首页 > 教师教学 > 教案模板 >

高中物理的优秀教案【9篇】

众鼎号分享 130191

众鼎号 分享

在教学工作者开展教学活动前,常常需要准备教案,借助教案可以有效提升自己的教学能力。那么问题来了,教案应该怎么写?这次漂亮的小编为亲带来了9篇《高中物理的优秀教案》,如果能帮助到亲,我们的一切努力都是值得的。

高中物理教案 篇一

《向心力1》教案设计

一、教材分析

本节教材选自人民教育出版社全日制普通高中课程标准实验教科书(物理2·必修)第五章《曲线运动》第六节《向心力》。

教材的内容方面来看,本章节主要讲解了向心力的定义、定义式、方向及验证向心力的表达式,变速圆周运动和一般曲线运动。前面几节已经学习了曲线运动、圆周运动、向心加速度,这节讲的是描述使物体做圆周运动的合外力,是对物体运动认识上的升华,为接下来万有引力的的学习奠定了基础。所以在整个教材体系中起了承上启下的作用,并且这样的安排由简单到复杂,符合学生的认知规律。

从教材的地位和作用方面来看,本章节是运动学中的重要概念,也是高一年级物理课程中比较重要的概念之一,是对物体运动认识上的升华,它把运动学和动力学联系在了一起,具有承上启下的桥梁作用,也是学生知识系统中不可或缺的重要组成部分。

二、学情分析

【知识基础方面】在学习本节课前学生已经学习了曲线运动、圆周运动、向心加速度,具备了探究向心力的基本知识和基本技能,这为本节课的探究性学习起到了铺垫作用。

【思维基础方面】高一的学生通过初中科学和第一学期的学习,具有了一定的物理思维方法和较强的计算能力,但接受能力尚欠缺,需要教师正确的引导和启发。

【情感态度方面】在学生的生活经验中,与向心力有关的现象有,但是有一些是错误的这就给学生理解向心力的概念带来困难。

三、教学目标

【知识技能目标】理解向心力的定义;

能说出向心力的定义、写出向心力的定义式和单位理解向心力的作用效果;用圆锥摆粗略验证向心力的表达式;

【过程方法目标】

通过对向心力,向心加速度,圆周运动,牛顿第二定律的理解与学习,相互联系,体验对物理概念的学习方法

【情感态度与价值观目标】

通过用概念前后联系的方法得出加速度的概念,感悟到探索问题解决问题的兴趣和学无止境的观点;

通过向心力的教学引导学生从现实的生活经历与体验出发,激发学生的学习兴趣;通过一些有趣的实验实验,加深学生的印象,容易让学生理解,引起学生兴趣;

四、重点与难点

重点:向心力表达式验证,向心力来源与作用效果。设定一定运动情景,来验证向心力表达式。来源进行举例说明,进行受力分析。(重点如何落实)

难点:向心力表达式的验证。通过用圆锥摆粗滤验证表达式,通过圆锥摆做匀速圆周运动解释原理,分析其在运动角度和手里角度的合外力,测量数据与测量器材,一步步得出表达式的正确。(难点咋么突破)

五、教学方法与手段

教学方法:演示法,讲授法,讨论法教学手段:多媒体,口述

六、教学过程

1.引入

回顾本章内容,复习向心加速度,放一个有关视屏,向同学提问物体为甚么做圆周运动?

2.新课教学(熟悉一下过渡)

一、做小球做圆周运动的实验,多问题进行思考,得出向心力特点进行总结

二、教授有关向心力的有关知识并进行一定补充。

三、用圆锥摆粗滤验证向心力表达式小结:向心力定义表达式

高中物理教案 篇二

【教学目标】

1.了解什么是热辐射及热辐射的特性。

2.了解黑体辐射,了解黑体热辐射的强度与波长的关系 。

3.了解能量子的概念 及提出的科学过程,领会这一科学突破过程中科学家的思想。

4.了解宏观物体和微观粒子的能量变化特点,体会量子论的建立深化了人们对于物质世界的认识 。

【教学重点】

能量子的概念。

【教学难点】

黑体辐射的实验规律。

【教学方法】

讲授为主,启发、引导。

【教学用具】

多媒体辅助教学设备。

【教学过程 】

一、引入新课

师:19世纪末,牛顿定律在各个领域里都取得了很大的成功:在机械运动方面不用说,在分子物理方面,成功地解释了温度、压强、气体的内能。在电磁学方面,建立了一个能推断一切电磁现象的 Maxwell方程。另外还找到了力、电、光、声等都遵循的规律---能量转化与守恒定律。当时许多物理学家都沉醉于这些成绩和胜利之中。他们认为物理学已经发展到头了。

1900年在英国皇家学会的新年庆祝会上,著名物理学家开尔文作了展望新世纪的发言:“科学的大厦已经基本完成,后辈的物理学家只要做一些零碎的修补工作就行了。” “但是,在物理学晴朗天空的远处,还有两朵令人不安的乌云。”

这两朵乌云是指什么呢? 一朵与黑体辐射有关,另一朵与迈克尔逊实验有关。然而, 事隔不到一年(1900年底),就从第一朵乌云中降生了量子论,紧接着(1905年)从第二朵乌云中降生了相对论。经典物理学的大厦被彻底动摇,物理学发展到了一个更为辽阔的领域。正可谓“山重水复疑无路, 柳暗花明又一村”。

我们这节课就来学习“能量量子化的发现 ——物理学新纪元的到来”。

二、进行新课

1.黑体与黑体辐射

师:请同学们阅读教材27第一段,思考:什么是热辐射,物体的热辐射有什么特性?(学生阅读教材、思考问题)

(1)热辐射现象

师:我们周围的一切物体都在辐射各种波长的电磁波,这种辐射与由于物体中的分子、原子受到激发而造成的,它与温度有关,因此称为热辐射。

所辐射电磁波的特征与温度有关。 当温度升高时,热辐射中较短波长的成分越来越强。。例如:在给铁块加热使其温度升高时,从看不出发光到暗红到橙色到黄白色 ,这表明辐射强度按波长的分布情况随物体的温度而有所不同。

课件展示:铁块在温度升高时颜色的变化(下图)。

(板书)1 热辐射

①定义

②特性

辐射强度按波长的分布情况随物体的温度而有所不同。

(2)黑体

教师:除了热辐射之外,物体表面还会吸收和反射外界射来的电磁波。不同的物体吸收和反射电磁波的能力是不一样的。

(板书)能全部吸收各种波长的电磁波而不发生反射的物体,称为绝对黑体,简称黑体。

教师:课件展示黑体模型(如下图)并进行阐释。

不透明的材料制成带小孔的空腔,那么射入小孔的电磁波在空腔内表面会发生多次反射和吸收,最终不能从空腔射出。这个小孔可近似看作黑体。

2.黑体辐射的实验规律

教师:一般材料的物体和黑体辐射电磁波的情况有什么不同呢?

