”,把“新”转化为“旧”的过程,体会转化思想。   培养学生良好的学习习惯。     培养学生思维的批判性和深刻性。 巩固教学内容。 培养学生归纳总结的能力及语言表述的能力。 巩固所学知识。

解方程 篇五

教学困惑讨论:为什么解方程时要“绕圈”?

在解方程:x-6=3时,有的教材用到下面的方法:

解:x-6=3

x-6+6=3+6

x=3+6

x=9

对于上面步骤中的“x-6+6=3+6”有的老师不理解,为什么解方程要绕圈。

有一种说法:“四则运算走不远,要走代数化,要用方程处理运算。平面几何走不远,也要代数化,走解析几何的路子。”这一种说法,至少给我们一个这样的信息。用四则运算解方程和用代数方法解方程所用的处理思路或说其中的数学思想是不同的。而这里的不同并不仅仅是指所处理的问题的范围或说是能处理的问题的复杂程度之间的差异。

在解方程时是用算术法解还是用代数的方法来解,我们大多关注的是思维的方法和依据,是逆向思维还是顺向思维,是用到的等式性质还是四则运算的关系。我想除了这些不同之外,还有以下的不同。

1.对“=”号的理解。

2.对未知数的理解。

先说“=”号。

“=”号表示什么意思?2+3=5,表示2与3的和是5,表示2加上3的答案是5,这里的“=”号是表示运算的结果,表示答案。我们很少说“=”号表示相等,即使说“相等”也常常是指2与3的和与5是相等的。很少再做进一步的发展。

仔细看一下解方程的过程,我们会发现,“=”号的意义在这里已有了变化。它主要是指两边的部分相等。这种相等多了平衡、配平的意味。我们是把“=”号连同它的两边看成是一个整体,是一个等式,就象达到平衡状态的一架天平。运算、结果已变得不再重要,只要它们两边相等,能平衡就行。——而这种发展,学生是很难一下子理解到的,又需要一个过程。

对于未知数的理解。

有的教材中处理时用“□”表示未知数,有的用“○”,有的用x,y,z,a,b,c…等等,我们说这都是形式,不是实质。形式是容易学的,是容易模仿的,而实质是需要理解的。那么,这里的实质是什么?是把x当成是一种数,是一种超出一般的、不同于具体的数的数,它可以代表任何的一个数,与2,3,6,这些具体的数更有一般性。说了这一堆,还是难理解。我们还是看学生在用算术法和用代数法解方程时对待未知数的不同。

用代数法解:

x-6=3

x-6+6=3+6

x=3+6

x=9

在这个解法中,我们不关注x,关注的是如何把与x不同的“6”(或者说“-6” )处理掉,x是什么数,我们不去管。它就是一个可以参与运算的数,至于是多少,它在什么位置,与其他的数有什么关系,我们不去想,不在它身上劳神费力。在这种解法中,我们更关注的是x与其他数在形式上的不同。

再看用算术法解:

x-6=3

x=3+6

x=9

我们关注的是x,6,3这三个数涉及到什么运算,它们三个数有什么关系。要关注三个数的关系,至于x是被减数还是减数则一定要看清楚,否则会出大错。在这里,我们自始至终是把x当成和6,3一样的具体的数来看的。在这种解法中更多关注的是x与其他数的相同点。

最后再说一点,课标要求是“会用等式的性质解简单的方程(如3x+2=5,2x-x=3)”,对于 x-6=3型的方程我们可以让学生用算术方法去解。愿意用方程去解也可以,处理x-6+6时可以这样想,x这个数减去6再加上6等于没有变化,所以还是x。

其实,上面说了许多话,是说为什么学生理解解方程这么难的,没有正面回答为什么解方程要“绕圈”。有关方程解法的问题,王永老师有一篇文章,记得是发表在《小学青年教师》上,可以参考。

解方程 篇六

活动内容:关于方程教学中的一些问题。

1.方程如何进行验算,本组教师之间相互达成一致。

2.对未知数在方程中的减数的位置和除数的位置中出现的情况,是否要进行一定的教学辅导。因为教材中的解方程是用等式的性质来完成的而不是应用三者关系来解的,因此教材中不出现未知数在减数的位置和除数的位置上的方程。但是在实际问题解决的时候,学生根据等量关系就会出现这样的方程,那就不会解了。我们认为虽然教材中对这种情况是避免的,但是我们在教学时还是适当进行补充教学。

