循环小数教学设计(优秀10篇)
教学重点 篇一
理解循环小数的意义,并能用循环小数的近似值表示除法的商.
《循环小数》教学设计 篇二
教学目标:
1、理解循环小数、无限小数、有限小数的意义。
2、掌握循环小数的表示方法。
3、感受数学知识的无穷奥秘,体验发现知识的快乐。
教学难点:
学会循环小数的表示方法。
教学准备:
课前自主学习卡,检测题,课件,投影等。
教学过程:
一、 引入课题。
请同学们拿出课前完成的自主学习卡,卡片上的五道竖式题,对照老师(投影)给出的算式,看看自己做的如何?
师:这五道题3.03÷25= 37.2÷24= 28÷18= 78.6÷11= 1.5÷7= 的商究竟是多少呢?请从几个商中找到合适的商,对号入座,把它贴在相应的等式后面。
生上台做出选择。
师:你们为什么这样选择商呢?说明原由。
生:前两道题可以除尽,没有余数,商是有限的。
师:你知道这样的数有个共同的名字叫什么吗?
生合:有限小数。
师:同学们真聪明,那剩下的三道题的商是什么小数呢?
生合:无限小数。
师:无限小数具有什么特点呢?
生:算式永远除不完,总有余数。
师:我们一起看这五道题的竖式(投影),前两道题没有余数,可以除尽,也就是可以数出商的小数位数,而后三道题都有余数,永远除不完,对吗?
那请同学们再仔细观察一下第3、4道题竖式,你们又有什么新的发现?
生:商的小数部分不断重复出现3和45.
师:余数呢?
生:第三道题的余数总是10,而第四道题的余数总是交替出现5和6,添0后继续除,所以商的小数部分不断重复出现4、5.
师:像0.555……,7.14545……这样的小数是什么小数?
生:无限小数。
师:它是无限小数里一种特殊的小数叫循环小数。
同学们,这就是我们今天所要研究的新内容有信心学好吗?
出示学习目标:
1、 理解循环小数、无限小数、有限小数的意义。
2、 学会循环小数的记录方法。
二、 探究新知:
出示学习任务:小组合作交流①什么是循环小数和循环节?
②如何简便记录商?(举例说明)。
小组讨论交流8分钟后,以小组形式上台汇报学习成果:
预设:学生可能理解了循环小数是从小数部分某一位起,依次不断重复出现一个或几个数,但口语表达会不太明确,教师适时引导。对于循环节,从书中给出的材料中不难理解,但需要同学们举几个例子来说明一下,具体操作一下才行。
在汇报交流完之后,教师着重让孩子们看例8的竖式,体会商不断重复出现3,是由于余数不断出现25的原因,让同学们再算两道题,深刻体会循环小数出现原因及过程。
三、 练习:
请将12.36 、 12.36 、 12.3636 按从大到小的顺序排序,并交流方法和原由。
四、检测题:
师:看来同学们对循环小数了解了很多,就是不知道会做题吗,敢接受老师的检测吗?
检测题:
① 下面哪些是循环小数在( )里画“√”。
② 3.6767…的循环节是( ),用简便方法记作( )。
③ 6.48÷4.4的商用循环小数表示是( )。
④ 比较大小
学生在规定时间内完成检测,教师巡回指导,根据小组汇报的答案,要求用星级来对自己的完成情况作出评价,并在小组交流错误原因、改正。
五、 课堂小结。
师:通过今天的学习,你有哪些新的收获?
学生畅谈学习所得。
巩固概念,强化练习 篇三
(一)下面各小数
0。3737…… 2。855
5。306306…… 7。6
有限小数有( )
无限小数有( )
循环小数有( )
(二)判断
1. ( )
2. ( )
3. ( )
4. 是循环小数,也是无限小数.( )
5.所有的循环小数都一定是无限小数.( )
(三)比较两个数的大小.
