相交线【优秀3篇】
相交线 篇一
教学建议
1.知识结构
2.重点和难点分析
(1)本节课的重点是对顶角的概念和性质,这些是重要的基础知识,在以后的学习中常常要用到,要求学生掌握。对顶角的概念是结合图形描述的,这样描述,便于学生在图形中辨认。教学中不必让学生背这些词句,而是让学生抓住概念的本质,教给学生在图形中如何辨认它们。辨认对顶角的要领是:首先要有两条直线相交构成四个角的前提条件,再找其中有公共顶点没有公共边(或不相邻)的两个角,就是对顶角。
(2)本节课的难点是对顶角性质的证明和书写格式。要证明两角相等,这对于刚学习推理证明的学生来说并非易事。教学时要引导学生回忆至今为止已经学过的关于两个角相等的定理,使学生自己联想到“同角的补角相等”这个定理,从而受到启发获得证明的思路。可先结合图形用文字语言叙述推理过程,然后再“翻译”成符号语言的几何推理格式。要特别注意使学生明确每一步推理的根据。
3.教法建议
(1)因为本节是由相交线的模型——用钉子固定的两根木条来引入的。所以教师要事先准备好教具,先让学生观察模型,对相交线建立感性认识,然后在从模型抽象出两条相交直线。或用我们提供的课件来引入本节课,激发学生的学习兴趣。
(2)教师讲完了对顶角的定义后,可以用以下方法让学生感受对顶角的特征,探索其性质。老师拿出提前准备好的剪刀,在讲台上演示。老师不停地变换剪刀的边所成的角,让学生思考,在剪刀的边所在的角中,哪些角是对顶角,哪些角是邻补角?让学生在变化中理解对顶角和邻补角的意义。
(3)本节课的内容适合启发式教学,教师可以先拿出相交线的模型,转动木条,观察角的变化,然后抽象出两条相交直线,再让学生观察四个角的特征,这四个角根据位置关系可以分几类,这两类角各有有什么特征?这些问题都要由老师设问、启发,学生经过观察、分析、归纳总结出来,让学生自己亲历一次发现的过程,有利于学生对对顶角、邻补角的概念和性质的理解。
教学设计示例
一、素质教育目标
(一)知识教学点
1.理解对顶角和邻补角的概念,能在图形中辨认。
2.掌握对顶角相等的性质和它的推证过程。
3.会用对顶角的性质进行有关的推理和计算。
(二)能力训练点
1.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
2.通过对顶角件质的推理过程,培养学生的推理和逻辑思维能力。
(三)德育渗透点
从复杂图形分解为若干个基本图形的过程中,渗透化难为易的化归思想方法和方程思想。
(四)美育渗透点
通过实例,培养和提高学生的审美能力和审美标准;通过相交线,使学生进一步体会几何图形的简单美、对称美。
二、学法引导
1.教师教法:教具直观演示法启发引导、尝试研讨。
2.学生学法:动手动脑、积极参与、认真研讨、学会概括。
三、重点、难点及解决办法
(一)重点
(二)难点
在较复杂的图形中准确辨认对顶角和邻补角。
(三)疑点
对顶角、邻补角的图形识别。
(四)解决办法
强调图形的基本特征,指导学生逐步学会分解复杂图形、找出基本图形的方法。
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、三角尺、自制复合胶片、木条制成的相交直线的模型。
六、师生互动活动设计
1.通过实例创设情境,引导学生进入课题。
2.通过演示实验和学生讨论、总结对顶角、邻补角两个概念。
3.通过学生研讨、练习巩固完成性质的讲解。
4.通过学生总结完成课堂小结。
5.通过随堂练习,检测学生学习情况。
七、教学步骤
(一)明确目标
能在图形中正确辨认对顶角和邻补角,理解其概念,掌握其性质,并运用其进行推理计算。
(二)整体感知
通过对较复杂图形的认识和学习,逐步加深几何知识,培养学生逻辑思维能力和逻辑推理、表达能力。
(三)教学过程
创设情境,引入课题
投影打出本章的章前图(投影片1),然后引导学生观察,并回答问题。
学生活动:口答哪些道路是交错的,哪些道路是平行的。
