七年级数学下册教案(精选10篇)
作为一名人民教师,通常会被要求编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。教案要怎么写呢?读书破万卷下笔如有神,以下内容是众鼎号为您带来的10篇《七年级数学下册教案》,希望能够对困扰您的问题有一定的启迪作用。
七年级下册数学教案 篇一
学习目标
1、 理解有序数对的应用意义,了解平面上确定点的常用方法
2、 培养用数学的意识,激发学习兴趣。
学习重点:理解有序数对的意义和作用
学习难点:用有序数对表示点的位置
学习过程
一。问题导入
1.一位居民打电话给供电部门:"卫星路第8根电线杆的路灯坏了,"维修人员很快修好了路灯同学们欣赏下面图案。
2.地质部门在某地埋下一个标志桩,上面写着"北纬44.2°,东经125.7°"。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。。
你能举出生活中利用数据表示位置的例子吗?
二。概念确定
有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)
利用有序数对,可以很准确地表示出一个位置。
1.在教室里,根据座位图,确定数学课代表的位置
2.教材40页练习
三。方法归类
常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
1.如图,A点为原点(0,0),则B点记为(3,1)
2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。
例2 如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
[巩固练习]
1. 如图是某城市市区的一部分示意图,对市政府来说:
北偏东60的方向有哪些单位?要想确定单位的位置。还需要哪些数据?火车站与学校分别位于市政府的什么方向,怎样确定他们的位置?
结合实际问题归纳方法
学生尝试描述位置
2. 如图,马所处的位置为(2,3)。
(1) 你能表示出象的位置吗?
(2) 写出马的下一步可以到达的位置。
[小结]
1、 为什么要用有序数对表示点的位置,没有顺序可以吗?
2、 几种常用的表示点位置的方法。
[作业]
必做题:教科书44页:1题
七年级数学下册教案 篇二
教材分析:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到。这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要
教学目标:
知识技能:
1、掌握平行线的三个性质
2、会用平行线的性质进行有关的简单推理和计算
3、通过对比,理解平行线的性质和判定的区别
过程与方法:
在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力
情感、态度与价值观:
让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度
教学重点:平行线的三个性质的探索
教学难点:平行线的性质和判定的区别以及应用它们进行简单的推理
教学过程:
1、创设情境:
(1)、回顾直线平行的条件。(学生回答后,教师板书。)
(2)、设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
[设计意图]:通过复习回忆平行线的判定来引入新课,主要目的有两个,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。同时,开门见山较直接地提出了本节课的目标,让学生明确本节课的学习任务,有利于实现学生对学习过程的自我监控。
2、探究新知:
(1)、画平行线:
教师通过多媒体演示。
学生用方格或笔记本上的横线。
[设计意图]:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)、问题1:如何得到同位角? a
学生独立思考后回答:如可随意画 2 b
条直线与两条平行线相交,如图1,∠1 c
和∠2是同位角。 图1
[设计意图]:让学生体验得到同位角的过程,特别要让学生明白所得的同位角是任意的而不是特殊角、特殊位置的。
问题2:你准备怎样去找∠1和∠2的关系?
学生分组合作交流,进行探究后发表见解。
学生回答:如测量或剪下其中某一个角把它贴到另一个同位角的位置上去观察等。
[设计意图]:让学生明确探究的具体环节与步骤,形成整个班级内的合作与交流,让部分学习有困难的学生也能探究出结论。
七年级下册数学教案 篇三
教学目标:1.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感。
2.在已有的对幂的知识的了解基础之上,通过与同伴合作,经历探索同底数幂乘法运算性质
过程,进一步体会幂的意义,发展合作交流能力、推理能力和有条理的表达能力。
3.了解同底数幂乘法的运算性质,并能解决一些实际问题,感受数学与现实生活的密切联系,
增强学生的数学应用意识,训练他们养成学会分析问题、解决问题的良好习惯。
教学重点:同底数幂乘法的运算性质,并能解决一些实际问题。
教学过程:
一、复习回顾
活动内容:复习七年级上册数学课本中介绍的有关乘方运算知识:
二、情境引入
活动内容:以课本上有趣的天文知识为引例,让学生从中抽象出简单的数学模型,实际在列式计算时遇到了同底数幂相乘的形式,给出问题,启发学生进行独立思考,也可采用小组合作交流的形式,结合学生现有的有关幂的意义的知识,进行推导尝试,力争独立得出结论。
三、讲授新课
1.利用乘方的意义,提问学生,引出法则:计算103×102.