高中物理的优秀教案 篇三

{课前感知}

1.经典力学认为,物体的质量与物体的运动状态 ;而狭义相对沦认为,物体的质量随着它的速度的增大而 ,若一个物体静止时的质量为 ,则当它以速度 运动时,共质量m= 。

2.每一个天体都有一个引力半径,半径的大小由 决定;只要天体实际半径 它们的引力半径,那么由爱因斯坦和牛顿引力理论计算出的力的差异 。但当天体的实际半径接近引力半径时,这种差异 。

{即讲即练}

【典题例释】 【我行我秀】

【例1】20世纪以来,人们发现了一些事实,而经典力学却无法解释,经典力学只适用于解决物体的 问题,不能用来处理 运动问题,只适用于 物体,一般不适用于 粒子。这说明人们对客观事物的具体认识在广度上是有 的,人们应当 。

【思路分析】人们对客观世界的认识要受到他所处的时代客观条件和科学水平的制约,所以人们只有不断扩展自己的认识,才能掌握更广阔领域内的不同事物的本质与规律。

【答案】低速运动 高速 宏观 微观 局限性

不断扩展认识,在更广阔的领域内掌握不同事物的本质与规律

【类题总结】历史的科学成就不会被新的科学成就所否定,它只能是新的科学在一定条件下的特殊情形

【例2】继哥白尼提出“太阳中心说”、开普勒提出行星运动三定律后,牛顿站在世人的肩膀上,创立了经典力学,揭示了包括行星在内的宏观物体的运动规律;爱因斯坦既批判了牛顿力学的不足,又进一步发展了牛顿的经典力学,创立了相对论,这说明 ( )

A.世界无限扩大,人不可能认识世界,只能认识世界的一部分

B.人的意识具有能动性,能够正确地反映客观世界

C.人对世界的每一个正确认识都有局限性,需要发展和深化

D.每一个认识都可能被后人推翻,人不可能获得正确的认识

【思路分析】发现总是来自于认识过程,观点总是为解释发现而提出的,主动认识世界,积极思考问题,追求解决(解释)问题,这是科学研究的基本轨迹。爱因斯坦的相对理论是对牛顿力学的理论的发展和深化,但也有人正在向爱因斯坦理论挑战

【答案】BC

【类题总结】一切科学的发现都是人们主动认识世界的结果,而每个人的研究又都是建立在前人研究的基础上,通过自己的努力去发展和提高。爱因斯坦的相对论理论并没有否定牛顿力学的理论,而是把它看成是在一定条件下的特殊情形。

【例3】一个原来静止的电子,经电压加速后,获得的速度为 .问电子的质量增大了还是减小了?改变了百分之几?

【思路分析】根据爱因斯坦的狭义相对论 得运动后质量增大了。

所以改变的百分比为 .

【答案】增大了 0.02%

【类题总结】在这种情况下,由于质量改变很小,可以忽略质量的改变,经典力学理论仍然适用,而宏观物体的运动速度一般都很小(相比于光速),所以经典力学解决宏观物体的动力学问题是适用的。 1. 19世纪末和20世纪以来,物理学的研究深入到 ,发现 等微观粒子不仅有 ,而且有 ,它们的运动规律不能用经典力学来说明。

2. 下列说法正确的是 ( )

A.经典力学能够说明微观粒子的规律性

B.经典力学适用于宏观物体的低速运动问题,不适用于高速运动的问题

C.相对论与量了力学的出现,表示经典力学已失去意义

D.对于宏观物体的高速运动问题,经典力学仍能适用

3.对于公式 ,下列说法中正确的是( )

A.式中的 是物体以速度V运动时的质量

B.当物体的运动速度 时,物体的质量为 0,即物体质量改变了,故经典力学不适用,是不正确的

C.当物体以较小的速度运动时,质量变化十分微弱,经典力学理论仍然适用,只有当物体以接近光速运动时,质量变化才明显,故经典力学适用于低速运动,而不适用于高速运动

D.通常由于物体的运动速度太小,故质量的变化引不起我们的感觉,在分析地球上物体的运动时,不必考虑质量的变化

{超越课堂}

〖基础巩固

1.下列说法正确的是 ( )

A.在经典力学中,物体的质量不随运动状态而改变,在狭义相对论中,物体的质量也不随运动状态而改变

B.在经典力学中,物体的质量随运动速度的增加而减小,在狭义相对论中,物体的质量随物体速度的增大而增大

C.在经典力学中,物体的质量是不变的,在狭义相对论中,物体的质量随物体速度的增大而增大

D.上述说法都是错误的

2.下列说法正确的是 ( )

A.牛顿定律就是经典力学

B.经典力学的基础是牛顿运动定律

C.牛顿运动定律可以解决自然界中所有的问题

D.经典力学可以解决自然界中所有的问题

3.20世纪初,著名物理学家爱因斯坦提出了 ,阐述物体 时所遵从的规律,改变了经典力学的一些结论.在经典力学中,物体的质量是 的.

而且具有 ,它们的运动规律不能用经典力学来说明.

4. 与 都没有否定过去的科学,而认为过去的科学是自己在一定条件下的特殊情形.

5.一条河流中的水以相对于河岸的速度v水岸流动,河中的船以相对于河水的速度V船水顺流而下,在经典力学中的速度为:V船岸= .

6.在粒子对撞机中,有一个电子经过高压加速,速度达到光速的0.5倍,试求此时电子的质量变为静止时的多少倍?

〖能力提升

7.〖概念理解题20世纪以来,人们发现了一些新的事实,而经典力学却无法解释.经典力学只适用于解决物体的低速运动问题,不能用来处理高速运动问题,只适用于宏观物体,一般不适用于微观粒子.这说明 ( )

A.随着认识的发展,经典力学已成了过时的理论

B.人们对客观事物的具体认识在广度上是有局限性的

C.不同领域的事物各有其本质与规律

D.人们应当不断扩展认识,在更广阔的领域内掌握不同事物的本质与规律

8.〖概念理解题下列说法正确的是 ( )

①爱因斯坦的狭义相对论研究的是物体在低速运动时所遵循的规律

②爱因斯坦的狭义相对论研究的是物体在高速运动时所遵循的规律

③牛顿力学的运动定律研究的是物体在低速运动时所遵循的规律

④牛顿力学的运动定律研究的是物体在高速运动时所遵循的规律

A.①③ B.②④

C.①④ D.②③

9.〖应用题关于经典力学和量子力学,下面说法中正确的是( )