教师导入 :图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线。相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用。它们就是我们本章要研究的课题:
【板书】第二章 相交线、平行线
【教法说明】以立交桥为实例引出本章内容,目的是①通过实例,让学生了解相交线、平行线是我们日常生活中经常见到的;②通过画面,培养学生的空间想像能力;③通过画面,启发学生广泛地联想,让学生知道,相交线、平行线的概念是从实物中抽象出来的;④通过学生熟悉的事物,激发学生的学习兴趣。
学生活动:请学生举出现实空间里相交线、平行线的一些实例。
教师导入 :相交线、平行线在日常生活中经常见到,有着广泛应用,所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备。我们先研究直线相交的问题,从而引入本节课题。
【板制】2.1 相交线、对顶角
探究新知,讲授新课
教师演示:取两根木条a、b,用钉子将它们钉在一起,并且能随意张开。固定水条a,绕钉子转动b,可以看到,b的位置变化了,a、b所成的角a也随着变化。这说明两条直线相交的不同位置情况,与它们的交角大小有关。可以用它们所成的角来说明相对位置的各种情况。所以研究两条直线相交问题首先来研究两条直线相交得到的有公共顶点的四个角。这四个角都有一个公共顶点,其中有些有公共边,有些没有公共边,故我们把这些角分成两类:对顶角和邻补角。
【教法说明】演示相交线的模型,目的是使学生领会研究相交线为什么要研究它们相交所成的角。
1.对顶角和邻补角的概念
学生活动:观察右图,同桌讨论if与Z3有什么特点,然后,举手回答,教师统一学生观点并板书。
【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角。
学生活动:让学生找一找右图中还有没有对顶角,如果有,是哪两个角?
学生口答:∠2和∠4再也是对顶角。
紧扣对顶角定义强调以下两点:
(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边。符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行。
(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角。
反馈练习:投影显示(投影片2)
下列各图中,∠l和∠2是对顶角吗?为什么?(射线OA是活动的)
【教法说明】本组题目是巩固对顶角概念的,通过练习,使学生掌握在图形中辨认对顶角的要领,同时又用反例印证概念,使学生加深印象,最后一个图形为下面讲部补角做铺垫。
学生活动:观察图2-l,∠1和∠2与对顶角相比,有什么相同点和不同点,从而得出邻补角的定义。
【板书】∠l和∠2也是直线AB、CD相交得到的,它们不仅有一个公共顶点O,还有一条公共边OA,像这样的两个角叫做邻补角。
学生活动:让学生找一找图2-1中还有没有其他邻补角,如果有,是哪些角。
学生口答:∠1和∠4,∠2和∠3,∠3和∠4都是邻补角。
【教法说明】把邻补角的概念与对顶角概念对比着讲解,便于掌握概念之间的联系与 区别,加深对概念的理解。
提出问题:如右图,∠1和∠2还是邻补角吗?为什么?
师:邻补角也可以看成是一条直线与端点在这条直线上的一条射线组成的两个角,由此可知,邻补角是有特殊位置关系的两个互补的角。右图这样的邻补角在图形中也是常见的。在这种情况下,只存在一对邻补角,而不存在对顶角,与两条直线相交所得的角不同。
教师演示:图中射线OC固定在一个位置不动,把∠1和∠2拉开,并且保持角的大小不变,如右图(投影片3).
提出问题:∠l和∠2的和是多少度?∠l和∠2还是邻补角吗?为什么?
学生活动:观察图形的变换,回答教师提出的问题,同桌可相互讨论。
【教法说明】此问题意在区别互为补角和互为邻补角的概念,演示活动投影片,有助于学生抓住概念的本质,比教师单纯地强调效果更好。
2.对顶角的性质
提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?