利用三者关系解这一类的方程,或者仍然运用等式的性质,化系数为1,进行教学。

3.在列方程解决实际问题的教学中,重视对实际问题中等量关系的寻找,这是列方程解的关键。学生找的等量关系要与所列的方程相一致。

4.相关习题的设计:

找等量关系练习。

1.黑兔的只数是白兔只数的5倍。

2.电视塔的高度比居民楼的30倍多5米。

3.松树的棵数比柏树的棵数的4倍少8棵。

4.科技书的本数比故事书的3倍少24本。

5.买苹果花了6.7元,找回3.3元。

6.60元买了15个皮球。

处理的时候还可以分一些层次。

先是根据叙述找到等量关系

再给出已知量和问题,要学生说说根据这个等量关系,用什么方法解比较方便。

以“科技书的本数比故事书的3倍少24本。”为例;等量关系为:

故事书的本数×3-24=科技书的本数

如果已知故事书的本数,那就直接可以利用等量关系式求出科技书的本数。如果已知的是科技书的本数,那么等量关系式中故事书的本数就是未知数,就要设这个未知数为x进行列方程解比较简便。

通过这样的练习能够让一部分学生体验到列方程解的好处。

从五年级解方程谈“瞻前顾后”

记得我们上学的时候,解最简单的方程的方式是这样的:比如1+x=3就是x=3-1,x=2。很好懂吧!但是现在五年级课本上是这样的:1+x=3,1+x-1=3-1,x=2。看起来很啰嗦吧!那么为什么教材这样来改呢?如果单单从简单的加减乘除的方程来看,第一种方法无疑是简单易懂而且步骤少,而第二种方法就相对复杂了。那教材这样来改的目的是什么呢?我曾经跟博山教研室的李效宏科长探讨过这个问题,他谈到了教学要“瞻前顾后”的问题,使我深受启发。

大家都知道,知识是有层次性的,新知识必然以旧知识为基础,正所谓“温故而知新”,旧知识学好了,必然有利于新知识的学习,打好基础是很重要的。老师们都懂得在学习新知识前要了解学生以前学习了哪些相关的基础知识,这样才能根据学生的知识基础进行新知识的教学。但是你有没有想到,你现在教给学生的新知识,也将成为学生以后学习的知识基础,那我们做到“瞻前”了,是不是也需要“顾后”呢!还是以上面的五年级的方程为例,很多老师觉得孩子对第一种方法容易理解,解起方程来正确率也高,再加上老师们在教学中也习惯了第一种解方程的方法,所以有些老师以为不必拘泥于教材,就仍然用第一种方法来教学生解方程,而且学生出错很少,考试成绩也不错。

那学生考试成绩高了是否就可以认为教学是成功的呢?答案显然是否定的!小学五年级不是教学的终点,而是学生漫长学习生涯中的一个阶段,这就像马拉松,你在某一段路上的加速并不说明你的最后成绩,反而也许是你耗尽体力打乱生理规律的罪魁祸首。五年级的方程是孩子学习方程的起点,打好基础对孩子以后用方程解决数学问题至关重要,而学生现在学习的解方程的方法,不能仅仅以求出方程的解为唯一目的,重要的是让学生一开始接触就了解方程的基本性质,利用方程的基本性质来解方程,这样的方法才是普遍的规律性的东西,即使学生到了中学,这也是正确有效的方法,因为它是本质性的东西。而前面说的第一种方法显然具有很大的局限性,能够解决小学阶段的大多数问题,却与以后学生要学习的东西没有多少内在联系,而且到了中学这种方法在很多时候已经不能继续使用,这势必使学生要么对新的方法有所抵触,要么对以前的方法产生怀疑,不利于知识的衔接。

虽说教师不能拘泥于教材,但是首先你要了解教材编写的意图,教材设计如果不尽合理,教师可以灵活变通,但在对教材不熟悉的情况下随意改变教学内容和方法,是不恰当的。解方程的问题就是一个例子。只有瞻前顾后,既了解所教知识的起点,又要清楚所教知识的发展,承上启下,有机联系,使学生对知识的掌握具有连贯性和可持续性,才是成功的教学,才是真正为学生将来负责的教学。