A.不论是对客观物体,还是微观粒子,经典力学和量子力学都是适用的

B.量子力学适用于宏观物体的运动,经典力学适用于微观粒子的运动

C.经典力学适用于宏观物体的运动,量子力学适用于微观粒子的运动

D.上述说法都是错误的

10. 〖概念理解题下面说法中正确的是 ( )

A.根据牛顿的万有引力定律可以知道,当星球质量不变,半径变为原来的一半时,表面上的引力将变为原来的4倍

B.按照广义相对论可以知道,当星球质量不变,半径变为原来的一半时,表面上的引力将大于原来的4倍

C.在球体的实际半径远大于引力半径时,根据爱因斯坦的理论和牛顿的引力理论计算出的力差异很大

D.在天体的实际半径接近引力半径时,根据爱因斯坦的引力理论和牛顿的引力理论计算出的力差异不大

11.〖应用题丹麦天文学家第谷连续20年详细记录了行星的运动过程中的位置的变化。这些资料既丰富又准确,达到了肉眼所能及的限度。但他并没有发现行星运动规律。对此,下列说法正确的有 ( )

A.占有大量感性材料是毫无意义的

B.第谷的工作为发现行星运动规律创造了前提

C.说明第谷没有真正发挥主观能动性

D.第谷缺少的是对感性材料的加工、制作

〖思维拓展

12.〖应用题当物体的速度v=0.8c(c为光速)时,质量增大到原质量的 倍。

13. 〖应用题两台升降机甲、乙同时自由下落,甲上的人看到乙是静止的,也就是说,在甲看来,乙的运动状态并没有改变,但是乙确实受到向下的地球引力,根据牛顿定律,受到外力作用的物体,其运动状态一定会改变,这不是有矛盾吗?你是如何理解的?

第六节 经典力学的局限性

【课前感知】

1.无关;增大;

2.天体的质量;远大于;并不很大;将急剧增大

【我行我秀】

1.(1)微观世界 电子 质子 中子 粒子性 波动性

2.(1)B 【思路分析】经典力学的适用范围是宏观、低速运动的物体,对于微观粒子和高速运动的物体的运动规律可用量子力学与相对论观点解释,两者研究问题的对象不一样,是相互补充的。

3.(1)C、D 【思路分析】公式中m0是静止质量,m是物体以速度v运动时的质量,A不对。由公式可知,只不当v接近光速时,物体的质量变化才明显,一般情况下物体的质量变化十分微小,故经典力学仍然适用,故B不对,C、D正确。

【超越课堂】

1.C【思路分析】在经典力学中,物体的质量是不变,在狭义相对论中,物体的质量随物体速度的增大而增大,二者在速度远小于光速时是统一的。

2.B【思路分析】经典力学并不等于牛顿定律,牛顿运动定律只是经典力学的基础;经典力学并非万能,也有其适用范围,并不能解决自然界中所有的问题 ,没有哪个理论可以解决自然界中所有问题。因此只有搞清牛顿运动定律和经典力学的隶属关系,明确经典力学的适用范围,才能正确解决此类问题。

3.狭义相对论 以接近光速的速度运动 不变

4.相对论 量子力学

5.v船水+v水岸

6.1.155倍

7.BCD

8.D

9.C

10.AB 【思路分析】在球体的实际半径远大于引力半径时,根据爱因斯坦的理论和牛顿的引力理论计算出力差异并不很大。

11.BD【思路分析】开普勒是通过对第谷的资料研究才发现行星运动的规律的,如果第谷对自己的感性材料进行加工制作,相信他也能够发现行星运动的规律。

12.1.7倍 【思路分析】根据质量与速度的关系,将v=0.8c代入求得 m= = =1.7m0.

高中物理的优秀教案 篇四

教学目标

(一)知识与技能

1.知道产生感应电流的条件。

2.会使用线圈以及常见磁铁完成简单的实验。

(二)过程与方法

学会通过实验观察、记录结果、分析论证得出结论的科学探究方法

(三)情感、态度与价值观

渗透物理学方法的教育,通过实验观察和实验探究,理解感应电流的产生条件。举例说明电磁感应在生活和生产中的应用。

教学重点、难点

教学重点:通过实验观察和实验探究,理解感应电流的产生条件。

教学难点:感应电流的产生条件。

教学方法

实验观察法、分析法、实验归纳法、讲授法

教学手段

条形磁铁(两个),导体棒,示教电流表,线圈(粗、细各一个),学生电源,开关,滑动变阻器,导线若干,

教学过程

一、基本知识

(一)知识准备

①磁通量

定义:公式:?=BS 单位:符号:

推导:B=?/S,磁感应强度又叫磁通密度,用Wb/ m2表示B的单位;

计算:当B与S垂直时,或当B与S不垂直时,?的计算

②初中知识回顾:当闭合电路的一部分做切割磁感线运动时,电路中会产生感应电流。

电磁感应现象:由磁产生电的现象

(二)新课讲解

1、实验一:闭合电路的部分导线在匀强磁场中切割磁感线,教材P6图4.2-1

探究导线运动快慢与电流表示数大小的关系。

实验二:向线圈中插入磁铁,或把磁铁从线圈中抽出,教材P6图4.2-2

探究磁铁插入或抽出快慢与电流表示数大小的关系

2、模仿法拉第的实验:通电线圈放入大线圈或从大线圈中拔出,

或改变线圈中电流的大小(改变滑线变阻器的滑片位置),

教材P7图4.2-3

探究将小线圈从大线圈中抽出或放入快慢与电流表示数的

关系

3、分析论证:

实验一:磁场强度不发生变化,但闭合线圈的面积发生变化;

实验二:①磁铁插入线圈时,线圈的面积不变,但磁场由弱变强;

②磁铁从线圈中抽出时,线圈的面积也不改变,磁场由强变弱;

实验三:①通电线圈插入大线圈时,大线圈的面积

不变,但磁场由弱变强;

②通电线圈从大线圈中抽出时,大线圈的

面积也不改变,但磁场由强变弱;

③当迅速移动滑线变阻器的滑片,小线圈

中的电流迅速变化,电流产生的磁场也随

之而变化,而大线圈的面积不发生变化,

但穿过线圈的磁场强度发生了变化。

4、归纳总结:

在几种实验中,有的磁感应强度没有发生变化,面积发生了变化;而又有的线圈的面积没有变化,但穿过线圈的磁感应强度发生了变化。其共同点是穿过线圈的磁通量发生了变化。磁通量变化的快慢与闭合回路中感应电流的大小有关。

结论:只要穿过闭合回路的磁通量发生变化,闭合电路中就有感应电流产生。

5、课堂总结:

