首页 > 教师教学 > 教案模板 >

乘法分配律教案优秀5篇

众鼎号分享 151613

众鼎号 分享

马克思曾经说过:“一门学科只有成功的应用了数学,才能真正达到了完善的地步。”这句话充分显示了数学知识的广泛应用及学习数学的必要性和重要性。因此,数学作为认识世界的基础性学科,它可以在思想上支持不同学科的深入发展。下面是小编辛苦为朋友们带来的5篇《乘法分配律教案》,希望能为您的思路提供一些参考。

《乘法分配律》数学教案 篇一

教学内容:教科书第68页例5,第69页做一做中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。

教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。

教学过程 :

一、复习

教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。

二、新课

1.教学例5。

教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:

图中一共有多少个正方形?你是怎样想的?先请一个学生回答.教师把学生所列的算式写在黑板上。

还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:

(5+3)4 54+34

教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。

第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:

这两个算式的计算结果怎样?

这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:

(5+3)4=54+34

等号左面的算式是什么意思?(5与3的和乘以4。)

等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)

教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。

教师:下面我们再看两组算式,先看:(18+7)6 186+76

左面的算式是什么意思?(18与7的和乘以6。)

右面的算式是什么意思?(18与7分别乘以6,再把两个积相加)

算一算左面的算式等于什么?(18加7是25,25乘以6是150。)

算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150)

教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。

这两个算式相等。说明18与7的和乘以6等于什么?说明18与7的和乘以6等于18与7先分别乘以6再相加。)

教师:我们再来看两个算式 20(15+9) 20xx+209

先来计算一下这两个算式各等于多少?

两个算式都等于多少?

这两个算式相等,说明20乘以15与9的和等于什么?

2.进行抽象概括。

教师指着上面的算式提问:

仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)

教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。

再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。

等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。

教师:如果用a、b、c表示三个数,可以写成下面的形式:

(a+b)c=ac+bc

等号左面(a+b)c表示什么意思?(表示两个数的和同一个数相乘)。

等号右面ac+bc表示什么意思?(表示把两个加数分别同这个数相乘;再把两个积相加。)

三、巩固练习

教师在黑板上写算式:(200十3)27,提问:

1.这个算式中是哪两个数的和乘以哪个数?

根据,这个算式等于哪两个乘积的和?

教师在黑板上再写算式:18527十1527,提问:

这个算式中是哪两个数分别乘以哪一个数?

根据,这个算式等于哪两个数的和乘以哪一个数?

2.做第69页做一做中的题目。

先让学生读题,再想一想每个方框里应该填什么数。

四、作业

练习十四的第1、2题。

《乘法分配律》数学教案 篇二

教学目标

1、使学生理解乘法分配律的意义、

2、掌握乘法分配律的应用、

3、通过观察、分析、比较,培养学生的分析、推理和概括能力、

教学重点

乘法分配律的意义及应用、

教学难点

乘法分配律的反应用、

教具学具准备

口算卡片、投影仪、

教学步骤

一、铺垫孕伏

1、 口算

(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4

2、 用简便方法计算、(说明根据什么简算的)

25×63×4

3、 师生比赛,看谁算得又对又快、

20×5+5×80 (1250+125)×8

让学生说明是怎样算的?

二、探究新知

1、导入:

刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容、(板书课题:乘法分配律)、

2、教学例6:

(1)出示例6:演示课件“乘法分配律”出示例6 下载

(2)引导学生观察每组的两个算式、

(3)教师提问:从上面的例子你发现了什么规律?

(4)学生明确:每组中的两个算式都可以用等号连接、

教师板书:(18+7)×6=150

18×6+7×6=150

(18+7)×6=18×6+7×6

(5)教师出示:20×(15+9)=480

20×15+20×9=480

20×(15+9)=20×15+20×9

学生分组讨论:每组中算式所表示的意义、

(6)反馈练习:按题要求,请你说出一个等式、(投影出示)

(__+__)×__=__+__×

教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

引导学生观察:等号左右两边算式的规律性

启发学生回答:首先是等号左边两个数的和同一个数相乘、

其次是等号右边两个加数分别同一个数相乘再把两个积相加、

最后是等号左右两边的两个算式相等、

3、教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变、这叫做乘法分配律、

4、反馈练习:

横线上能填几?为什么?

(32+35)×4=__×4+__×4

(62+12)×3=__×__+__×__

教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

根据练习学生从而得出: (a+b)×c=a×c+b×c

使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便、

5、教学例7:演示课件“乘法分配律”出示例7 下载

(1)出示例7:102×43

启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便、

教师板书:

(2)出示9×37+9×63

引导学生观察:这类题目的结构形式是怎样的?有什么特点?

教师提问:根据乘法分配律,可以把原式改写成什么形式?

根据学生的回答教师板书:9×37+9×63

=9×(37+63)

=9×100

=900

学生讨论:这样算为什么简便?

