首页 > 教师教学 > 教案模板 >

数学六年级上册《 乘法分配律》教案优秀5篇

众鼎号分享 136685

众鼎号 分享

作为一位刚到岗的教师,教学是重要的工作之一,对学到的教学技巧,我们可以记录在教学反思中,教学反思要怎么写呢?它山之石可以攻玉,下面众鼎号为您精心整理了5篇《数学六年级上册《 乘法分配律》教案》,希望能够对困扰您的问题有一定的启迪作用。

《乘法分配律》教案 篇一

【教学内容】

人教版四年级下册课本36页例3.

【教材与学情定位】

本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。

【设计理念】

1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。

2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里?

2、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在?

【教学目标】

1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。

2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。

【教学重点】

从数字到图形到字母形式的转化提炼,抽象概括出乘法分配律。

【教学难点:】

1.理解乘法分配律,体会其优越性。

2.乘法分配律应用中出现的问题如何有效突破。

【教学过程】

1、同学们我们前面学习过两位数乘两位数,

出示:25×14=

算式表示什么意义?(14个25是多少。)你能计算这个题目吗?(能)完成在练习本上。

(师把25×14写在黑板左侧,指生上展示台展示自己的书写过程,并分别说明100是怎么求的?250呢?教师把学生的想法记录在展示本上)

过程:25

×14

100 25×4

25 25×10

350

问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书(注意前后顺序先写右侧25×4,在写25×10最后写‘+’号)。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?(实际上是把14分成了10+4的和)

师随生动:14分成(10+4)的和乘25

指25×14表示什么?14个25是多少

指(10+4)×25表示什么?14个25是多少?

指10×25+4×25表示什么?14个25是多少?

可以画等号吗?可以

那下面这几个算式表示什么?也可以这样写吗?

【设计意图】

本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的关系,初步建立知识的感知。

出示15×12= 23×16=

学生观察:发现都是两位数乘两位数的运算,表示可以。

师指生描述算式的含义并由学生独立完成算式转换。

学生通过验证认识到:

15×12=(10+2)×25=10×15+2×15

23×16=(10+6)×23=10×23+6×23

16×25=(10+6)×25=10×25+6×25

现在还想等吗?

15×12=(10+2)×25=10×15+2×15

23×14=(10+4)×23=10×23+4×23

16×25=(10+6)×25=10×25+6×25

生:相等。

师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么?

生:等号左边表示10+4的和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。

师:读一遍等式,体会等式的意义。(此处不去小结,让学生初步意会到,但是不适合言传)

【设计意图】

本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。

师:同学们如果给你写出左边的算式,你能推导出右边的算式吗?

生:可以。

2、出示三道练习题目,(完成在练习本上)引导学生探究发现、总结规律

(20+3)×37=

(10+9)×23=

(32+25)×74=

学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么?

生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法;

左侧三个数,右侧四个数;

……

小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。

【设计意图】

通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。

师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以(20+3)×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗?

生一:(10+5)×74=10×74+5×74

同意的举手,鼓励的掌声送给他

生二:(10+7)×52=10×52+7×52

生三:(10+9)×24=10×24+9×24

生四:(30+2)×52=52×30+52×2

【设计意图】

学生如果完全可以自己仿制,说明这个内容孩子们真的掌握了,明确了,可以使用了,意思能够说明白了,但是仅仅是不能语言描述而已。

师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。

(16+△)×51=

(△+■)×○=

引导出字母形式:

(a+b)×c=

师:观察和班上和屏幕上的所有式子,你发现了什么?(可以进一步引导有规律吗?),同桌交流---组内交流(教师深入小组参与交流),全班交流。

【本环节学生必须充分的讨论,争论,作为教师必须在学生的练习中找到问题,并及时全班范围内解决。】

汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍

小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。

字母形式:(a+b)×c=a×c +b×c

也可以写成a×(b+c)=a×b+a×c

【设计意图】

本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。

3、看谁算的又对又快:

(4+6)×27 ○ 4×27+6×27

(14+86)×39 ○14×39+86×39

(100+1)×37○100×37+1×37

3×62+5×62+2×62=

集体订正,说学生的做法,怎么做的?怎么想的!

【设计意图】

通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性!

4、判断:

(1)(36+27)×5=36×5+27×5 ( )

(2)(13+79)×12=13+79×12 ( )

(3)(34+61)×43=34×61+43 ( )

(4)(2+4+3+1)×5=2×5+4×5+3×5+1×5 ( )

手势表示,对的举对号,错误的举起十字。

【设计意图】

本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。

5、情景剧:生活中的握手问题:

两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。

【设计意图】

学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。

6、全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗?

师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。

《乘法分配律》数学教案 篇二

教学内容:教科书第68页例5,第69页做一做中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。

教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。

教学过程 :

一、复习

教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。

二、新课

1.教学例5。

教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:

图中一共有多少个正方形?你是怎样想的?先请一个学生回答.教师把学生所列的算式写在黑板上。

还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:

(5+3)4 54+34

教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。

第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:

这两个算式的计算结果怎样?