1、产生感应电流的条件:①电路闭合;②穿过闭合电路的磁通量发生改变

2、电磁感应现象:利用磁场产生电流的现象叫电磁感应现象

3、感应电流:由磁场产生的电流叫感应电流

6、例题分析

例1、右图哪些回路中比会产生感应电流

例2、如图,要使电流计G发生偏转可采用的方法是

A、K闭合或断开的瞬间 B、K闭合,P上下滑动

C、在A中插入铁芯 D、在B中插入铁芯

7、练习与作业

1、关于电磁感应,下列说法中正确的是

A导体相对磁场运动,导体内一定会产生感应电流

B导体做切割磁感线的运动,导体内一定会产生感应电流

C闭合电路在磁场中做切割磁感线的运动,电路中一定会产生感应电流

D穿过闭合电路的磁通量发生变化,电路中一定会产生感应电流

2、恒定的匀强磁场中有一圆形闭合圆形线圈,线圈平面垂直于磁场方向,当线圈在此磁场中做下列哪种运动时,线圈中能产生感应电流

A线圈沿自身所在的平面做匀速运动

B线圈沿自身所在的平面做加速直线运动

C线圈绕任意一条直径做匀速转动

D线圈绕任意一条直径做变速转动

3、如图,开始时距形线圈平面与磁场垂直,且一半在匀强磁场外,另一半在匀强磁场内,若要使线圈中产生感应电流,下列方法中可行的是

A以ab为轴转动

B以oo/为轴转动

C以ad为轴转动(转过的角度小于600)

D以bc为轴转动(转过的角度小于600)

4、如图,距形线圈abcd绕oo/轴在匀强磁场中匀速转动,下列说法中正确的是

A线圈从图示位置转过90?的过程中,穿过线圈的磁通量不断减小

B线圈从图示位置转过90?的过程中,穿过线圈的磁通量不断增大

C线圈从图示位置转过180?的过程中,穿过线圈的磁通量没有发生变化

D线圈从图示位置转过360?的过程中,穿过线圈的磁通量没有发生变化

6、在无限长直线电流的磁场中,有一闭合的金属线框abcd,线框平面与直导线ef在同一平面内(如图),当线框做下列哪种运动时,线框中能产生感应电流

A、水平向左运动B、竖直向下平动

C、垂直纸面向外平动D、绕bc边转动

高中物理教案 篇五

一、教学简析

1.教材分析:

本学期期采用的教材为人民教育出版社出版的《物理》选修3-1,共分为三章,分别是

第一章静电场、第二章恒定电流、第三章磁场。静电场是高中阶段的基础内容之一,它的核心是电场的概念及描述电场特性的物理量,全章共9节内容,从电荷、电场的角度来研究电学中的基本知识。恒定电流为第二章内容,其主要研究的内容为一些基本的电路知识,主要包括欧姆定律、焦耳定律、串并联电路等,本章的知识须要以静电场的相关知识作为基础,在教学中应注意联系静电场的有关内容。最后一章为磁场,磁场和电场密切联系又具有相似性,因此通过对比,可以对本章内容起到良好的帮助。

2.学生分析:

本届高二学生基础不是太好,但不能降低要求,除对少部分同学要提高要求以外,对大多数学生以掌握基本概念基本规律为主要目的,此外还应适当掌握分析物理问题解决物理问题的方法,并提高能力。

3.教法、学法分析:

针对本学期教学内容和学生的特点,采取重知识和重概念在此基础上提高学生能力的方法:强调学生的课前预习,争取少讲、精练、多思考。培养学生分析问题解决问题的能力。特别培养学生利用数学知识解决物理问题的能力,提高学生的实验动手能力,加强学生实验的教学,加强物理综合知识的分析和讨论。培养学生的综合素质。充分调动学生的主动性、积极性。让学生变成学习的主人。

二、教育目标任务要求

1.认真钻研教学大纲及调整意见、体会教材编写意图。注意研究学生学习过程,了解

不同学生的主要学习障碍,在此基础上制定教学方案,充分调动学生学习主动性。

2.要特别强调知识与能力的阶段性,强调掌握好基础知识、基本技能、基本方法 , 这是能力培养的基础。对课堂例题与习题要精心筛选,不要求全、求难、求多,要求精、求少、求活,强调例题与习题的教育教学因素,强调理解与运用。

3.加强教科研工作,提高课堂效率。要把课堂教学的重点放在使学生科学地认识和理解物理概念和规律、掌握基本科学方法、形成科学世界观方面。要充分利用现代教育技术手段,提高教育教学质量和效益。

4.通过观察实验和推理,归纳出物理概念和物理规律,使学生学习和掌握有关规律,同时着重培养和发展他们的实验能力,以及由实验结果归纳出物理规律的能力。

5.结合所学知识的教学,对学生进行思想品德教育和爱国主义教育,辩证唯物主义的教育。

三、措施

1.严格执行教学处的集体备课制度,提高集体备课质量。每周集体备课,先由上一周安排的每一节教学内容的主备人向全组明确本节的重点、难点、教学方法、主要例题、课后作业、教学案等,然后由全组教师研讨、质疑、确认,形成共案。全组老师要统一教学进度、统一教学规范。

2.制定教学进度。在认真分析教材与学生实际情况的基础之上,确定课时安排。为实现给全体学生奠定一个扎实的物理基础提供合理的时间保证。必修物理将突出文科学生的特点、合理安排,以便保证全年级在学业水平测试中获得满意成绩。

3.提高课堂的教学效率,加强对课堂教学模式的探索。细化每一章每一节的教学要求,明确课时分配及每一节课的课时目标。对每一节课的重难点内容作更深入的分析、探讨,确立突破的方法和途径。加强对各种课型的研究,尤其是探究课。

4.精选习题。针对每一节课的课时目标,精心选择典型习题,做到知识点与习题的'对应。分类编排课堂例题、课外巩固习题、小练检测题、章节复习题。注重学生能力的提高过程。

5.强化作业批改。通过作业批改督促学生端正课外学习的态度、了解学生对知识的理解与掌握、规范学生的答题。为课时目标的确定和分类教学指导提供依据。

6.加强学科组老师的交流与合作。通过听课、评课对教学模式进行探究,提高课堂教学效果;在精选习题过程中,选题与审题分工合作;对每一节课的重难点进行突破时集思广益。

7.充分开发教学资源。加强实验教学,能充分利用实验室提供的器材,利用身边资源开发有价值的小实验为学生提供更多的感性认识。搜集多媒体素材,制作课件,提高教学容量与效果。

8.激发学生学习的兴趣和积极性,促进学生全面发展。成立学习小组,开展研究性学习,培养学生的合作、探究、表达能力;举行学科竞赛,促进学生的特长发展。开设讲座,介绍物理学前沿与物理学家生平,让学生明白科学的价值和意义。

高中物理教案 篇六

一、课题:万有引力定律

二、课型:概念课(物理按教学内容课型分为:规律课、概念课、实验课、习题课、复习课)

三、课时:1课时

四、教学目标

(一)知识与技能

1.理解万有引力定律的含义并会用万有引力定律公式解决简单的引力计算问题。

2.知道万有引力定律公式的适用范围。

(二)过程与方法:在万有引力定律建立过程的学习中,学习发现问题、提出问题、猜想假设与推理论证等方法。

(三)情感态度价值观

1.培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。

2.通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,提高学生科学价值观。

五、教学重难点

重点:万有引力定律的内容及表达公式。

难点:1.对万有引力定律的理解;2.学生能把地面上的物体所受重力与其他星球与地球之间存在的引力是同性质的力联系起来。

六、教学法:合作探究、启发式学习等

七、教具:多媒体、课本等

八、教学过程

(一)导入

回顾以前对月-地检验部分的学习,明确既然太阳与行星之间,地球与月球之间、地球对地面物体之间具有与两个物体的质量成正比,跟它们的距离的二次方成反比的引力。这里进一步大胆假设:是否任何两个物体之间都存在这样的。力?

