首页 > 教师教学 > 教学计划 >

高二数学教学计划【优秀10篇】

众鼎号分享 157412

众鼎号 分享

日子如同白驹过隙,不经意间,我们的工作又将迎来新的进步,此时此刻我们需要开始制定一个计划。想学习拟定计划却不知道该请教谁?它山之石可以攻玉,下面众鼎号为您精心整理了10篇《高二数学教学计划》,希望能够满足亲的需求。

高二数学教学计划 篇一

一、教材分析。

1、教材地位、作用。

本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

2、学情分析。

学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

二、教学目标。

1、知识与技能目标。

(1)理解等可能事件的概念及概率计算公式。

(2)能够准确计算等可能事件的概率。

2、过程与方法。

根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

3、情感态度与价值观。

概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

三、重点、难点。

1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四、教学过程。

1、创设情境,提出问题。

师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

2、抽象思维。形成概念、

师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

师:那基本事件有什么特点呢?

问题:

(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

(2)事件“出现偶数点”包含了哪几个基本事件?

由如上问题,分别得到基本事件如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

(让学生交流讨论,教师再加以总结、概括)

让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

解:所求的基本事件共有6个:

____________________________________________________________________________________。

由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

经概括总结后得到:

①试验中所有可能出现的基本事件只有有限个;

②每个基本事件出现的可能性相等。

我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

3、概念深化,加深理解。

试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

4、观察比较,推导公式。

师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)

生:试验二中,出现各个点的概率相等,即

P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

由概率的加法公式,得

P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

P(“出现偶数点”)=?=

师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?

生:_________________________________________________________________。

学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

①要判断该概率模型是不是古典概型;

②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

5、应用与提高。

例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:

探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:

P(“答对”)=1/15

解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

例3:同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

(教师先让学生独立完成,再抽两位不同答案的学生回答)

学生1:

①所有可能的结果是:

(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。

②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。

③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得

学生2:

①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

由表中可知同时掷两个骰子的结果共有36种。

②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。

③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)

生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。

师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。

本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

6、知识梳理,课堂小结。

(1)本节课你学习到了哪些知识?

(2)本节课渗透了哪些数学思想方法?

7、作业布置。

(1)阅读本节教材内容

(2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

(3)选做题课本134页习题B组第1题

8、教学反思。

本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。

本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

高二数学教学计划 篇二

(一)20xx年秋季班高二数学大纲

讲次高二理科第1讲计数原理第2讲概率初步第3讲必修模块复习(一) (集合、函数)第4讲必修模块复习(二) (三角函数与正余弦定理)第5讲必修模块复习(三) (数列、不等式)第6讲必修模块复习(四) (解析几何、立体几何、向量)第7讲简易逻辑第8讲轨迹与椭圆第9讲双曲线与抛物线第10讲直线与圆锥曲线第11讲圆锥曲线综合第12讲空间向量与立体几何第13讲立体几何综合第14讲知识点睛及期末考试第15讲试卷分析及期末点拨

(二)具体说明

高二数学秋季主要学习两本书:必修3和选修2-1。选修2-1的讲义基本上与各学校同步,所以不再详说。必修3的前二章是算法和统计,内容以概念的介绍与了解为主,侧重于对知识本身的理解,在高考的考查时也只要求掌握最基本的内容,一般多以选择或填空的题型出现,比较简单。考虑这两章内容的性质与考查的难度,以及在暑期班已经预习的情况下,在秋季讲义中我们不专门安排对这两章的学习,学生只需掌握学校所学的基本内容即可。高考中这几部分内容的难度与考查的主要形式大家可以看后面附的20xx年新课标省份的高考题。对于算法中比较难掌握的程序语言等内容,高考中都不作要求。

必修3的第三章内容是概率初步,涉及到基本事件空间,需要计算基本事件的数目时,如果没有计数原理的基础知识,计算和理解会比较肤浅,而且高考中的概率题(可参考附录中《概率》部分),大多都会与计数原理相结合,因此在学习概率前我们补充了计数原理的基础知识。计数原理和概率的更深入的内容,将在选修2-3中学习。

学完概率初步后,接下来是高一所学内容的简单复习,力求做到温故知新。同时本学期后半部分2-1的任务非常繁重,需要学习两大块重点内容:圆锥曲线、空间向量与立体几何,这两块内容都是高考解答题的必考内容,占到解答题的1/3,并且解析几何常常以压轴题形式出现。这里对以前内容的复习也是利用前半学期比较轻松的时间,为后面2-1部分的内容作好充分的准备。