解:103×102=(10×10×10)×(10×10)(幂的意义)
=10×10×10×10×10(乘法的结合律)=105.
2.引导学生建立幂的运算法则:
将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整数,则有即am·an=am+n.
3.引导学生剖析法则
(1)等号左边是什么运算?(2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
三、应用提高
活动内容:1.完成课本“想一想”:a?a?a等于什么?
2.通过一组判断,区分“同底数幂的乘法”与“合并同类项”的不同之处。
3.独立处理例2,从实际情境中学会处理问题的方法。
4.处理随堂练习(可采用小组评分竞争的方式,如时间紧,放于课下完成)。mnp
四、拓展延伸
活动内容:计算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
(5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
五、课堂小结
活动内容:师生互相交流总结本节课上应该掌握的同底数幂的乘法的特征,教师对课堂上学生掌握不够牢固的知识进行强调与补充,学生也可谈一谈个人的学习感受。
六、布置作业
1.请你根据本节课学习,把感受最深、收获最大的方面写成体会,用于小组交流。
2.完成课本习题1.4中所有习题。
1.2幂的乘方与积的乘方(一)
七年级下册数学教案 篇四
第一章 一元一次不等式组
1.1 一元一次不等式组
第1教案
教学目标
1. 能结合实例,了解一元一次不等式组的相关概念。
2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。
3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。
教学重、难点
1、。不等式组的解集的概念。
2、根据实际问题列不等式组。
教学方法
探索方法,合作交流。
教学过程
一、 引入课题:
1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。
2. 由许多问题受到多种条件的限制引入本章。
二、 探索新知:
自主探索、解决第2页“动脑筋”中的问题,完成书中填空。
分别解出两个不等式。
把两个不等式解集在同一数轴上表示出来。
找出本题的答案。
三、 抽象:
教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想)
七年级下册数学教案 篇五
学习目标(学习重点):
1、经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;
2、运用菱形的识别方法进行有关推理。
补充例题:
例1. 如图,在△ABC中,AD是△ABC的角平分线。DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由。
例2.如图,平行四边形ABCD的对 角线AC的垂直平分线与边AD、BC分别交于E、F.
四边形AFCE是菱形吗?说明理由。
例3.如图 , ABCD是矩形纸片,翻折B、D,使BC、AD恰好落在AC上,设F、H分别是B、D落在AC上的两点,E、G分别是折痕CE、AG与AB、CD的交点
(1)试说明四边形AECG是平行四边形;
(2)若AB=4cm,BC=3cm,求线段EF的长;
(3)当矩形两边AB、BC具备怎样的关系时,四边形AECG是菱形。
课后续助:
一、填空题
1、如果四边形ABCD是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形
2、如图,D、E、F分别是△ABC的边BC、CA、AB上的点,
且DE∥BA,DF∥ CA
(1)要使四边形AFDE是菱形,则要增加条件______________________
(2)要使四边形AFDE是矩形,则要增加条件______________________
二、解答题
1、如图,在□ABCD中 ,若2,判断□ABCD是矩形还是菱形?并说明理由。
2、如图 ,平行四边形A BCD的两条对角线AC,BD相交于点O,OA=4,OB=3,AB=5.
(1) AC,BD互相垂直吗?为什么?
(2) 四边形ABCD是菱形 吗?
3、如图,在□ABCD中,已知ADAB,ABC的平分线交AD于E,EF∥AB交BC于F,试问: 四 边形ABFE是菱形吗?请说明理由。
4、如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
⑴求证:ABF≌
⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由。
七年级数学下册教案 篇六
人教版七年级数学下册《10.1平方根》教学设计PPT课件导学案教案
课题: 10.1 平方根(1)
教学目标 1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根;
3、通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,通过探究活动培养动手能力和激发学生学习数学的兴趣。
教学难点 根据算术平方根的概念正确求出非负数的算术平方根。
知识重点 算术平方根的概念。
教学过程(师生活动) 设计理念
情境导入 同学们,20xx年10月15日,这是我们每个中国人值得骄傲的日子.因为这一天,“神舟”五号飞船载人航天飞行取得圆满成功,实现了中华民族千年的飞天梦想(多媒体同时出示“神舟”五号飞船升空时的画面).那么,你们知道宇宙飞船离开地球进人轨道正常运行的速度是在什么范围吗?这时它的速度要大于第一宇宙速度 (米/秒)而小于第二宇宙速度: (米/秒). 、 的大小满足 。怎样求 、 呢?这就要用到平方根的概念,也就是本章的主要学习内容.
这节课我们先学习有关算术平方根的概念.