解方程 篇七

一、教材分析

教材的地位和作用

《等式的性质的应用》是义务教育课程标准实验教科书数学七年级上册“3.1.2”的第二节课。学生在学习了等式的性质的基础上,对知识的拓展,使等式的性质与解方程结合起来,它有助于引导学生利用等式的性质研究方程的解法。在本节的教学中,主要为解方程的“合并同类项”“移项”“除以未知数的系数”等知识做好铺垫的。

二、教学目标分析

学情分析 学生已经掌握了一步计算的方程,不过他们利用是四则运算各部分间的关系来解方程的。学习等式的性质,是对解方程思路的一种转变。并且会用等式的性质也能熟练的解简单的方程。

根据新课程标准的理念以及前面对教材、学情的分析,我制定了如下教学目标。

知识与技能目标:

(1)熟练应用等式的性质解方程;

(2)学会观察、分析,使逻辑思维能力得到提高。

过程与方法目标:

通过自主预习、合作探究、小组交流方式让学生经历用等式的性质解方程的探究过程,并体验用等式的性质解方程的新颖与知识的应用过程。

情感态度与价值观目标:

培养学生实事求是的学习态度,渗透与他人交流、合作的意识,并能学会用联系的观点看待问题。

教学重难点分析

教学重点:运用等式的性质

教学难点:运用等式的性质解方程

本课在设计上以低起点,小台阶,循序渐进,符合学生接受知识的特点,培养学生灵活性,使他们获得成功的满足感。并通过逐步深入的课堂练习,师生互动、讲练结合,从而突出重点、突破教学难点。

三、教学方法与教学策略

课程标准指出:学生掌握知识有一个过程,要在学生初步理解的基础上,通过必要的练习来加深理解,逐步掌握。同时,通过练习,把知识转化为能力。本节课主要以自主─合作─探究,归纳─总结─应用为主线, “以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,并通过“三学小组”活动来实施。

以小组为单位,由小组长组织在小组内互学后进行小展示,各小组在小组内展示结束后,由组内推荐在班内进行大展示,组间质疑、指导及互评,加深学生对所学知识的理解。

整个学习过程注重激发学生的思维,使他们积极主动地参与学习活动,达到明“理”知“法”。并且在设计练习时注重以充实、有效的练习活动为载体,让学生探究掌握学习内容,体验领悟数学的思想和方法,发展学生学习数学的积极情感。

四、教学过程分析

1.创设情境,独立自学

(设计意图:以简单的方程入手,让学生用熟悉的解题方法引入新课,有效激起对知识的回顾,初步感知等式的性质与方程的联系,有效调动学生的学习兴趣。)

2、自主探索,合作互学

学生自学课本82页内容,以小组为单位完成以下问题:

(设计意图:在学生充分思考和讨论后,每个小组派出代表汇报结果,再通过倾听其他小组意见的发现自己的不足,在此过程中,教师要倾听,给予敢于表达自己观点的学生予以鼓励性评价。通过上述活动,逐步学会运用等式性质来解方程能力。)

3、尝试练习,展示竞学

(设计意图: 尝试练习是学生学习知识后,对知识初步应用的体验,在尝试学习中,能使每个学生都积极动脑思考,认真自学,挖掘每个学生的潜能。在尝试学习中,学生的练习或多或少有一些错误、疑惑,甚至是错误,此时根据学生的难点进行点拔,会起到很好作用。)

4、范例解析,精讲导学

(设计意图:通过这一步学习,进一步检测学习对知识的应用情况。)

5、小结评学

6、检测固学

五、评价分析

本节内容并不多,通过对等式的性质的应用,体验了与方程的关系,加深对已经学习过的内容的认识,并且初步感知对等式的性质的应用的优越性。本节课的设计遵循学生的认知规律,让学生通过的动口、动脑、动手的主动探究,经历知识的产生、发展、形成与应用的过程,重在培养学生观察、分析、抽象概括的思维能力

本节课体现了学生主体、教师主导的地位,多数时间让学生自己去探究,当学生敢于表述自己的观点时,及时予以鼓励性评价。

以上就是众鼎号为大家整理的7篇《方程的认识》,能够给予您一定的参考与启发,是众鼎号的价值所在。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:五年级下册语文教案优秀7篇

下一篇:返回列表