高二数学教学计划 篇三

一、指导思想

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

3、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。

4、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

5、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

二、工作目标

1、全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。

2、不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。

3、在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。

4、抓好本年级活动课和研究性学习课的教学,有针对性培养学有余力,学有特长的学生,并做好后进生的转化工作,真正做到大面积提高教育质量。

三、主要措施

1、以老师的精心备课与充满激情的教学,换取学生学习高效率。

2、将学校和教研组安排的有关工作落到实处。

3、落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。

四。活动设想

1、按时完成学校(教导处,教研组)相关工作。

2、共同研究,共同探讨,备课组为新教材每章节配套单元测试卷两套。

3、每周集体备课一次,每次有中心发言人,组织进行教学研讨以便分章节搞好集体备课。

4、互相听课,以人之长,补己之短,完善自我。

5、认真组织好培优辅差工作。

6、做好学科段考、模块的复习、出题、考试、评卷、成绩统计和质量分析评价工作

7、积极组织全组成员探索教材特点、积极思考教法分析、认真分析学情以便根据不同的情况实施有效的教学策略

五、教学内容与要求

1、导数及其应用(约24课时)

(1)导数概念及其几何意义

①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

②通过函数图像直观地理解导数的几何意义。

(2)导数的运算

①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x的导数。

②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax b))的导数。

③会使用导数公式表。

(3)导数在研究函数中的应用

①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修

案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

(4)生活中的优化问题举例。

例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)

(5)定积分与微积分基本定理

①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)

(6)数学文化

收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。(参见第91页)

2、推理与证明(约8课时)

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中

的作用(参见选修2-2中的例2、例3)。

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

②介绍计算机在自动推理领域和数学证明中的作用。

高二数学的教学计划 篇四

以据高二数学学科备课组计划,认真落实普通高中高二阶段数学新课程,构建乐学高效课堂,努力提高教学质量,以学生发展为本,在教务处以及年级组等学校职能部门的领导下,严格执行学校的各项教育教学制度和要求,认真完成高二(3)班及高二(4)的数学教学任务。

扎实完成高二下学期的教学任务,努力使所带班的数学期末全市统考成绩排名居年级同类班级前列。

虽然大多数学生已有良好的学习习惯,但少数学生数学学习基础较差,学习起来难度较大。教学中要特别注意因材施教,同时深入学生,培养师生感情,增强学习的`动力,进一步加强课堂各个环节的指导与探究,努力使乐学高效课堂的教学改革更加深入,更加落实到位。

做好高二上学期基础知识的复习工作。并适当补充上学期内容,认真组织编写导学案。后期教学过程中适量打破模块式教学,使学生能顺利进行本学期的学习。新课改中教材只是学习数学知识的一个载体,教师是新课程的实施者,同时也是新课程的研究者和构建者,要积极主动的优化整合教材和教学资料。

高二数学教学计划 篇五

一、指导思想:

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下:获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。立足我校学生实际,在思想上增强学生学习数学的积极性,在知识上侧重双基训练,加强对学生创新思维、知识迁移、归纳拓展、综合运用等能力的培养,全面提高学生的数学素养。

二、学生基本情况分析

由于高二进行文理分班,所教的文科实验班。学生的数学学习情况较好,学生较自觉,但是,学生对自己学习数学的信心不足,积极性和主动性需加强,在做题时的灵活性还不够,要加强举一反三的能力。

三、教学目标

针对以上问题的出现,在本学期拟订以下目标和措施。其具体目标如下:获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。提高数学的提出、分析和解决问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

四、教法分析

选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。通过观察思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

五、教学措施:

1、抓好课堂教学,提高教学效益。课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是提高数学成绩的主要途径。

①扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题、周练题、章考题。

②加大课堂教改力度,培养学生的自主学习能力。最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,通过知识的产生,发展,逐步形成知识体系;通过知识质疑、展活迁移知识、应用知识,提高能力。同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。

2、加强课外辅导,提高竞争能力。课外辅导是课堂的有力补充,是提高数学成绩的有力手段。

①加强数学数学竞赛的指导,提高学习兴趣。

②加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一层楼。

③加强对边缘生的辅导。边缘生是一个班级教学成败的关键,因此,我将下大力气辅导边缘生,通过个别或集体的方法,并定时单独测试,面批面改,从而使他们的数学成绩有质的飞跃。