请看下面的问题.“神舟”五号成功发射和安全着陆,标志着我国在攀登世界科技高峰的征程上又迈出具有重大历史意义的一步,是我们伟大祖国的荣耀.此内容有感染力,使学生对
本章知识的应用价值有一个感性认识,同时激发学生的好奇心和学习的兴趣.这里的计算实际上是已知
幂和乘方的指数求底数的问题,是乘方的逆运算,学生以前没有见过,由此引出了本章所要研究的主要内容,以及研究这些内容的大体思路.
提出问题
感知新知 多媒体展示教科书第160页的问题(问题略),然后提出问题:
你是怎样算出画框的边长等于5dm的呢?(学生思考并交流解法)
这个问题相当于在等式扩=25中求出正数x的值.
练习:教科书第160页的填表. 练习:教科书第160页的填表.这个问题抽象成数学问题
就是已知正方形的面积求正方形的边长,这与学生以前学过的
已知正方形的边长求它的面积的过程互逆,教学时可以让学生初步体会这种互逆的过程,为后面的学习做准备。
归纳新知 上面的问题,可以归纳为“已知一个正数的平方,求这个正数”的问题.实际上是乘方运算中,已知一个数的指数和它的幂求这个数.
一般地,如果一个正数x的平方等于a,即 =a,那么这个正数x叫做a的算术平方根.a的算术平方根记为 ,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.
也就是,在等式 =a (x≥0)中,规定x = 。
思考:这里的数a应该是怎样的数呢?
试一试:你能根据等式: =144说出144的算术平方根是多少吗?并用等式表示出来.
想一想:下列式子表示什么意思?你能求出它们的值吗?
建议:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如 表示25的算术平方根,因为…… 也可以写成 ,读作“二次根号a”。
算术平方根的概念比较抽象,原因之一是学生对石这个新
的符号的理解要有一个过程.通过此问题,使学生对符号“而”表示的具体含义有更具体、更深刻的认识.
应用新知 例.(课本第160页的例1)求下列各数的算术平方根:
(1)100;(2)1;(3) ;(4)0.0001
建议:首先应让学生体验一个数的算术平方根应满足怎样的等式,应该用怎样的记号来表示它,在此基础上再求出结果,例如求100的算术平方根,就是求一个数x,使 =100,因为
例题的解答展示了求数的算术平方根的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写出结果.
探究拓展 提出问题:(课本第160页)怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?
方法1:课本中的方法,略;
方法2:
可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?
大正方形的边长是 ,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?
建议学生观察图形感受 的大小.小正方形的对角线的长是多少呢?(用刻度尺测量它与大正方形的边长的大小)它的近似值我们将在下节课探究.
教科书在边空提出问题“小正方形的对角线的长是多少”,
这是为在10.3节介绍在数轴上画出表示 的点做准备.
小结与作业
课堂小结 提问:1、这节课学习了什么呢?
2、算术平方根的具体意义是怎么样的?
3、怎样求一个正数的算术平方根?
布置作业 3、 必做题:课本第167页习题10.1第1、2、3题;168页第11题。
4、 备选题:
(1)判断下列说法是否正确:
i. 是25的算术平方根;
ii. 一6是 的算术平方根;
iii. 0的算术平方根是0;
iv. 0.01是0.1的算术平方根;
⑤一个正方形的边长就是这个正方形的面积的算术平方根.
(2)下列各式哪些有意义,哪些没有意义?
①- ② ③ ④
(3)一个正方形的面积为10平方厘米,求以这个正方形的边为直径的圆的面积。
在本节的第一个“探究”栏目之前,重点是介绍算术平方根的概念,因此所涉及的数(包括例题中的数)都是完全平方数(能表示成一个有理数的平方),所求的是这些完全平方数的算术平方根.
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本节课是本章的第一节课,主要是要建立算术平方根的概念为了使学生体会引入算
术平方根的`必要性,感受新数(无理数)的产生是实际生活和科学技术发展的需要,也为了激发学生的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘方求底数的问题,是一个新的数学问题.
通过一个简单的实际问题,引人算术平方根的概念对学生来说是容易接受并有兴趣
的.教学中要注意算术平方根的非负性,对它的符号的理解与接受要有一个过程,但这也是最重要的,能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,所以在例题之前安排了试一试和想一想,教师还可根据学生实际情况进行有关的训练.
通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术平方根不能容易地求得,为下节课的学习做准备.
七年级数学下册教案 篇七
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
小学里已经学过列方程解简单的应用题,让我们回顾一下,如何列方程解应用题?