0。33○ ○1。233 ○
《循环小数》教学设计 篇四
教学目标
1、使学生能正确区分有限小数和无限小数。
2、初步认识循环小数,会用循环小数表示除法的商,能用简便方法表示循环小数
3、培养学生发现问题、提出问题、解决问题的能力
4、培养学生积极的数学情感。
教学重难点
重点是循环小数的意义。
难点是掌握循环小数的简便记法。
教学工具
课件
教学过程
一、创设情境,感受循环
1、故事引入。老和尚和小和尚讲故事。.。.。.
2、学生举循环的生活现象的例子:
你们发现生活中还有哪些循环的现象?(学生讨论后回答)
(感受循环)像这样依次不断重复出现的现象,我们把它称为“循环”(板书)。在实际生活中,也有很多循环的现象,如一年有四季:春、夏、秋、冬,每年都是按照这样的规律依次不断重复出现。
师:(概括)这样的重复不仅出现在生活中,我们的数学学习中也经常会出现这种有趣的循环现象,你们想知道吗?下面我们一起来看这样一个问题。
多媒体课件出示P27王鹏赛跑的情景图。引导学生观察图意后,列出算式:400÷75
教师:请同学们用竖式计算这个算式,并指名一人板演,教师巡视。
师:像这样继续除下去,能除完吗?(可能永远也除不完。)怎样表示这种永远也除不完的商?这种商有些什么特点?就是这节课我们要研究的问题,也就是我们要认识的新朋友——循环小数。(板书课题:循环小数)
二、认识循环小数
1、初步认识循环小数。
师:刚才我们在笔算过程中发现这个算式有二个特点:
①余数重复出现“25”;
②商的小数部分连续地重复出现“3”。为什么商的小数部分总是重复出现“3”,它和每次出现的余数有什么关系?(引导说出:当余数重复出现时,商就要重复出现;商是随余数重复出现才重复出现的。)
如果将400÷75继续除下去,猜一猜,商的小数部分第10位数字是几?第100位数字呢?(学生回答)
师:那么我们怎样表示400÷75的商呢?(教师引导学生说出:可以用省略号来表示永远除不尽的商。教师随着学生的回答板书:400÷75=5.333…,教师板书后加以说明:写这样的商一般要把重复出现的数字至少写两组再写省略号。)
师:我们所说的重复也叫作循环,像5.333…这样小数部分有一个数字依次不断地重复出现的小数,就叫做循环小数。
2、进一步认识循环小数。
师:下面我们继续来研究循环小数,请同学们用竖式计算:28÷18= 78.6÷11=
(让学生独立计算,教师巡视。)
订正时教师引导学生比较5.333…和1.555…,7.14545…
师:你们觉得这三个循环小数有什么不同?(课件出示: 5.333…商的小数部分从第一位起一个数字依次不断地重复出现; 1.555…商的小数部分从第一位起一个数字依次不断地重复出现; 7.14545…商的小数部分从第二位起二个数字依次不断地重复出现。)
师提问:你们觉得像这样的算式除到哪一位就可以不除了?(引导学生说出:只要余数重复了,就可以不除了。因为像这样的算式余数循环,商也会跟着循环。)
师小结:你们说对了!像5.333…和7.14545…1.555…,这样的小数都是循环小数。你们能像这样写出几个循环小数吗?(请大家在1分钟内写出几个循环小数,看谁写得又对又多!)
讨论:究竟什么样的数就叫循环小数呢?(让学生尝试归纳什么叫循环小数,指名请几个学生说说,然后让学生打开课本第28页看看书上是怎么说的。学生齐读概念。学生读完概念后,教师在展示台上重点解释“循环小数”中的关键词。)
3、分析比较:判断下列各数哪些是循环小数,哪些不是。
3.4666…( )2.354354( )1.4555( )
0.24382438…( )0.44222…( )
4、继续探索:依次不断重复出现的数字是?