学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么。
【教法说明】学生说出对顶角∠l=∠3后,启发学生再说出∠2=∠4,然后得出对顶角相等的性质。在学生理解推理思路的基础上,板书为几何符号推理的格式。对顶角的性质不难得出,放手让学生展开讨论,充分发挥学生的主动性,在活跃课堂气氛的同时,培养学生的创造思维能力
【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),
∴∠l=∠3(同角的补角相等).
注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义。
或写成:∵∠1= 180°-∠2,∠3=180°-∠2(邻补角定义),
∴∠1=∠3(等量代换).
【教法说明】推得“对顶角相等”这个结论的过程,是课本中初次出现的一步推理,使学生了解推理可以写成“∵……∴……”的形式,并且每一步都要有根据,也就是括号里填的理由。这种推理的格式以后还要逐步渗透和训练,现在不要求自己会写推理过程,只要求学生能看明白就可以了,为以后证明打好基础。
尝试反馈,巩固练习
投影显示(投影片4)
【教法说明】本级统习是巩固对顶角和邻补角概念的,同时培养学生的识图能力。第1题是课本第59页练习第2题的变式,第2题是课本第59页练习第3题和“想一想”的综合。解决这类题目的关键是要善于从复杂图形中分离出基本图形。对顶角、邻补角的基本图形是两条直线相交,则三条直线相交的图形应分解为三个两条直线交于一点的图形。如:
为此,对顶角有 2×3=6个,邻补角的对数为 4×3=12个。第3、4题是有关的概念的综合训练,其中第4题意在区别互为补角和互为邻补角的概念。
投影显示(投影片5)
【教法说明】第1题是直接利用对顶角相等的性质得出,第2、3题是结合图形利用对顶角相等的性质,第4题是课本59负练习第4题,是两条直线相交的一种特殊情况,为下节课讲两直线互相垂直埋下伏笔。
变式训练,培养能力
投影显示(投影片6)
学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。
解:∠3=∠1=40°(对顶角相等).
∠2=180°-40°=140°(邻补角定义).
∠4=∠2=140°(对顶角相等).
【教法说明】例题一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算。例题放手让学生自己解决,比教师单纯地讲解效果会更好。尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象更深刻。
学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题。
变式1:把∠l=40°变为∠2-∠1=40°
变式 2:把∠1=40°变为∠2是∠l的3倍
变式3:把∠1=40°变为∠1 :∠2=2:9
变式4:把∠1=40°变为∠1=平角
【教法说明】学生自编开放性的题目,一是活跃课堂气氛;二是培养学生的开放思维能力和逆向思维能力。变式1、2、3均可建立方程或方程组求解,几何中计算角度和线段长度等问题常借助代数方程来解决。
(四)总结、扩展
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交面成的角
②有一个公共顶点
③没有公共边
对顶角相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。
邻补角
①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角互补
学生活动:表格中的结论均由学生自己口答填出。
【教法说明】课堂小结以提问形式,由学生自己讨论,系统归纳总结,以便培养学生的概括表达能力。
八、布置作业
(一)必做题
课本第69页习题 2.1A组第2题。
(二)思考题
课本第70页习题2.1A组第4题
【教法说明】作业 紧紧围绕着对顶角、邻补角的概念及对顶角性质。思考题是对顶角性质的一个应用实例,结合图形可以看出,活动指针的读数,就是两直线相交成一个角的度数,培养学生应用数学的意识。
(三)作业 答案
2.解:(1)∠AOD的对顶角是∠BOC,∠EOC的对顶角是∠DOF.
(2)∠AOC的邻补角是∠AOD和∠BOC,∠EOB的邻补角是∠AOE和∠BOF.
(3)∠BOD=∠AOC=50°(对顶角相等),∠BOC=180°-50=130°(邻补角定义).