例如:一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?
问:你能解决这个问题吗?有哪些方法?
(让学生思考后,回答,教师再作讲评)
算术法:(328-64)&pide;44=264&pide;44=6(辆)
列方程解应用题:
设需要租用x辆客车,那么这些客车共可乘44x人,加上乘坐校车的64人,就是全体师生328人,可得。
44x+64=328 (1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
(学生可能利用逆运算求解,教师加以肯定,同时指出本章里我们将要学习解方程的另一种方法。)
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
小敏同学很快说出了答案。“三年”。他是这样算的:
1年后,老师46岁,同学们的年龄是14岁,不是老师的三分之一。
2年后,老师47岁,同学们的年龄是15岁,也不是老师的三分之一。
3年后,老师48岁,同学们的年龄是16岁,恰好是老师的三分之一。
你能否用方程的方法来解呢?
通过分析,列出方程:13+x=(45+x) (2)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
这个方程不像例l中的方程(1)那样容易求出它的解,小敏同学的方法启发了我们,可以用尝试,检验的方法找出方程(2)的解。也就是只要将x=1,2,3,4,……代人方程(2)的两边,看哪个数能使两边的值相等,这个数就是这个方程的解。
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
七年级数学下册教案 篇八
【知识讲解】
一、本讲主要学习内容
1、代数式的意义
2、列代数式的注意点
3、代数式值的意义
其中列代数式是重点,也是难点。
下面讲述一下这三点知识的主要内容。
1、代数式的意义
用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4_, ab, _+2y, , a2等
2、列代数式的注意点
⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。如3×a可写作3· a或3a, 2×(_+y)可以写作2·(_+y)或2(_+y)。
⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。
⑶数字写在字母的前面。
⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作 。
⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。
(6)两个代数式相乘,应该用分数形式表示。
3、代数式值的意义
用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。
二、典型例题
例1 填空
①棱长是acm 的正方体的体积是___cm3。
②温度由t°c下降2°c后是___°c。
③产量由m千克增长10%,就达到___千克。
④a和b 的倒数和是___。
⑤a和b的和的倒数是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
说明: ⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。
⑵像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。
例2、用代数式表示
⑴被4整除得 m的数
⑵被2除商为 a余1的数
⑶两数的平均数
⑷a和b两数的平方差与这两数平方和的商
⑸一项工程,甲独做需_天,乙独做需y天完成,甲乙两人合做完成的天数。 ⑹某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。
⑺个位数字是8,十位数字是 b 的两位数。
解: ⑴4m ⑵2a+1 ⑶设这两个数分别为a、b、则平均数为 。
⑷ ⑸ ⑹ ⑺10b+8
分析说明:
⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。
⑵能被2整除的数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n +2 。
⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的字母表示。
⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。
⑸题⑸中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。
⑹平均速度=
所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。
题⑺中主要应清楚自然数的十进制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一个自然数总可以用它各个数位上的数字来表示。
例3说出下列代数式的意义。
⑴ 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。
①不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”;
②含括号的代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”;
③由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。
解:(1)a的3倍与2的和;
(2)a与2的和的3倍;
(3)a与b的差除以c的商;
(4)a与b除以c的差;
(5)a与b的差的平方;
(6)a、b的平方差。
例4、当_=7,y=4, z=0时,求代数式_ ( 2_-y+3z)的值。
解:_ (2_-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
说明:⑴由比例题可以看出,求代数式值的一般步骤是:①代入 ②计算⑵在代数式中,数字与字母之间,字母与字母之间的乘号是省略不写的。而当代入数据求值时,都变成了数字相乘,原来省略的乘号“×”应补上。
【一周一练】
1、选择题
(1)下列各式中,属于代数式的有( )个。
, s= ah, 5× , -y, _-2=y, a-b, 3_>y
a、2 b、3 c、4 d、5
(2)下列代数式,书写正确的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代数式表示“a的 乘以b减去c的积”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用语言叙述代数式 ,表述不正确的是( )
a、比a的倒数小2的数; b、a与2的差的倒数
c、1除以a减去2的商 d、比a小2的数的倒数
2、判断题
⑴n除m用代数式可表示成 ( )
⑵三个连续的奇数,中间一个是n,其余两个分别是n-2和n+2( )
⑶如果n是偶数,则紧跟在n后面的两个连续奇数分别是n+1,n+3( )
3、填空题
⑴每本练习本是0.3元,买a本练习本需__元。
⑵小明有5元钱,买了a支铅笔,每支铅笔是0.2元,则小明还剩__元。
⑶被3整除得n 的数是__。
⑷个位上的数是a,十位上的数是个位上的数的2倍少3的两位数是_。
⑸加工一批零件共m个,乙先加工n个零件后,甲单独再做3天才完成任务,则甲平均每天加工零件__个。
⑹一种小麦磨成面粉后,重量减少数15%, b千克小麦磨成面粉后,面粉的重量是__千克。
⑺一个长方形的长是a,宽是长的 还多1,这个长方形的周长是__
⑻a、b两个码头相距s千米,一轮船从a码头到b码头的速度是a千米/时,返回的速度比从a码头到b码头快2千米/时,这艘船在a,b两码头间往返一次,共需__小时。
4、求下列代数式的值。
⑴ 其中a=2
⑵当 时,求代数式 的值。
5、填表
_
y
_+y
_-y
_y
5
15
6、某班级里男生人数比女生人数的 多16人,男生人数是a,问a的代数式表示:⑴女生人数。 ⑵该班学生总数;当a=25时,求该班学生总数。
七年级数学下册教案 篇九
教学过程(师生活动):
提出问题:
某地庆典活动需燃放某种礼花弹。为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方。已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s,导火索的长_(m)应满足怎样的关系式?