3.4666…( )0.24382438…( )0.44222…( )
小结:一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。
师:请同学们认真阅读课本第28页的“你知道吗?”,然后回答,你了解到了什么?你能结合一个循环小数给大家讲讲吗?(指名学生回答,集体交流)
教师结合具体的循环小数强调循环节的简便写法:写循环数的时候,为了简便,小数的循环部分只写出第一个循环节,并在这个循环节的首位和末位上面各写上一个圆点。
如:5.333… 写作:5.3, 读作:五点三,三循环
1.555… 写作:1.5,,读作:一点五,五循环
7.14545… 写作:7.145, 读作:七点一四五,四五循环
5、建立有限小数和无限小数的概念
大家想一想,两数两除,如果不能得到整数商,所得的商会有哪些情况?
请大家计算:15÷16= 1.5÷7=
结合学生的交流,老师引导学生归纳,像0.9375这样的小数,小数部分的位数是有限的小数叫做有限小数;像5.333…这样的小数,小数部分的位数是无限的小数叫做无限小数。(让学生开火车举例说说有限小数和无限小数,各举一个)
6、辨一辨:所有的循环小数都是无限小数吗?
三、应用知识,解决问题:
1、写一写:根据循环小数的一般写法,写出它的简便写法;或者根据它的简便写法,写出它的一般写法。
7.307= 3.1435= 2.0505 3.143535…=
2、判断题:
(1)0.7777是循环小数。( )
(2)1.3>1.333 ( )
(3)2.07=2.07 ( )
(4)13.243243…可写作13.24。 ( )
3、比较大小。
四、全课总结:
通过今天的学习你有哪些收获?(教师结合板书进行小结)
《循环小数》教学设计 篇五
教学内容
教科书第101页,练习十九第6题及你知道吗
教学目标
使学生理解循环小数、有限小数、无限小数的概念,能用循环小数或循环小数的近似值表示除法中的商。知道有限小数和无限小数的区别。使学生受到辩证唯物主义启蒙教育。
教学构想
通过计算让学生做除法,通过实际计算,发现这些除法无论除到小数点后面多少位都除不尽。根据学生计算出的除法竖式,引导学生发现余数商的特点引出循环小数的概念。这是小数概念的又一次内涵扩展,要让学生认识到循环小数是一种无限小数。
教学过程
一、复习:
看谁算得快。
第一组:1.69÷26 58.3÷11
第二组:1÷3 58.6÷11
两个数相除时,会出现两种情况,第一组题都可以除尽,第二组都除不尽。
二、新知学习
1、继续通过计算探索
5÷3=1.666……
14÷37=0.378378……
25÷22=1.13636……
2、讨论:等号后面的商该怎样写呢合适?指导书写。
3、引出“循环小数”的概念
明白:一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。
4、观察,进一步理解;无限小数、有限小数。
5、学习简便书写的方法,认识“循环节”
0.1818……=
89.5603420342……=
1.7290290……=
46.142857142857……=
6、让学生自主阅读,课本101页的“你知道吗?”交流阅读后的认识
三、巩固练习
1、下列哪些数是无限小数,哪些数是有限小数?哪些数是循环小数?
0.24242424,8.35489621……,5.737373……,6.21363636……,21.3658
2、把下列循环小数用简便的方法书写出来
5.252525……=
7.1478478……=
9.363363……=
3、练习十九 第6题。
教学目标 篇六
1.理解循环小数的意义,初步认识有限小数和无限小数.
2.通过观察、比较,培养学生抽象、概括的能力.
3.向学生进行辩证唯物主义“对立统一”观点的教育.
《循环小数》教学设计 篇七
教学目标:
①知识技能:通过学习与探究小数的循环现象,探索循环小数的循环规律。初步认识循环小数,知道循环小数的位数是无限的;
②过程与方法:经历讨论、交流的学习活动,培养学生的分类能力、分析能力和概括能力。
③情感与态度:体会数学来源于生活、服务于生活的思想,培养学生分析、处理问题的能力。
教学重难点:
理解和掌握循环小数等概念,这些概念应通过学生试算、观察、讨论、归纳得出。
教学过程:
(一)创设情境,感知概念。
1、拍节奏游戏:
师:(1)老师拍节奏,你们能拍出来吗?
(2)你们拍的节奏为什么这么整齐?
(3)如果老师让你们按照这样的节奏,不断重复地一直拍下去,不叫停止,想一想,你们要拍多少次?