这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:

(5+3)4=54+34

等号左面的算式是什么意思?(5与3的和乘以4。)

等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)

教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。

教师:下面我们再看两组算式,先看:(18+7)6 186+76

左面的算式是什么意思?(18与7的和乘以6。)

右面的算式是什么意思?(18与7分别乘以6,再把两个积相加)

算一算左面的算式等于什么?(18加7是25,25乘以6是150。)

算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150)

教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。

这两个算式相等。说明18与7的和乘以6等于什么?说明18与7的和乘以6等于18与7先分别乘以6再相加。)

教师:我们再来看两个算式 20(15+9) 20xx+209

先来计算一下这两个算式各等于多少?

两个算式都等于多少?

这两个算式相等,说明20乘以15与9的和等于什么?

2.进行抽象概括。

教师指着上面的算式提问:

仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)

教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。

再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。

等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。

教师:如果用a、b、c表示三个数,可以写成下面的形式:

(a+b)c=ac+bc

等号左面(a+b)c表示什么意思?(表示两个数的和同一个数相乘)。

等号右面ac+bc表示什么意思?(表示把两个加数分别同这个数相乘;再把两个积相加。)

三、巩固练习

教师在黑板上写算式:(200十3)27,提问:

1.这个算式中是哪两个数的和乘以哪个数?

根据,这个算式等于哪两个乘积的和?

教师在黑板上再写算式:18527十1527,提问:

这个算式中是哪两个数分别乘以哪一个数?

根据,这个算式等于哪两个数的和乘以哪一个数?

2.做第69页做一做中的题目。

先让学生读题,再想一想每个方框里应该填什么数。

四、作业

练习十四的第1、2题。

《乘法分配律》教学反思 篇三

学生在进行了乘法结合律与乘法分配律这两堂课的新课学习之后,不知道是教学方面的设计和学生学习状态等什么方面的原因,总感觉学生在这两个方面的认识存在着很多的疑惑。新教材在对于这种运算定律方面的教学没有要求从文字语言方面加以叙述,只是要求学生能够在观察、发现、猜想、举例、验证、总结的一系列基础上得出规律,尽管课堂上面学生都能够动起来,但是真正地在灵活运用方面确不能够令老师满意,所以在练习课中我们好好地研讨了练习的重点与策略,从实际效果上来说还是不错的。

课堂的设计首先从学生学习的乘法运算定律入手,让学生能够把乘法交换律、结合律、分配律三者的区别和联系弄清楚;其次是出示了一些在运用定律过程中要经常要用到的口算题,让学生们根据数字的特点做到选择运算定律时心中有数;然后是一系列的填空题与连线题,这些都是仿照定律的模型设计的,使学生明白套用的基本步骤和道理;紧接着接是一组动手计算题,重点是要求学生运用乘法交换律、结合律、分配律去进行解答,但是这是一些基础题,学生应该在课堂学习的基础上基本都能够解答,老师强调解题的格式;在这一些环节的联系之后,本堂课重点的内容也就产生了,老师出示了十道带有技巧的题目,要求学生首先观察,你觉得运用什么方法解决比较简便,第一步怎样操作;可以任意选择一道题;其他同学可以补充不同的意见和方法。这样一来,学生们的积极性高涨,大家踊跃发言,表达自己的观点,发表自己的意见,对于各种不同类型的题目有了一个综合练习;最后出示了两道与实际情景联系紧密的生活中的应用题,需要学生在列出算式之后合理的运用简便方法论加以计算。课堂有层次,练习有坡度,达到了实际的效果。

自由探索与合作交流是《数学新课标》中提出的'学生学习数学的重要方式。教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多。在本节课的实施中的每一个学习活动,都试图以学生个性思维,自我感悟为前提多次设计了让学生自主探索,合作交流的时间与空间。通过学生的观察,学生之间和谐有效地互动,强化了学生的自我意识,自我感情。

在日常生活中,数学真是无处不在,处处留心皆学问。如果学生们能处处留心数学问题,并运用数学知识去解决这些实际问题;能够在认真观察的基础上,根据数字的特点,灵活地选择运算定律,找到适合自己的最佳的简算方法,那么自己的教学就成功了。尽管在课堂上也许还不能够全部掌握简算的知识,只要在日常的学习和生活计算的过程中,能够学会善于观察,自觉运用,就能达到熟能生巧的效果,学习成绩与学习能力也会有很大程度的提升。

乘法分配律教学设计 篇四

知识与技能目标:

1、经历探索的过程,发现乘法分配律,并能用字母表示。

2、能够运用乘法分配律进行一些简便的计算。

过程与方法:

培养学生观察、归纳、概括等初步的逻辑思维能力。

情感与价值观:

渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。

教学重点

理解并掌握乘法分配律

教学难点

乘法分配律的推理及运用

教学准备

多媒体电脑、课件

教学过程

一、用简便方法计算下面各题。

452+199+24838×125×8×3

二、比赛激趣,提出猜想

(1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)

10×37+10×63

10×(37+63)

(2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)

这两道题运算顺序不同,但结果相同,可以用一个等式表示:

10×37+10×63=10×(37+63)

(3)命名猜想。

这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

(设计意图:通过一道题目里的两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的规律。)

三、引导探究,发现规律。

1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

2、(1)谁能估计一下一共贴了多少块瓷砖?