高二数学教学计划 篇六

本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 。(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容。(3)解答有关数列问题时,经常要运用各种数学思想。善于使用各种数学思想解答数列题,是我们复习应达到的目标。 ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解。

②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

体思想求解。

(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决。解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的。特别注意与年份有关的等比数列的第几项不要弄错。

一、基本概念:

1、 数列的定义及表示方法:

2、 数列的项与项数:

3、 有穷数列与无穷数列:

4、 递增(减)、摆动、循环数列:

5、 数列的通项公式an:

6、 数列的前n项和公式Sn:

7、 等差数列、公差d、等差数列的结构:

8、 等比数列、公比q、等比数列的结构:

二、基本公式:

9、一般数列的通项an与前n项和Sn的关系:an=

10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

11、等差数列的前n项和公式:Sn= Sn= Sn=

当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。

12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

(其中a1为首项、ak为已知的第k项,an0)

13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q1时,Sn= Sn=

三、有关等差、等比数列的结论

14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。

15、等差数列中,若m+n=p+q,则

16、等比数列中,若m+n=p+q,则

17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。

18、两个等差数列与的和差的数列、仍为等差数列。

19、两个等比数列与的积、商、倒数组成的数列

、 、 仍为等比数列。

20、等差数列的任意等距离的项构成的数列仍为等差数列。

21、等比数列的任意等距离的项构成的数列仍为等比数列。

22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

23、三个数成等比的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3

24、为等差数列,则 (c0)是等比数列。

25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。

四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

26、分组法求数列的和:如an=2n+3n

27、错位相减法求和:如an=(2n-1)2n

28、裂项法求和:如an=1/n(n+1)

29、倒序相加法求和:

30、求数列的最大、最小项的方法:

① an+1-an= 如an= -2n2+29n-3

② an=f(n) 研究函数f(n)的增减性

31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:

(1)当 0时,满足 的项数m使得 取最大值。

(2)当 0时,满足 的项数m使得 取最小值。

在解含绝对值的数列最值问题时,注意转化思想的应用。

以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!

高二数学教学计划 篇七

一。指导思想

高二文科第一学期包括了必修三和选修1-1两本教材,通过这一学期的教学,重点要培养学生利用数学各部分内容间的联系,特别是蕴含在数学知识中的数学思想方法,启发和引导学生学习类比、推广、特殊化、化归等数学思考的常用逻辑方法,使学生学会数学思考与推理,不断提高数学思维能力。

二。学情分析

本学期我担任高二(1、3)班的数学教学工作,在经历了文理科分科之后,我对两个班上所有学生的数学学习情况有了更进一步的了解。两个班中,女生占了将近70%,两个班的数学成绩可以说都很不理想,大部分的学生基础都很薄弱。一班的学生数学基础相对三班而言较好一点,但仍然缺乏自主学习的能力;三班中有很多的学生甚至有厌学、甚至弃学的现象。为了改变这种不良局面,使两班的学生成绩赶上来,针对学生的特点及班级的实际情况,特制订如下教学计划。

三。教学内容分析

本学期共有六章内容

必修三

1、算法初步

2、统计

3、概率

选修1-1

1、常用逻辑用语

2、圆锥曲线方程

3、导数及其应用

本学期的重点章节为必修三中的概率和选修1-1中的圆锥曲线方程和导数及其应用,其它章节相对来说高考的要求较低一些。

四。具体的教学措施

1、深入钻研教材,以教材为核心,以纲为纲,以本为本深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。做到对知识全面掌握,从而在教学中能有的放矢。

2、坚持向课堂45分钟要效益,立足课堂,加强课堂中的教学引导,激发和培养学生的学习兴趣和学习能力。

3、坚持每章一测的原则,让学生通过不断地考试练习,从而能够熟练地掌握和应用所学的知识,并且为后续的学习做好铺垫。

4、对学习能力较强、成绩较好的学生要加强其能力培养,为两年后的高考夯实基础。

5、对学习成绩处在中等水平的学生要狠抓基础落实,使他们将知识掌握并且能够进行基本初等应用。

6、对学习已经出现困难的学生则首先要求其掌握基础,能够对基础知识进行熟练掌握,并在此基础上进行提高。

7、对于厌学、甚至弃学的学生则要从培养他们的兴趣入手,兴趣是最好的老师,让这些学生首先对数学产生兴趣才能够进行更进一步的学习。

五。上学期工作中的优点和不足

高一整个学年中每学期都有两本必修教材,时间紧,能够做到的就是保质保量地上好每一节课,课后的作业进行认真布置和批改,并且能够及时的对固学案上的较难题目进行详细的讲解。