你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程。
探究新知:
1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法。教师规范地板书解的过程。
2、例题。
解下列不等式,并在数轴上表示解集:
(1)_≤50(2)-4_3
(3)7-3_≤10(4)2_-33_+1
分组活动。先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况。教师作总结讲评并示范解题格式。
3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同?
让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知:
1、解下列不等式,并在数轴上表示解集:
(1)(2)-8_10
2、用不等式表示下列语句并写出解集:
(1)_的3倍大于或等于1;
(2)y的的差不大于-2.
解决问题:
测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位。某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?
总结归纳:
围绕以下几个问题:
1、这节课的主要内容是什么?
2、通过学习,我取得了哪些收获?
3、还有哪些问题需要注意?
让学生自己归纳,教师仅做必要的补充和点拨?
七年级数学下册教案 篇十
教学目标:
1、通过现实情景感受利用有序数对表示位置的广泛性,能利用有序数对来表示位置。
2、让学生感受到可以用数量表示图形位置,几何问题可以转化为代数问题,形成数形结合的意识。
教学重点:理解有序数对的概念,用有序数对来表示位置。
教学难点:理解有序数对是“有序的”并用它解决实际问题,课时安排:1课时
教学过程
一、创设问题情境,引入新课
展示书P105画面并提出问题,在建国50周年的庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗?
原来,他们举起不同颜色的花束(如第10排第25列举红花,第28排第30列举黄花)整个方阵就组成了绚丽的背景图章。类似用“第几排第几列”来确定同学的位置,我们在日常生活中经常用的方法。
二、师生共同参于教学活动
(1)影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置观众根据入场券上的“排数”和“号数”准确入座。
师:只给一个数据如“第5号”你能确定某个同学的位置吗?为什么?要确定必须怎样?
生:不能,要确定还必须知道“排数”。
(2)教师书写平面图通知,由学生分组讨论。
今天以下座位的同学放学后参加数学问题讨论:(1,5), (2,4),(4,2),(3,3),(5,6)。
师:你们能明白它的意思吗?
学生通过交流合作后得到共识:规定了两个数所表示的含义后就可以表示座位的位置。
师:请同学们思考以下问题:
①怎样确定你自己的座位的位置?
②排数和列数先后须序对位置有影响吗?
生:通过讨论,交流后得到以下共识:
①可用排数和列数两个不同的数来确定位置。
②排数和列数的先后须序对位置有影响。
(3)让学生的问题都是通过像“9排8号”,第2列第4排,这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义。例如前面的表示“排数”后面的表示“列数”。我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。
(4)在生活中还有用有序数对表示一个位置的例子吗?
学生分组讨论,交流,教师深入小组参与活动,倾听学生的交流,并对学生提供的生活素材给予肯定和鼓励。
例如:人们常用经纬度来表示,地球上的地点
三、巩固练习
让学生完成p46的练习。
四、布置作业
1、课本习题6,1,1。
2、“怪兽吃豆豆”是一种计算机游戏,图中标志表示“怪兽”按图中箭头先后经过的几个位置,如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个位置吗?
1 2 3 4 5 6 7 8
五、教后反思
师:谈谈本节课,你有哪些收获?
由同学交流解决问题,教师设疑为以后的学习奠定基础。
上面内容就是众鼎号为您整理出来的10篇《七年级数学下册教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在众鼎号。