引发学生思考:很可能有,只是因为我们身边的物体质量比天体的质量小得多,我们不易觉察罢了,于是我们可以把这一规律推广到自然界中任意两个物体间,即具有划时代意义的万有引力定律。然后在学生的兴趣中进行假设论证。

(二)进入新课

学生自主阅读教材第40页万有引力定律部分,思考以下问题:

1.什么是万有引力?并举出实例。

教师引导总结:万有引力是普遍存在于宇宙中任何有质量的物体之间的相互吸引力。日对地、地对月、地对地面上物体的引力都是其实例。

2.万有引力定律怎样反映物体之间相互作用的规律?其数学表达式如何?并注明每个符号的单位和物理意义。

教师引导总结:万有引力定律的内容是:宇宙间一切物体都是相互吸引的。两物体间的引力大小,跟它的质量的乘积成下比,跟它们间的距离平方成反比。 式中各物理量的含义及单位:F为两个物体间的引力,单位:N.m1、m2分别表示两个物体的质量,单位:kg,r为两个物体间的距离,单位:m。G为万有引力常量:G=6.67×10-11 N·m2/kg2,它在数值上等于质量是1Kg的物体相距米时的相互作用力,单位:N·m2/kg2.

3.万有引力定律的适用条件是什么?

教师引导总结:只适用于两个质点间的引力,当物体之间的距离远大于物体本身时,物体可看成质点;当两物体是质量分布均匀的球体时,它们间的引力也可直接用公式计算,但式中的r是指两球心间的距离。

4.你认为万有引力定律的发现有何深远意义?

教师引导总结:万有引力定律的发现有着重要的物理意义:它对物理学、天文学的发展具有深远的影响;它把地面上物体运动的规律和天体运动的规律统一起来;对科学文化发展起到了积极的推动作用,解放了人们的思想,给人们探索自然的奥秘建立了极大信心,人们有能力理解天地间的各种事物。

(三)深化理解

在完成上述问题后,小组讨论,学生在教师的引导下进一步深化对万有引力定律的理解,即:

1.普遍性:万有引力存在于任何两个物体之间,只不过一般物体的质量与星球相比太小了,他们之间的万有引力也非常小,完全可以忽略不计。

2.相互性:两个物体相互作用的引力是一对作用力与反作用力。

3.特殊性:两个物体间的万有引力和物体所在的空间及其他物体存在无关。

4.适用性:只适用于两个质点间的引力,当物体之间的距离远大于物体本身时,物体可看成质点;当两物体是质量分布均匀的球体时,它们间的引力也可直接用公式计算,但式中的r是指两球心间的距离。

(四)活动探究

请两名学生上讲台做个游戏:两人靠拢后离开三次以上。创设情境,加深学生对本节知识点的印象和运用,请一位同学上台展示计算结果,师生互评。

1.请估算这两位同学,相距1m远时它们间的万有引力多大?(可设他们的质量为50kg)

解:由万有引力定律得: 代入数据得:F1=1.7×10-7N

2.已知地球的质量约为6.0×1024kg,地球半径为6.4×106m,请估算其中一位同学和地球之间的万有引力又是多大?

解:由万有引力定律得:代入数据得:F2=493N

3.已知地球表面的重力加速度,则其中这位同学所受重力是多少?并比较万有引力和重力?

解:G=mg=490N。

比较结果为万有引力比重力大,原因是因为在地球表面上的物体所受万有引力可分解为重力和自转所需的向心力。

(五)课堂小结

小结:学生在教师引导下认真总结概括本节内容,完成多媒体呈现的知识网络框架图,并把自己这节课的体会写下来、比较黑板上的小结和自己的小结,进行生生互评。

(六)布置作业

作业:完成“问题与练习”。

高中物理教案 篇七

一、教学目标

1.理解功的概念:

(1)知道做机械功的两个不可缺少的因素,知道做功和工作的区别;

(2)知道当力与位移方向的夹角大于90时,力对物体做负功,或说物体克服这个力做了功。

2.掌握功的计算:

(1)知道计算机械功的公式W=Fscos知道在国际单位制中,功的单位是焦耳(J);知道功是标量。

(2)能够用公式W=Fscos进行有关计算。

二、重点、难点分析

1.重点是使学生在理解力对物体做功的两个要素的基础上掌握机械功的计算公式。

2.物体在力的方向上的位移与物体运动的位移容易混淆,这是难点。

3.要使学生对负功的意义有所认识,也较困难,也是难点。

三、教具

带有牵引细线的滑块(或小车)。

四、主要教学过程

(一)引入新课

功这个词我们并不陌生,初中物理中学习过功的一些初步知识,今天我们又来学习功的有关知识,绝不是简单地重复,而是要使我们对功的认识再提高一步。

(二)教学过程设计

1.功的概念

先请同学回顾一下初中学过的与功的概念密切相关的如下两个问题:什么叫做功?谁对谁做功?然后做如下总结并板书:

(1)如果一个物体受到力的作用,并且在力的方向上发生了位移,物理学中就说这个力对物体做了功。

然后演示用水平拉力使滑块沿拉力方向在讲桌上滑动一段距离,并将示意图画到黑板上,如图1所示,与同学一起讨论如下问题:在上述过程中,拉力F对滑块是否做了功?滑块所受的重力mg对滑块是否做了功?桌面对滑块的支持力N是否对滑块做了功?强调指出,分析一个力是否对物体做功,关键是要看受力物体在这个力的方向上是否有位移。至此可作出如下总结并板书:

(2)在物理学中,力和物体在力的方向上发生的位移,是做功的两个不可缺少的因素。

2.功的公式

就图1提出:力F使滑块发生位移s这个过程中,F对滑块做了多少功如何计算?由同学回答出如下计算公式:W=Fs。就此再进一步提问:如果细绳斜向上拉滑块,如图2所示,这种情况下滑块沿F方向的位移是多少?与同学一起分析并得出这一位移为s cos 。至此按功的前一公式即可得到如下计算公式:

W=Fscos

再根据公式W=Fs做启发式提问:按此公式考虑,只要F与s在同一直线上,乘起来就可以求得力对物体所做的功。在图2中,我们是将位移分解到F的方向上,如果我们将力F分解到物体位移s的方向上,看看能得到什么结果?至此在图2中将F分解到s的方向上得到这个分力为Fcos,再与s相乘,结果仍然是W=Fscos。就此指出,计算一个力对物体所做的功的大小,与力F的大小、物体位移s的大小及F和s二者方向之间的夹角有关,且此计算公式有普遍意义(对计算机械功而言)。至此作出如下板书:

W=Fscos

力对物体所做的功,等于力的大小、位移的大小、力和位移的夹角的余弦三者的乘积。

接下来给出F=100N、s=5m、=37,与同学一起计算功W,得出W=400Nm。就此说明1Nm这个功的大小被规定为功的单位,为方便起见,取名为焦耳,符号为J,即1J=1Nm。最后明确板书为:

在国际单位制中,功的单位是焦耳(J)

1J=1Nm

3.正功、负功

(1)首先对功的计算公式W=Fscos的可能值与学生共同讨论。从cos 的可能值入手讨论,指出功W可能为正值、负值或零,再进一步说明,力F与s间夹角的取值范围,最后总结并作如下板书:

当090时,cos为正值, W为正值,称为力对物体做正功,或称为力对物体做功。

当=90时,cos=0,W=0,力对物体做零功,即力对物体不做功。

当90180时,cos为负值, W为负值,称为力对物体做负功,或说物体克服这个力做功。

(2)与学生一起先讨论功的物理意义,然后再说明正功、负功的物理意义。

①提出功是描述什么的物理量这个问题与学生讨论。结合图1,使学生注意到力作用滑块并持续使滑块在力的方向上运动,发生了一段位移,引导学生认识其特征是力在空间位移上逐渐累积的作用过程。

然后就此提出:这个累积作用过程到底累积什么?举如下两个事例启发学生思考:

a.一辆手推车上装有很多货物,搬运工推车要用很大的力。向前推一段距离就要休息一会儿,然后有了力气再推车走。

b.如果要你将重物从一楼向六楼上搬,搬运过程中会有什么感觉?

首先使学生意识到上述两个过程都是人用力对物体做功的过程,都要消耗体能。就此指出做功过程是能量转化过程,做功越多,能量转化得越多,因而功是能量转化的量度。能量是标量,相应功也是标量。板书如下:

功是描述力在空间位移上累积作用的物理量。功是能量转化的量度,功是标量。

②在上述对功的意义认识的基础上,讨论正功和负功的意义,得出如下认识并板书:

正功的意义是:力对物体做功向物体提供能量,即受力物体获得了能量。

负功的意义是:物体克服外力做功,向外输出能量(以消耗自身的能量为代价),即负功表示物体失去了能量。

4.例题讲解或讨论

例1.课本p.110上的〔例题〕是功的计算公式的应用示范。分析过程中应使学生明确:推力F对箱子所做的功,实际上就是推力F的水平分力Fcos对箱子所做的功,而推力 F的竖直分力Fsin与位移s的方向是垂直的,对箱子不做功。

例2.如图3所示,ABCD为画在水平地面上的`正方形,其边长为a,P为静止于A点的物体。用水平力F沿直线 AB拉物体缓慢滑动到B点停下,然后仍用水平力F沿直线BC拉物体滑动到C点停下,接下来仍用水平力F沿直线CD拉物体滑动到D点停下,最后仍用水平力F沿直线DA拉物体滑动到A点停下。若后三段运动中物体也是缓慢的,求全过程中水平力F对物体所做的功是多少?

此例题先让学生做,然后找出一个所得结果是W=0的学生发言,此时会有学生反对,并能说出W=4Fa才是正确结果。让后者讲其思路和做法,然后总结,使学生明确在每一段位移a中,力F都与a同方向,做功为Fa,四个过程加起来就是4Fa。强调:功的概念中的位移是在这个力的方向上的位移,而不能简单地与物体运动的位移画等号。要结合物理过程做具体分析。

例3.如图4所示,F1和F2是作用在物体P上的两个水平恒力,大小分别为:F1=3N,F2=4N,在这两个力共同作用下,使物体P由静止开始沿水平面移动5m距离的过程中,它们对物体各做多少功?它们对物体做功的代数和是多少?F1、F2的合力对P做多少功?

此例题要解决两个方面的问题,一是强化功的计算公式的正确应用,纠正学生中出现的错误,即不注意力与位移方向的分析,直接用3N乘5m、4N乘5m这种低级错误,引导学生注意在题目没有给出位移方向时,应该根据动力学和运动学知识作出符合实际的判断;二是通过例题得到的结果,使学生知道一个物体所受合力对物体所做的功。等于各个力对物体所做的功的代数和,并从合力功与分力功所遵从的运算法则,深化功是标量的认识。

解答过程如下:位移在F1、F2方向上的分量分别为s1=3m、s2=4m,F1对P做功为9J,F2对P做功为16J,二者的代数和为25J。F1、F2的合力为5N,物体的位移与合力方向相同,合力对物体做功为W=Fs=5N5m=25J。

例4.如图5所示。A为静止在水平桌面上的物体,其右侧固定着一个定滑轮O,跨过定滑轮的细绳的P端固定在墙壁上,于细绳的另一端Q用水平力F向右拉,物体向右滑动s的过程中,力F对物体做多少功?(上、下两段绳均保持水平)

本例题仍重点解决计算功时对力和位移这两个要素的分析。如果着眼于受力物体,它受到水平向右的力为两条绳的拉力,合力为2F。因而合力对物体所做的功为W=2Fs;如果着眼于绳子的Q端,即力F的作用点,则可知物体向右发主s位移过程中,Q点的位移为2s,因而力F拉绳所做的功W=F2s=2Fs。两种不同处理方法结果是相同的。

五、课堂小结

1.对功的概念和功的物理意义的主要内容作必要的重复(包括正功和负功的意义)。

2.对功的计算公式及其应用的主要问题再作些强调。

六、说明

1.考虑到功的定义式W=Fscos与课本上讲的功的公式相同,特别是对式中s的解释不一,有物体位移与力的作用点的位移之分,因而没有给出明确的功的定义的文字表达。实际问题中会用功的公式正确进行计算就可以了。从例题4可以看出,定义一个力对物体所做的功,将位移解释为力的作用点在力的方向上的位移是比较恰当的。如果将位移解释为受力物体在力的方向上的位移,学生会得出W=Fs这一错误结果,还会理直气壮地坚持错误,纠正起来就困难多了。

