首页 > 学生学习 > 学习总结 >

高一数学上册必修三重要知识点【精选9篇】

众鼎号分享 47986

众鼎号 分享

学习数学并非做题就可以取得好的成绩,而是要将精力花在归纳总结上。特别对课本或课堂上出现的例题,要善于总结,就可以了解这一小节数学内容的题型,知道解法和思路,从而提高运用所学知识分析解题的能力。以下是人见人爱的小编分享的9篇《高一数学上册必修三重要知识点》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

高一年级必修三数学知识点 篇一

分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数

(2)各部分的自变量的取值情况

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集

复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数

高一数学上册必修三重要知识点 篇二

矩阵乘法

矩阵相乘重要的方法是一般矩阵乘积。它只有在第一个矩阵的列数和第二个矩阵的行数相同时才有意义。一般单指矩阵乘积时,指的便是一般矩阵乘积。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑地集中到了一起,所以有时候可以简便地表示一些复杂的模型,如电力系统网络模型。

矩阵相乘的特点

当矩阵A的列数等于矩阵B的行数时,A与B才可以相乘。

乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。

矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。

高一数学上册必修三重要知识点 篇三

线性回归方程公式

b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)。

线性回归方程公式求法:

第一:用所给样本求出两个相关变量的(算术)平均值:

x_=(x1+x2+x3+...+xn)/n

y_=(y1+y2+y3+...+yn)/n

第二:分别计算分子和分母:(两个公式任选其一)

分子=(x1y1+x2y2+x3y3+...+xnyn)-nx_Y_

分母=(x1^2+x2^2+x3^2+...+xn^2)-n*x_^2

第三:计算b:b=分子/分母

用小二乘法估计参数b,设服从正态分布,分别求对a、b的偏导数并令它们等于零。

其中,且为观测值的样本方差。线性方程称为关于的线性回归方程,称为回归系数,对应的直线称为回归直线。顺便指出,将来还需用到,其中为观测值的样本方差。

先求x,y的平均值X,Y

再用公式代入求解:b=(x1y1+x2y2+...xnyn-nXY)/(x1+x2+...xn-nX)

后把x,y的平均数X,Y代入a=Y-bX

求出a并代入总的公式y=bx+a得到线性回归方程

(X为xi的平均数,Y为yi的平均数)

线性回归方程的应用

线性回归方程是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。

线性回归有很多实际用途。分为以下两大类:

如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。

给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。

高一年级必修三数学知识点 篇四

切线的性质

⑴圆心到切线的距离等于圆的半径;

⑵过切点的半径垂直于切线;

⑶经过圆心,与切线垂直的直线必经过切点;

⑷经过切点,与切线垂直的直线必经过圆心;

当一条直线满足

(1)过圆心;

(2)过切点;

(3)垂直于切线三个性质中的两个时,第三个性质也满足

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角

高一年级必修三数学知识点 篇五

函数的周期性

(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数。

高一数学必修三知识点梳理 篇六

函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。

(2)画法

A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

(3)函数图像平移变换的特点:

1)加左减右——————只对x

2)上减下加——————只对y

3)函数y=f(x)关于X轴对称得函数y=-f(x)

4)函数y=f(x)关于Y轴对称得函数y=f(-x)

5)函数y=f(x)关于原点对称得函数y=-f(-x)

6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得

函数y=|f(x)|

7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)

高一年级数学必修三知识点整理 篇七

集合间的基本关系

1、“包含”关系—子集

注意:有两种可能

(1)A是B的一部分,

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2、“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={2-1=0}B={-1,1}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同时BíA那么A=B

3、不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集

高一数学上册必修三重要知识点 篇八

夹角公式

夹角公式是基本数学公式,分为正切公式和余角公式,正切公式用tan表示,余角公式用cos表示。正切公式(直线的斜率公式):k=(y2-y1)/(x2-x1),余弦公式(直线的斜率公式):k=(y2-y1)/(x2-x1)。

两个直线的夹角公式:设直线l1、l2的斜率存在,分别为k1、k2,且夹角不是90度,l1到l2的转向角为θ,则tanθ=(k2-k1)/(1+k1k2)。

注意:两直线的夹角指的是两直线所成的小于等于90°的角,但是当夹角为90°时,k不存在,故当k存在时,正切值始终为正。

夹角

在数学中,两条直线(或向量)相交所形成的小正角称为这两条直线(或向量)的夹角,通常记作∠Θ(Includedangle),两条直线夹角的区间范围为{Θ|0≤Θ≤π/2},两个向量夹角的区间范围为{Θ|0≤Θ≤π}。

角在几何学和三角学中有着广泛的应用。

高一年级必修三数学知识点 篇九

函数图象

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上。

(2)画法

A、描点法

B、图象变换法

(3)函数图像平移变换的特点:

1)加左减右——————只对x

2)上减下加——————只对y

3)函数y=f(x)关于X轴对称得函数y=-f(x)

4)函数y=f(x)关于Y轴对称得函数y=f(-x)

5)函数y=f(x)关于原点对称得函数y=-f(-x)

6)函数y=f(x)将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=|f(x)|

7)函数y=f(x)先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)

它山之石可以攻玉,以上就是众鼎号为大家带来的9篇《高一数学上册必修三重要知识点》,希望可以对您的写作有一定的参考作用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:高一必修三英语知识点梳理(优秀9篇)

下一篇:返回列表