首页 > 教师教学 > 教案模板 >

八年级数学教案【优秀4篇】

众鼎号分享 131313

众鼎号 分享

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,这次漂亮的小编为亲带来了4篇《八年级数学教案》,希望能够满足亲的需求。

初中数学八年级教案案例 篇一

探索勾股定理(二)

教学目标:

1、 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2、 掌握勾股定理和他的简单应用

重点难点:

重点: 能熟练运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、 创设问题的情境,激发学生的学习热情,导入课题

我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?

(同学们回答有这几种可能:(1) (2) )

在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

= 请同学们对上面的式子进行化简,得到: 即 =

这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

八、 讲例

1、 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的 米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。

解:由勾股定理得

即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:

答:飞机每个小时飞行540千米。

九、 议一议

展示投影2(书中的图1—9)

观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、 作业

1、 1、课文 P11§1.2 1 、2

2、 选用作业。

八年级数学教案 篇二

一、学习目标:

1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;

2、会运用两数差的平方公式进行计算。

二、学习过程:

请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:

(一)探索

1、计算: (a - b) =

方法一: 方法二:

方法三:

2、两数差的平方用式子表示为_________________________;

用文字语言叙述为___________________________ 。

3、两数差的平方公式结构特征是什么?

(二)现学现用

利用两数差的平方公式计算:

1、(3 - a) 2、 (2a -1) 3、(3y-x)

4、(2x – 4y) 5、( 3a - )

(三)合作攻关

灵活运用两数差的平方公式计算:

1、(999) 2、( a – b – c )

3、(a + 1) -(a-1)

(四)达标训练

1、、选择:下列各式中,与(a - 2b) 一定相等的是( )

A、a -2ab + 4b B、a -4b

C、a +4b D、 a - 4ab +4b

2、填空:

(1)9x + + 16y = (4y - 3x )

(2) ( ) = m - 8m + 16

2、计算:

( a - b) ( x -2y )

3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?

(四)提升

1、本节课你学到了什么?

2、已知a – b = 1,a + b = 25,求ab 的值

八年级数学教案 篇三

学习目标:

1、知道线段的垂直平分线的概念,探索并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质。

2、经历探索轴对称的性质的活动过程 ,积累数学活动经验,进一步发展空间观念和有条理地思考和表达能力。

3、利用轴对称的基本性质解决实际问题。

学习重点:灵活运用对应点所连的线段被 对称轴垂直平分、对应线段相等、对应角相等等性质。

学习难点:轴对称的性质的理解和拓展运用。

学习过程 :

一、探索活动

如右图所示,在纸上任意画一点A,把纸对折,用针在 点A处穿孔,再把纸展开,并连接两针孔A、A.

两针孔A、A和线段AA与折痕MN之间有什么关系?

1、请同学们按要求画点、折纸、扎孔,仔细观察你 所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A ,直线MN 线段AA.

2、那么 直线MN为什么会垂直平分线段AA呢?

3.垂直并且平分一条线段的直线,叫做线段的垂直平分线(mi dpoint perpendicular).

例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直 平分线。

4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN 有什么关系?

5.如图,再在纸上任画一点C,并仿照上面进行操作。

(1)线段AC与 AC有什么关系 ? BC与BC呢?线段CC与MN有什么关系?

(2)A与A有什么关系? B与B呢? △ABC 与△ABC有什么关系?为什么?

(3)轴对称有哪些性质?

6.轴对称的性质:

(1)成轴对称的两个图形全等。

(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

二、例题讲解

例1、(1)如图,A 、B、C、D的对称点分别是 ,线段AC、AB的对应线段分别是 ,CD= , CBA= ,ADC= .

(2)连接AF、BE,则线段AF、BE有什么关系?并用测量的方法验证。

(3)AE与BF平行吗?为什么?

(4)AE与BF平行,能说明轴对称图形对称点的连线一定 互相平行吗?

(5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?

八年级数学教案 篇四

教学目标

知识与技能

用二元一次方程组解决有趣场景中的数字问 题和行程问题,归纳用方程(组)解决实际问题的一般步骤。

过程与方法

1.通过设置问题串,让学生体会分析复杂问题的思考方法。

2.让学生进一步经历和体验列方程组解决实际问题的过程,体会方程组是刻画现实世界 的有效数学模型。

情感态度与价值观

在学习过程中让学生体验把复杂问题化为简单问题的策略,体验成功感,同时培养学生克服困难的意志和勇气, 树立自信心,并鼓励学生合作 交流,培养学生的团队精神。

教学重点

1.初步体会列方程组解决实际问题的步骤。

2.学会用图表 分析较复杂的数量关系问题。

教学难点

将实际问题转化 成二元一次方程组的数学模型;会用图表分析数 量关系。

教学准备:

教具:教材,课件,电脑(视频播放器)

学具:教材,练习本

教学过程

第一环节:复习提问(5分钟,学生口答)

内容:填空:

(1)一个两位数,个位数字是 ,十位数字是 ,则这个两位数用代数式表示为 ;若交换个位和十位上的数字得到一个新的两位数,用代数式表示为。

(2)一个两位数,个位上的数为 ,十位上的数为 ,如果在它们之间添上一个0,就得到一个三位数,这个三位数用代数式可以表示为 。

(3)有两个两位数 和 ,如果将 放在 的左边,就得到一个四位数,那么这个四位数用代数式表示为 ;如果将 放在 的右边,将得到一个新的四位数,那么这个四位数用代数式可表示为。

第二环节:情境引入(10分钟,学生动脑思考,全班交流)

内容:小明爸爸骑着摩托车带着小明在公路上匀速行驶,下图是小明每隔1小时看到的里程情况。你能 确定小明在12:00时看到的里程碑上的数吗?

第三环节:合作学习(10分钟,小组讨论,找等量关系,解决 问题)

内容:例1

两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。已知前一个四位数比后一个四位数大2178,求这两个两位数。

学生先独立思考例1,在此基础上,教师根据学生思考情况组织交流与讨论。

第四环节:巩固练习(10分钟,学生尝试独立解决问题,全班交流)

内容:练习

1.一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字 之和,商是5,余数是1。这个两位数是多少?

2.一个两位数是另一个两位数的3倍,如果把这个两位数放在另一个两位数的左 边与放在右边所得的数之和为8484.求这个两位数。

第五环节:课堂小结(5分钟,教师引导学生总结一般步骤)

内容:

1.教师提问:本节课我们学习了那些内容,对这些内容你有什么体会和想法?请与同伴交流。

2.师生互相交流总结出列方程(组)解决实际问题 www.haozuowen.net 的一般步骤。

第 六环节:布置作业

内容:习题7.6

A组(优等生) 2,3,4

B组(中等生)2、3

C组(后三分之一生)2

读书破万卷下笔如有神,以上就是众鼎号为大家带来的4篇《八年级数学教案》,希望可以对您的写作有一定的参考作用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:九年级上册英语教案【优秀10篇】

下一篇:返回列表