2.由于对功的物理意义的讲解是初步的,因而对正功、负功的物理意义的讲解也是初步的。这节课中只是讲到受力物体得到能量还是失去能量这个程度。在学习了机械能守恒定律之后,再进一步作出说明。在机械能守恒的物理过程中,有重力做功,地球上的一个物体的机械能并没有增加,因而正、负功的意义就不能用能量得失关系去说明了。在这种情况下,重力做正功,表示势能向动能转化;重力做负功,表示动能向势能转化,这里的正功、负功不再表示能量得失,而是表示能量转化方向的。

高中物理教案 篇八

【课 题】人教版《普通高中课程标准实验教科书物理(选修3—1)》第一章第二节《库仑定律》

【课 时】1学时

【三维目标】

知识与技能:

1、知道点电荷的概念,理解并掌握库仑定律的含义及其表达式;

2、会用库仑定律进行有关的计算;

3、知道库仑扭称的原理。

过程与方法:

1、通过学习库仑定律得出的过程,体验从猜想到验证、从定性到定量的科学探究过程,学会通过间接手段测量微小力的方法;

2、通过探究活动培养学生观察现象、分析结果及结合数学知识解决物理问题的研究方法。

情感、态度和价值观:

1、通过对点电荷的研究,让学生感受物理学研究中建立理想模型的重要意义;

2、通过静电力和万有引力的类比,让学生体会到自然规律有其统一性和多样性。

【教学重点】

1、建立库仑定律的过程;

2、库仑定律的应用。

【教学难点】

库仑定律的实验验证过程。

【教学方法】

实验探究法、交流讨论法。

【教学过程和内容】

<引入新课>同学们,通过前面的学习,我们知道“同种电荷相互排斥,异种电荷相互吸引”,这让我们对电荷间作用力的方向有了一定的认识。我们把电荷间的作用力叫做静电力,那么静电力的大小满足什么规律呢?让我们一起进入本章第二节《库仑定律》的学习。

<库仑定律的发现>

活动一:思考与猜想

同学们,电荷间的作用力是通过带电体间的相互作用来表现的,

因此,我们应该研究带电体间的相互作用。可是,生活中带电体的大小和形状是多种多样的,这就给我们寻找静电力的规律带来了麻烦。

早在300多年以前,伟大的牛顿在研究万有引力的同时,就曾对带电纸片的运动进行研究,可是由于带电纸片太不规则,牛顿对静电力的研究并未成功。

(问题1)大家对研究对象的选择有什么好的建议吗?

在静电学的研究中,我们经常使用的带电体是球体。

(问题2)带电体间的作用力(静电力)的大小与哪些因素有关呢?

请学生根据自己的生活经验大胆猜想。

<定性探究>电荷间的作用力与影响因素的关系

实验表明:电荷间的作用力F随电荷量q的增大而增大;随距离r的增大而减小。

(提示)我们的研究到这里是否可以结束了?为什么?

这只是定性研究,应该进一步深入得到更准确的定量关系。

(问题3)静电力F与r,q之间可能存在什么样的定量关系?

你觉得哪种可能更大?为什么?(引导学生与万有引力类比)

活动二:设计与验证

<实验方法>

(问题4)研究F与r、q的定量关系应该采用什么方法?

控制变量法——(1)保持q不变,验证F与r2的反比关系;

(2)保持r不变,验证F与q的正比关系。

<实验可行性讨论>、

困难一:F的测量(在这里F是一个很小的力,不能用弹簧测力计直接测量,你有什么办法可以实现对F大小的间接测量吗?)

困难二:q的测量(我们现在并不知道准确测定带电小球所带的电量的方法,要研究F与q的定量关系,你有什么好的想法吗?)

(思维启发)有这样一个事实:两个相同的金属小球,一个带电、一个不带电,互相接触后,它们对相隔同样距离的第三个带电小球的作用力相等。

——这说明了什么?(说明球接触后等分了电荷)

(追问)现在,你有什么想法了吗?

<实验具体操作>定量验证

实验结论:两个点电荷间的相互作用力,与它们的电荷量的乘积成正比,与它们距离的二次方成反比。

<得出库仑定律>同学们,我们一起用了大约20分钟得到的这个结论,其实在物理学发展史上,数位伟大的科学家用了近30年的时间得到的并以法国物理学家库仑的名字来命名的库仑定律。

启示一:类比猜想的价值

读过牛顿著作的人都可能推想到:凡是表现这种特性的相互作用都应服从平方反比定律。这似乎用类比推理的方法就可以得到电荷间作用力的规律。正是这样的类比,让电磁学少走了许多弯路,形成了严密的定量规律。马克·吐温曾说“科学真是迷人,根据零星的事实,增添一点猜想,竟能赢得那么多的收获!”。科学家以广博的知识和深刻的。洞察力为基础进行的猜想,才是最具有创造力的思维活动。

然而,英国物理史学家丹皮尔也说“自然如不能被目证那就不能被征服!”

启示二:实验的精妙

1785年库仑在前人工作的基础上,用自己设计的扭称精确验证得到了库仑定律。(库仑扭称实验的介绍:这个实验的设计相当巧妙。把微小力放大为力矩,将直接测量转换为间接测量,从而得到静电力的作用规律——库仑定律。)

<讲解库仑定律>

1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上。

2.数学表达式:

(说明),叫做静电力常量。

3.适用条件:(1)真空中(一般情况下,在空气中也近似适用);

(2)静止的;(3)点电荷。

(强调)库仑定律的公式与万有引力的公式在形式上尽管很相似,但仍是性质不同的两种力。我们来看下面的题目:

<达标训练>

例题1:(通过定量计算,让学生明确对于微观带电粒子,因为静电力远远大于万有引力,所以我们往往忽略万有引力。)

(过渡)两个点电荷的静电力我们会求解了,可如果存在三个电荷呢?

(承前启后)两个点电荷之间的作用力不因第三个点电荷的存在而有所改变。因此,多个点电荷对同一个点电荷的作用力等于各点电荷单独对这个点电荷的作用力的矢量和。

例题2:(多个点电荷对同一点电荷作用力的叠加问题。一方面巩固库仑定律,另一方面,也为下一节电场强度的叠加做铺垫。)

(拓展说明)库仑定律是电磁学的基本定律之一。虽然给出的是点电荷间的静电力,但是任何一个带电体都可以看成是由许多点电荷组成的。所以,如果知道了带电体的电荷分布,就可以根据库仑定律和平行四边形定则求出带电体间静电力的大小和方向了。而这正是库仑定律的普遍意义。

<本堂小结>(略)

<课外拓展>

1、课本第8页的“科学漫步”栏目,介绍的是静电力的应用。你还能了解更多的应用吗?