师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和、

②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数、

③另外两个不同的因数,是两个能凑成整十、整百、整千的加数、

(3)揭示教师算得快的奥秘

上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便、现在你们会了吗?

三、巩固发展 演示课件“乘法分配律”出示练习 下载

1、 练习十四第1题、

根据运算定律在□里填上适当的数、

(43+25)×2=□×□+□×□

8×47+8×53=□×(□+□)

3×6+6×7=□×(□+□)

8×(7+6)=8×□+□×□

2、在横线上填上适当的数、

(1)(24+8)×125=__×__+__×

(2)25×(20+4)=25×__+25×__

(3)45×9+ 55×9=(__+__) ×__

(4)8×27+73×8=8×(__+__)

其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写、

3、把相等的算式用等号连接起来:

(1)32×48+32×52 32×(48+52)

(2)(24+8)×8 24×5+24×8

(3)20×(l+15) 0×17+20×15

(4)(40+28)×5 40×5+ 28

(5)(10×125)×8 10×8+125×8

(6)4×(30+25) 4×30×4×25

学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

4、选择题:

(1)28×(42+29)与下面的( )相等

①28×42+28×29 ②(28+42)×(28+29) ③28×42×29

(2)与a×8-b×8相等的式于是( )

①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8

(3)与(10+8+9)×5相等的式子是( )

①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9

5、练习十四第4题,投影出示、

一辆凤凰牌自行车420元,一辆永久牌自行车405元、现在各买三辆、买凤凰车和永久车一共用多少元?

四、课堂小结

今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加、希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便、

五、布置作业

练习十四第3题、

用简便方法计算下面各题、

(80+8)×25 35×37+65×37

32×(200+3) 38×29+38

《乘法分配律》数学教案 篇三

教学内容:教科书第64页例7,练习十四的第3一10题。

教学目的:使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。

教学难点:应用乘法分配律简便计算

教具准备:将复习中的题目写在小黑板上。

教学过程:

一、复习

教师出示试题:

1、(35+65)×37 2、35×37+65×37

3、85×(174+26) 4、85×174+85×26

5、(80+8)×25 6、80×25+8×25

7、 32×(200+3) 8、32×200+32×3

“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”

教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

“哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”

教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

二、新课

1、教学例7

(1)教师出示例题:计算9×37+9×63。

教师:这道题是要计算两上乘积的和。

“仔细看一看这道题里的两上乘法计算中的因数有什么特点?”

(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)

“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)

“这是应用了什么运算定律?”

教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

(2)教师出示例题:102×43

教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)

教师:从上面的复习题我们可以看出,《众鼎号·www.1126888.com》如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。

板书:102×43

=(100+2)×43

=100×43+2×43

=4386

“上面计算中的第二步根据是什么?”(乘法分配律)。

教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

三、课堂练习

做练习十四的题目。

1、第3题,2、让学生口算。当计算101×57和45×102时,3、提问:“你是怎样做的?得多少?”

2、第4题,5、先让学生自己计算。核对时让学生回答。

“如果按运算顺序计算,应该先算什么?”

“怎样计算简便?根据是什么?”

第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。

“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

3、第7题,7、先让学生独立做,8、然后集体核对,9、核对的要让学生说一说是怎样做的。当核对“26×3”时,10、学生说出计算方法后,11、再让学生说一说计算过程。学生发言后,12、教师说明:26乘以3可以写作(20+6)×3,13、根据乘法分配律等于20乘以3的积再加6乘以3的积,14、这实际上是应用了乘法分配律。这就是说,15、我们过去学过的乘法口算有些应用了乘法分配律。这道题中的第7小题应用乘法结合律比较简便,16、第4、6、8、9题应用乘法分配律比较简便。

4、 第9题和第10题,18、先让学生独立做,19、核对时要让学生说出每个算式的意义。

5、提前做完的学生可以做第l9*题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:(80—30)×110一30×110;

(80—30—30)×110;

(80—30×2)×110。

四、作业

练习十四的第5、6、8题。

乘法分配律教案设计 篇四

教材分析:

本课时是苏教版小学数学第八册第七单元的第一课时,乘法分配律涉及到乘法和加法两种运算。教材中实际情境中引出问题,引导学生用不同的方法进行解答,引导学生观察、比较列出两道算式,发现他们的内在联系,再让学生例举同类算式,分析共同点,从中发现乘法分配律,并用字母表示出来,练习中安排了应用乘法分配律进行简便计算,以及把乘法分配律延伸到它的逆应用和类推到两个数的差与一个数相乘,使乘法分配律的概念得到了有效的延伸。

学情分析:

学生在第七册学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2周长=(长+宽)×2

教学重点与难点:

重点:理解乘法分配律的意义

难点:引导学生经历探索并发现乘法分配律的过程。

设计理念:根据学生已有的知识经验和教材的实际内容,本课的教学主要是教师创设情境,让学生对知识进行主动的探索,从而发现规律,并应用规律灵活地解决计算问题。

教学主要流程:

一、 创设情境,导入教学

挂图出示例题:买5件夹克衫和5条裤子,一共要付多少元?