(4)像这样拍的次数是“有限的”还是“无限的”?
(5)你们刚才拍的次数呢?
2、找规律,猜图形。
多媒体出示:依次出现两个圆圈和一个三角形的图形。
当逐个出现至第十个图形,即第四组的第一个圆圈后,提问:
谁能猜到下面一个是什么图形呢?
你是怎样想出来呢?
出示第12个图形时,当学生猜出下面一个是三角形时,出现“。.。.。.”这个省略号表示什么意思?
对的,也就是说,是依次不断地重复出现这样的图形,请同学们想一想,这幅图中有多少组这样的图形呢?
学生说完后,教师板书(依次不断地重复出现,无限)
在实际生活中,还有那些现象是这样的?
一年有春夏秋冬,四季周而复始,每个星期有七天,每年有52个星期,开着的红绿灯,这些都是循环现象,其实,在数学王国里,就有一种小数,同学们想认识它吗?(想)这节课我们就来学习“循环小数”。板书课题,导入新课。
(二)展示过程 探究新知
1、循环小数
①组织学生自由选择下面各题,用竖式计算,并引导学生观察商的特点。
330÷1100 2÷6 1.23÷3
②自学例2 7.3 ÷2.2 除到商是五位小数时停止。
自学提示:(1)想一想,如果继续除下去,商会怎样?
(2)谁来猜一猜第6位小数是几?
(3)“等等”用什么符号来表示?能不能不用省略号?为什么?
③你能说说省略号表示什么?
2÷9=0.222…… 5÷12=0.4166……
9÷55=0.16363…… 2.4666…… 2.583583……
④你们还能举出这样的小数吗?
⑤概括并揭题。
像这些小数,就是我们今天要学习的“循环小数”。(板书课题)
谁来说一说什么叫“循环小数”?你们认为这句话里哪几个字比较重要?
⑥判断,请同学们判断哪几个数是循环小数,为什么?
0.999…… 5.02727…… 6.416416……
3.5656565656 3.1415926…… 0.123321……
2、循环节
“0.333……”中不断重复出现的数字是哪一个?在3.31818……数中,依次不断地重复出现的数字有个名称,请看书上第61页,什么叫循环节?请找出以上判断题中循环小数的循环节。
3、循环小数的简便记法
①记法和读法。
记法:把循环节写出两遍或三遍,是一种记法。简便记法:只写一个循环节,然后在循环节的首位和末尾数字上各记一个圆点,这个点叫循环节。
读法:5.327…… 五点三二七,二七循环。
②练习。
(1)写出3.333……的简便写法。
(2)写出判断题中循环小数的简便写法。
(三)巩固强化,拓展思维。
1、判断题。
(1)9.6666是循环小数。 ( )
(2)循环小数是无限小数。( )
(3)循环小数57.575575……记作57.57 ( )
(4)32.3232是有限小数也是循环小数。 ( )
2、把下面的循环小数圈起来。
4.3737 5.28383…… 5.314162…… 0.7563563……
3、小结:
如果用这是个什么样的循环小数?
循环节是什么?可以简写成什么?学生板演。
(四)课堂总结,鼓励质疑。
通过这堂课的学习,你们有那些收获?还有那些疑问?
《循环小数》教学设计 篇八
教学内容:P30练习五第3—6题。
教学目的:
1、使学生进一步理解并循环小数、有限小数、无限小数的概念,掌握它们之间的联系和区别,并能正确区分。
2、培养学生总结规律的能力,使学生既长知识,又长智慧。
3、培养学生学习数学的积极情感。
教学重点:进一步掌握相关概念并建立联系。
教学难点:对循环小数的实际应用。
教学过程:
一、主动回顾,知识再现:上节课我们学习了什么知识?
二、单项训练,夯实基础:
1、进一步理解循环小数的概念。
下面哪些数是循环小数,如何判断的?
0.666… 3.27676… 301415926… 40.03666… 100.7878
0.06262… 3.203203… 0.2142857142857… 70.2641
2、上面这些小数可以分为几类?哪几类?这几类小数有怎样的关系?