(2)请大家用自己的方法来验证他的估计是否正确。

(3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)

(设计意图:学生用不同的方法列式计算,为探讨规律做准备。

3、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?

5、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)()(运算顺序不同但结果相同)

(设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)

(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

(4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?

(a+b)×c=a×c+b×c

(5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。

四、探索发展,应用规律

(1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

(2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

(80+4)×2534×72+34×28

(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

(3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

38×29+3843×102

(≮www.1126888.com≯4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

(设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)

五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)

1、请大家根据运算定律在下面的_里填上适当的数。

(10+7)×6=______×6+______×6

8×(125+9)=8×______+8×______

7×48+7×52=______×(______+_______)

2、将得数相等的算式用线连起来。

3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?

六、全课小结

请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?

今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

《乘法分配律》数学教案 篇五

教学内容:

教科书第64页例7,练习十四的第3一10题。

教学目的:

使学生学会进行应用乘法分配律简便计算,提高学生的逻辑思维能力。

教学难点:

应用乘法分配律简便计算

教具准备:

将复习中的题目写在小黑板上。

教学过程:

一、复习

教师出示试题:

1、(35+65)×37 2、35×37+65×37

3、85×(174+26) 4、85×174+85×26

5、(80+8)×25 6、80×25+8×25

7、 32×(200+3) 8、32×200+32×3

“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”

教师:根据乘法分配律,第1个算式和第2个算练功的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1、2、3组的同学的第1题和第3题,第4、5、6组的同学第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。

“哪几组的同学做的快?想一想,为什么第1、2、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。

教师:第1题和第3题中,两个数的和都是整百数,整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。

教师:下面还有两组等式,大家再来计算一下,第1、2、3组做第5、7题,第4、5、6组做第6、8题。

“这次哪几组的同学做得快?想一想,这次为什么第4、5、6组的大部分同学都做得快了?”

教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。

二、新课

1、教学例7

(1)教师出示例题:计算9×37+9×63。

教师:这道题是要计算两上乘积的和。

“仔细看一看这道题里的两上乘法计算中的因数有什么特点?”

(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100。)

“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?“(先把37和63加起来,是100,再同9相乘,得900。)

“这是应用了什么运算定律?”

教师,这道题告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。

教师概况,首先,要计算的是要两个乘积的和,两个乘法计算要有一个相同的因数;另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。

(2)教师出示例题:102×43

教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。

“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)

教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便。现在的题目是102乘以43,想一想,能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后。

板书:102×43

=(100+2)×43

=100×43+2×43

=4386

“上面计算中的第二步根据是什么?”(乘法分配律)。

教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便。

三、课堂练习

做练习十四的题目。

1、第3题,2、让学生口算。当计算101×57和45×102时,3、提问:“你是怎样做的?得多少?”

2、第4题,5、先让学生自己计算。核对时让学生回答。

“如果按运算顺序计算,应该先算什么?”

“怎样计算简便?根据是什么?”

第4小题,如果学生有困难,教题先把算式38×?=38。学生回答后教师把“38×?”中的“?”改为“1”。

“下面应该怎样算呢?”让每个学生先做在自己的练习本上,然后再请一个学生口述计算过程。

3、第7题,7、先让学生独立做,8、然后集体核对,9、核对的要让学生说一说是怎样做的。当核对“26×3”时,10、学生说出计算方法后,11、再让学生说一说计算过程。学生发言后,12、教师说明:26乘以3可以写作(20+6)×3,13、根据乘法分配律等于20乘以3的积再加6乘以3的积,14、这实际上是应用了乘法分配律。这就是说,15、我们过去学过的乘法口算有些应用了乘法分配律。这道题中的第7小题应用乘法结合律比较简便,16、第4、6、8、9题应用乘法分配律比较简便。

4、 第9题和第10题,18、先让学生独立做,19、核对时要让学生说出每个算式的意义。

5、提前做完的学生可以做第l9*题。当学生想出一种算法后,还要引导学生想一想其它的做法。这道题的做法有:(80―30)×110一30×110;

(80―30―30)×110;

(80―30×2)×110。

四、作业

练习十四的第5、6、8题。

以上就是众鼎号为大家带来的5篇《数学六年级上册《 乘法分配律》教案》,希望对您的写作有所帮助。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:分解质因数的教案(优秀3篇)

下一篇:返回列表