[创设与学生生活相联系的情境,让学生感受生活中的数学问题,激发学生学习的兴趣]

二、 经历探索、分析比较、得出规律

1、让学生独立解答,得到两种不同的方法,集体订正,说出两个算式计算过程的含义

2、分析两个算式的联系,形成两个算式相等的共识(结果都是求出的是5件夹克衫和5条裤子的总价)即:(65+45)× 5=65 ×5+45× 5

3、建立初步的概念,写出类似的几组算式

4、小组合作,说说这样的算式所蕴涵的规律,得到乘法分配律公式并用字母来表示。

[新课标强调要让学生经历、体验知识获得的过程,主动参与探索,从而发现规律。在学生独立解答的过程中,教师引导学生感悟两种方法的相同点和不同点,经历观察、比较、分析,在学生的合作交流中,概括出乘法分配律的含义,从乘法分配律的认识由感性逐步上升到理性。培养了学生初步的归纳推理的能力]

三、 巩固应用、深化延伸

1、做第1题,讲解2、3小题时重点强调相同乘数提出来,不相同的乘数相加,指出是乘法分配律的逆应用。

2、完成第2题,提示第3小题74×1的1可以省略不写,

第4小题中什么数是相同的乘数

3、完成第3、4题,比较两种方法中的哪种方法比较简便,渗透简便计算的思想

4、做第5题,重点提示学生第2题 48×3-45×3可以写成(48-35)×3

把分配律中的加法类推到减法。

[乘法分配律的逆应用虽然在例题中没有出现,但现在这个知识结构中是很重要的一部分,乘法分配律在减法中的应用也是非常重要的,所以在教学中应该重视,使乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解]

四、 课堂小结:

今天我们学习了什么知识,我们是怎么来学习的?

《乘法分配律》教案 篇五

教学内容:

探索乘法分配律,应用乘法结合律进行简便运算。(课文第45页的内容,及第46页的“试一试”,“练一练”等)

重点:指导学生探索乘法的分配律。

难点:发现并归纳乘法分配律

关键:指导观察分析算式的特征。

教学目标:

通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。

使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

会用乘法分配律进行一些简便计算。

教具准备

实物投影仪或挂图(课文插图)

教学过程:

导入谈话:

教师:同学们,通过探索活动我们已经发现了一些数学规律,并应用如乘法结合律等解决问题。这一节课,我们再一起去探索,看看我们又会发现什么规律。

板书:探索与发现(三)

今天,又有什么发现呢?让我们一起走上探索之路。

探索交流、发现规律

呈现课文插图(实物投影或挂图)

教师:一共贴了多少块瓷砖?你怎么算?

先让学生独立思考,然后在小组中交流,让每一个学生都在小组中说一说是怎么想的。

反馈交流情况。

由小组派代表汇报交流结果(有选择地板书)。

学生A:6×9+4×9=54+36=90(块)

学生B:(6+4)×9=10×9=90(块)

要求学生结合插图说明算式的意义。

指导学生结合观察算式的特点。

举例验证。

让学生根据算式特征,再举一些类似的例子。

如:(40+4)×25和40×25+4×25

42×64+42×36和42×(64+36)

讨论交流:

交流学生的举例是否符合要求:

交流不同算式的共同特点;

还有什么发现?(简便计算)

字母表示。

教师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

学生先独立完成,然后小组交流。最后教师板书。

(a+b)×c=a×c+b×c

提示课题。

教师在未完成的板书中添上:乘法分配律。

应用规律,解决问题

课文第46页的“试一试”。

1、(80+4)×25

呈现题目。

指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

鼓励学生独自计算。

2、34×72+34×28

呈现题目。

指导观察算式特点,看是否符合要求。

简便计算过程,并得出结果。

巩固练习

课文第46页的“练一练”。

第1题,简单的应用乘法分配律进行计算。

第2题,注意指导一些算式的计算方法。

99×11:可以看成(100-1)×11=1100-11或看成99×(10+1)=990+99

38×29+38应该把算式看作:38×29+38×1

第3题,这是一道解决实际问题的练习,在计算中可以应用乘法的分配律使计算简便。

第一个问题“一共有多少瓶?”可以直接扳书让学生进行练习,然后进行交流。

第二个问题“付1500元够吗?”学生可以算出这些饮料的总价,然后与1500元进行比较,可以用估算的方法。

2、选用课时作业设计。

[板书设计]

乘法结合律

3×(5×4)=60 15×25×4=1500

(3×5)×4=60 15×(25×4)=1500

乘法结合律:(a×b)×c=a×(b×c)

教学挂图

它山之石可以攻玉,以上就是众鼎号为大家带来的5篇《乘法分配律教案》,希望可以对您的写作有一定的参考作用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:小班安全教案【优秀5篇】

下一篇:返回列表