4.应用对顶角相等的性质测量角。
九、板书设计
相交线 篇二
相交线〈垂线〉
学习目标:
知识目标
了解两条直线互相垂直的概念;
2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。
能力目标
培养提高学生观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。
德育目标
培养学生辩证唯物主义思想及不断发现,探索新知识的精神。
情感目标
通过创设情境,利用变式训练,多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的机会。
重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线
教具:多媒体、投影仪、自制的可旋转的两根木条等
[学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要求和各种教学原则,以及本节的教材内容与学生的实际确定的。]
互究策略:(教学流程)
一、背景1.[生活背景]旗杆与旗台边缘线的垂直关系;红十字会标志;
2.[知识背景]两条直线相交,产生两对对顶角,且对顶角相等。
二、师生互究1.创设问题情境
师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?[教师用多媒体或投影仪展示]
[学生众说纷纭,教师应给予充分的肯定]
师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……
师:让我们共同探索图甲这种特殊情况。
[借助于教具,模型,实物,图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认识方式]
2.回顾再现:对顶角相等
两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC
1. 提高:教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。
[教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。]
师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2)[同时演示教具] 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?
生: ……(用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励)[这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。]
2. 提升:[教师引导学生归纳]两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。
师:ⅰ)如图(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O。“AB⊥CD”读作“AB垂直于CD”或“CD垂直于AB”。
ⅱ)两条直线AB⊥CD, 垂足为点O,则∠AOC=∠AOD=∠BOC=∠BOD=90°
[实现数学的三大语言:文字语言,符号语言,几何语言之间的切换,并板书以突出其重要性]
5.再探究:师:请同学们举一些日常生活中互相垂直的直线的例子;生:……
[希望实现将数学知识在实际生活中的运用,并为后继数学知识增加感性认知]
师:请同学们用三角尺或量角器:
ⅰ)经过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的垂线有几条?
ⅱ)设这一点在直线AB上,重作上述过程。
[学生分组或独立探索,教师巡视指导]
[教师引导学生归纳结论]:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
[通过学生动手操作画图,教师在巡视中及时指出、纠正学生发生的错误,训练学生以严谨的科学态度研究问题、解决问题。]
师:请同学们互相门交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义
[学生讨论交流,教师巡视] 师:[引导归纳]
a)、靠已知直线——找待过定点——画已知直线的垂线(一靠、二过、三垂直)。
b)、有一条并且只有一条没有第二条。
师:如图(5)请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。
[探究性活动是《数学课程标准》的一个重要举措,并为培养学生的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生动手操作能力的培养,同时也培养了学生的合作意识和竞争意识,使学生更深入理解垂直、垂线的概念。]
6.学生探索:[学生分小组测量,讨论,归纳]如图(6)所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?[抽小组代表发言]
7.教师:[总结归纳]只有线段AB最短,且当AB与DC垂直时,才最短。
[教师引导学生得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,]
提高为:线段AB的长度就是点A到直线DC的距离。
思考:点A到直线DC的距离与点A到点C的距离有什么区别?