有限小数
小数 循环小数
无限小数
无限不循环小数
三、综合练习,运用提高:
1、求循环小数的近似值:P30第3题
先请学生说说取近似值的方法,再让学生独立完成。
2、P30第6题
先观察这些小数的特点,再试一试。
请学生说出判断大小的过程,教师适时评价。
方法:把这些简便记法的循环小数还原。
师小结:先观察需要还原的小数位数,再比较,比较方法与以前比较小数的大小方法相同。
四、独立练习 :P30第4、5题。
课后小记:
在今天的课上,我向学生说明了为什么所有除法算式的商不可能为无限不循环小数。因为余数必须要比除数小,所以任何除法算式余数的可能性是有限的。当除的次数比余数可能性的个数多时,必定出现与前面余数相同的现象。我用1除以7来举例说明,学生领悟得很快,绝大多数学生明白了其中的奥妙。
其次,我还向学生介绍了无限不循环小数即是初中所要学到的“无理数”。有学生(张子钊)问“我们学不学无理数呢?”,我简单介绍了六年级即将认识的小学阶段唯一一个无理数派。孩子们对无理数十分感兴趣,我又利用课余时间为他们补充介绍了无理数产生的数学史。
《循环小数》教学设计 篇九
教学目标:
1、通过求商,使学生感受到循环小数的特点,从而理解循环小数的概念,了解循环小数的简便记法。
2、理解“有限小数”和“无限小数”的意义。
3、培养学生发现问题,提出问题,解决问题的能力,提高观察、分析、判断能力。
教学重、难点:
理解循环小数的意义
教学过程:
一、创设情境
1、理解依次重复出现的意义。
从生活中出现的一些现象引入,比如今天是星期几,谁会说?接着说能说完吗?为什么?
引出:这种“依次不断重复”的情况称为“循环”(板书:循环)
2、初步感知循环小数。
出示教材第33页例7情境图,引导学生观察并说出图意,并找数学信息,独立列式:400÷75,让学生用竖式计算,并说一说在计算过程中你有什么发现。
发现:余数重复出现“25”;商的小数部分连续地重复出现“3”。
3、引出课题。
追问:像这样除下去,能除完吗?(不能)
板书:循环小数
二、互动新援
1、认识循环小数
引导学生思考:为什么商的小数部分总是重复出现“3”,这和每次出现的余数有什么关系?
(当余数重复出现时,商就要重复出现)
引导学生说出:400÷75的商可以用省略号表示永远除不尽的商。(板书:400÷75=5。333……)
2、出示第33页例8的两道计算题,让学生自主计算,并说说商的特点。
78.6÷11算到商的第三位小数时,让学生停一停,看看余数是多少,然后再接着除出两位小数,指导学生和除得的前几步,比较,想想继续除下去,商会是什么?
通过观察比较,引导学生发现:余数重复出现5和6,商会重复出现4和5总也除不尽。
3、比较上面三个算式的商,你有什么发现?
400÷75和28÷18的商,从小数部分的第一位起不断重复出现某个数字。78.6÷11的商,从小数的第二位起不断地依次重复出现数字4和5。
师小结:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4、引导学生自主学习。
(1)循环小数的概念。
(2)认识循环节,
如:5.333……的循环节是3;
7.14545……的循环节是45。
(3)循环小数的简便写法
如:5.333……写作5。
6.9258258……和6.9 5
三、巩固练习
1、完成“做一做”的第1题
学生自主完成,集体订正。
2、完成“做一做”的第2题。
想一想,两个数相除,如果不能得到整数商,所得的商会有哪些情况?引出有限小数和无限小数。
四、小结。
这节课你们学到了什么,有什么收获?
课后作业 篇十
(一)计算下面各题,哪些商是循环小数?
5。7÷9 14。2÷11 5÷8 10÷7
(二)下面的循环小数,各保留三位小数写出它们的近似值.
1。29090……( ) 0。083838……( )
0。4444……( ) 7。275275……( )
以上内容就是众鼎号为您提供的10篇《循环小数教学设计》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在众鼎号。