2、万有引力与库仑定律有相似的数学表达式,这似乎在预示着自然界的和谐统一。课后请同学查阅资料,了解自然界中的“四种基本相互作用”及统一场理论。

高中物理的优秀教案 篇九

三维教学目标

1、知识与技能

(1)知道波的叠加原理,知道什么是波的干涉条件、干涉现象和干涉图样;

(1)知道什么是波的衍射现象,知道波发生明显衍射现象的条件;

(2)知道干涉现象、波的衍射现象都是波所特有的现象。

2、过程与方法:

3、情感、态度与价值观:

教学重点:波的叠加原理、波的干涉条件、干涉现象和干涉图样、波发生明显衍射现象的条件。

教学难点:波的干涉图样

教学方法:实验演示

教学教具:长绳、发波水槽(电动双振子)、音叉

(一)引入新课

大家都熟悉“闻其声不见其人”的物理现象,这是什么原因呢?通过这节课的学习,我们就会知道,原来波遇到狭缝、小孔或较小的障碍物时会产生一种特有得现象,这就是波的衍射。

(二)进行新课

波在向前传播遇到障碍物时,会发生波线弯曲,偏离原来的直线方向而绕到障碍物的背后继续转播,这种现象就叫做波的衍射。

1. 波的衍射

(1)波的衍射:波可以绕过障碍物继续传播,这种现象叫做波的衍射。

哪些现象是波的衍射现象?(在水塘里,微风激起的水波遇到露出水面的小石头、芦苇的细小的障碍物,会绕过它们继续传播。)

实验:下面我们用水波槽和小挡板来做,请大家认真观察。

现象:水波绕过小挡板继续传播。将小挡板换成长挡板,

重新做实验:

现象:水波不能绕到长挡板的背后传播。这个现象说明发生衍生的条件与障碍物的大小有关。

(2)衍射现象的条件

演示:在水波槽里放两快小挡板,当中留一狭缝,观察波源发出的水波通过窄缝后怎样传播。

第一、保持水波的波长不变,该变窄缝的宽度(由窄到宽),观察波的传播情况有什么变化。观察到的现象:在窄缝的宽度跟波长相差不多的情况下,发生明显的衍射现象。水波绕到挡板后面继续传播。(参见课本图10-26甲)

在窄缝的宽度比波长大得多的情况下,波在挡板后面的传播就如同光线沿直线传播一样,在挡板后面留下了“阴影区”。(参见课本图10-26乙)

第二、保持窄缝的宽度不变,改变水波的波长(由小到大),将实验现象用投影仪投影在大屏幕上。可以看到:在窄缝不变的情况下,波长越长,衍射现象越明显。

将课本图10-27中的甲、乙、丙一起投影在屏幕上,它们是做衍射实验时拍下的照片。甲中波长是窄缝宽度的3/10,乙中波长是窄缝宽度的5/10,丙中波长是窄缝宽度的7/10。

通过对比可以看出:窄缝宽度跟波长相差不多时,有明显的衍射现象。

窄缝宽度比波长大得多时,衍射现象越不明显。窄缝宽度与波长相比非常大时,水波将直线传播,观察不到衍射现象。

结论:只有缝、孔的宽度或障碍物的尺寸跟波长相差不多,或者比波长更小时,才能观察到明显的衍射现象。一切波都能发生衍射,衍射是波的特有现象。

2、波的叠加

我们有这样的生活经验:将两块石子投到水面上的两个不同地方,会激起两列圆形水波。它们相遇时会互相穿过,各自保持圆形波继续前进,与一列水波单独传播时的情形完全一样,这两列水波互不干扰。

3、波的干涉

一般地说,振动频率、振动方向都不相同的几列波在介质中叠加时,情形是很复杂的。我们只讨论一种最简单的但却是最重要的情形,就是两个振动方向、振动频率都相同的波源所发出的波的叠加。

演示:在发波水槽实验装置中,振动着的金属薄片AB,使两个小球S1、S2同步地上下振动,由于小球S1、S2与槽中的水面保持接触,构成两个波源,水面就产生两列振动方向相同、频率也相同的波,这样的两列波相遇时产生的现象如课本图10-29所示。为什么会产生这种现象呢?我们可以用波的叠加原理来解释。

课本图10-30所示的是产生上述现象的示意图。S1和S2表示两列波的波源,它们所产生的波分别用两组同心圆表示,实线圆弧表示波峰中央,虚线圆弧表示波谷中央。

某一时刻,如果介质中某点正处在这两列波的波峰中央相遇处[课本图10-30所示中的a点],则该点(a点)的位移是正向最大值,等于两列波的振幅之和。经过半个周期,两列波各前进了半个波长的距离,a点就处在这两列波的波谷中央相遇处,该点(a点)的位移就是负向最大值。再经过半个周期,a点又处在两列波的波峰中央相遇处。这样,a点的振幅就等于两列波的振幅之和,所以a点的振动总是最强的。这些振动最强的点都分布在课本图10-30中画出的粗实线上。

某一时刻,介质中另一点如果正处在一列波的波峰中央和另一列波的波谷中央相遇处[课本图10-30中的b点],该点位移等于两列波的振幅之差。经过半个周期,该点就处在一列波的波谷中央和另一列波的波峰中央相遇处,再经过半个周期,该点又处在一列波的波峰中央和另一列波的波谷中央相遇处。这样,该点振动的振幅就等于两列波的振幅之差,所以该点的振动总是最弱的。如果两列波的振幅相等,这一点的振幅就等于零。这就是为什么在某些区域水面呈现平静的原因。这些振动最弱的点都分布在课本图10-30中画出的粗虚线上。可以看出,振动最强的区域和振动最弱的区域是相互间隔开的。

频率相同的波,叠加时形成某些区域的振动始终加强,另一些区域的振动始终减弱,并且振动加强和振动减弱的区域相互间隔,这种现象叫做波的干涉(inerference)。形成的图样叫做干涉图样。

只有两个频率相同、振动方向相同的波源发出的波,叠加时才会获得稳定的干涉图样,这样的波源叫做相干波源,它们发出的波叫做相干波。不仅水波,一切波都能发生干涉,干涉现象是一切波都具有的重要特征之一。

演示:敲击音叉使其发声,然后转动音叉,就可以听到声音忽强忽弱。这就是声波的干涉现象。

(1)做波的干涉:频率相同的波,叠加时形成某些区域的振动始终加强,另一些区域的振动始终减弱,并且振动加强和振动减弱的区域相互间隔,这种现象叫做波的干涉。形成的图样叫做干涉图样。

(2)特点:干涉现象是一切波都具有的现象。

(3)产生条件:两列波的频率必须相同。

以上内容就是众鼎号为您提供的9篇《高中物理的优秀教案》,希望可以对您的写作有一定的参考作用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:阅读指导课教案【优秀9篇】

下一篇:返回列表