点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。
[从生活实际,从学生感兴趣,熟悉的问题引导学生发现垂线的第二个性质,提高学生学数学的兴趣,并适当体现学数学——用数学——发现数学的思想。]
三、较量1.P170 1、2、32.应用:[使学生在相互竞争中,实践应用本节课的知识,分享获取成功的喜悦,并促进学生积极向上的心理品质]
⑴、某村庄在如图(7)所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。
⑵、教材P170 做一做⑶、体育课上怎样测量跳远成绩。
图(7)
脚印
脚印
[学以致用,学生做个小小设计师,兴趣盎然,把这节课引入高潮。]
四、分享:
a) 两条直线互相垂直的概念;
b) 如何过已知直线上或已知直线外的一点作唯一的垂线。
五、探索:① P174 1 、 2
③ 学校的位置如图(8)所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。
相交线 篇三
(满分100分,时间90分)
1.判断题:(每小题3分,共24分)
(1)和为的两个角是邻补角; ( )
(2)如果两个角不相等,那么这两个角不是对顶角 ( )
(3)两条直线被第三条直线所截,同位角相等 ( )
(4)如果直线∥,那么∥ ( )
(5)两条直线平行,同旁内角相等; ( )
(6)邻补角的角平分线所在的两条直线互相垂直 ( )
(7)两条直线相交,所成的四个角中,一定有一个是锐角 ( )
(8)如果直线那么∥ ( )
2. 选择题:(每小题5分,共20分)
(1)下列语句中,正确的是( )
(a)有一条公共边且和为的两个角是邻角;
(b)互为邻补角的两个角不相等
(c)两边互为反向延长线的两个角是对顶角
(d)交于一点的三条直线形成3对对顶角
(2)如图,如果ad∥bc,则有
①∠a+∠b=
②∠b+∠c=
③∠c+∠d=
上述结论中正确的是( )
(a) 只有①
(b) 只有②
(c) 只有③
(d)只有①和③
(3)如图,如果ab∥cd,cd∥ef,那么∠bce等于( )
(a)∠1+∠2
(b)∠2-∠1
(c)-∠2 +∠1
(d)-∠1+∠2
(4)如果直线∥,∥,那么∥。这个推量的依据是( )
(a)等量代换
(b)平行公理
(c)两直线平行,同位角相等
(d)平行于同一直线的两条直线平行
3. 填空:(每空1分,共16分)
(1)如图,∠3与∠b是直线ab、______被直线______所截而成的______角;∠1与∠a是直线ab、______被直线______所截而成的______角;∠2与∠a是直线ab、______被直线______所截而成的______角。
(2)已知:如图,ab∥cd,ef分别交于ab、cd于e、f,eg平分∠aef,fh平分∠efd。
求证: eg∥fh
证明:∵ ab∥cd(已知)
∴ ∠aef=∠efd (______)
∵ eg平分∠aef,fh平分∠efd(______),
∴∠______=∠aef,
∠______=∠efd(角平分线定义)
∴ ∠______=∠______
∴ eg∥fh(______)
4.已知:如图,∠1=,ab⊥cd,垂足为o,ef经过点o。求∠2、∠3、∠4的度数。(10)
5.已知:如图,直线ef与ab、cd分别相交于点g、h,∠1=∠3。
求证:ab∥cd。(10分)
6.已知:如图,ab∥cd,be∥cf。
求证:∠1=∠4。(10分)
7.已知:如图,be∥df,∠b=∠d。求证:ad∥bc。(10分)
初中几何第二章“相交线、平行线”能力自测题
参考答案
1.(1)× (2)√ (3)× (4)× (5)× (6)√ (7)× (8)√
2.(1)c (2)d (3)c (4)d
3.(1)ce,bd,同位;bd,ac,同旁内;ce,ac,内错
(3)两直线平行,内错角相等,已知,∠gef,∠efh,∠gef,∠efh,内错角相等,两直线平行
4.∠2=,∠3= ∠4=
5.证明:∵∠1=∠ghd,∠3=∠agh(对顶角相等),
∠1=∠3(已知),
∴∠agh=∠ghd
∴ab∥cd(内错角相等,内错角相等)
6.证明:∵ab∥cd(已知),
∴∠abc=∠bcd(两条直线平行,内错角相等)
∵be∥cf(已知)
∴∠2=∠3(两条直线平行,内错角相等),
∵∠abc=∠1+∠2,∠bcd=∠3+∠4,
∴∠1=∠4
7. 证明:∵be∥df(已知)
∴∠d=∠ead(两条直线平行,内错角相等),
∵∠b=∠d(已知),
∴∠b=∠ead
∴ad∥bc(同位角相等,两直线平行)
上面内容就是众鼎号为您整理出来的3篇《相交线》,希望可以对您的写作有一定的参考作用。