不足之处在于时间上的不足,导致不能够及时的对章节内容进行检测导致月考和期末成绩的不尽人意,部分学生也会产生懈怠的情绪。

高二数学的教学计划 篇八

1、掌握空间直角坐标系的建立过程和相关概念

2、学会在坐标系中找出空间点的位置,会写一些简单几何体中有关点的坐标

1、经历运用空间直角坐标系来描述空间图形的过程,初步建立数感和空间感,从空间的点的坐标培养学生的空间想象能力、抽象思维和探索能力。

2、通过类比、迁移、的方法得出空间直角坐标系的建立的过程和空间点

的坐标确定的方法。

1、让学生认识到数学与日常生活的密切联系,从而能够积极的参与数学的学习活动。

2、通过学生的自主学习和合作学习,培养学生合作精神。

重点:空间直角坐标系的建立,点在空间直角坐标系中的坐标表示

难点:通过建立适当的空间直角坐标系来确定空间点的坐标,以及相关的应用。

教师准备:制作本节图4.3-1、图4.3-2、图4.3-3、图4.3-4、图4.3-5和食盐

晶体模型的投影片

学生准备:直尺和正方形纸片

【投影】问题1、数轴ox上的点m,用代数的方法怎样表示呢?

问题2、直角坐标平面上的点m,怎样表示呢?

问题3、怎样确切的表示室内灯泡的位置?

(学生复习回顾后回答问题1和问题2,思考、讨论后回答)

【点拨】1、问题1和问题2是确定点在直线和直角坐标平面的位置的方法。

2、问题3是空间点的位置确定的问题,我们可以类比平面直角坐标的方法,建立空间直角坐标系来确定空间点的位置(板书课题)

【投影】问题4、空间中的。点m用代数的方法又怎样表示呢?

(教师设问)空间直角坐标系该如何建立呢?

【投影】(1)直角坐标系的建立过程

如图:oabc-dabc是单位正方体,以o为原点,分别以射线oa,oc,od的方向为正方向,以oa,oc,od的长为单位长,建立三条数轴: x轴、y 轴、z 轴。这时我们说建立了一个空间直角坐标系o-xyz,其中点o 叫做坐标原点, x轴(横轴)、y 轴(纵轴)、z 轴(竖轴)叫做坐标轴。通过每两个坐标轴的平面叫做坐标平面,分别称为xoy 平面、yoz平面、zox平面。(引导学生仔细观察和理解)

【说明】①三条数轴两两相互垂直且相交于原点o,同时都有相同的单位长度

②任意两条确定一个平面,共有三个平面,称坐标平面

③三个坐标平面把空间分成8个部分(让同学动手操作亲历感受)

【投影】(2)空间直角坐标系的画法

(3)右手直角坐标系

【投影】合作探究:

有了空间直角坐标系,那空间中的任意一点a怎样来表示它的坐标呢?

(设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空

间直角坐标系中点与三维有序实数组之间也有一一对应关系

吗?(学生自行阅读教材p134)

【点拨】是一一对应关系。

【投影】练习:如图,oabc—a’b’c’d’是单位正方体。以o为原点,分别以射线oa,oc, od’的方向为正方向,以线段oa,oc, od’的长为单位长,建立空间直角坐标系o—xyz.试说出正方体的各个顶点的坐标。并指出哪些点在坐标轴上,哪些点在坐标平面上y

(师生共同完成后,投影幻灯片)

【投影】想一想?

在空间直角坐标系中,x、y、z坐标轴上的点、xoy、xoz、yoz坐标平面

内的点的坐标各有什么特点?

(学生思考、讨论后教师总结)

【投影】例1:如图在长方体oabc-a1b1c1d1 中,|oa|=3,|oc|=4,|od1|=2,写出点d1,c,a1,b1的

坐标及bb1的中点m的坐标和a1aoo1的对角线的交点n的坐标。 目标:学生在教师的指导下完成,加深对点的坐标的理解。

(解的分析和过程见投影)

【投影】例2:结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成八1个棱长是的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表绿2

原子。如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标。

目标:教师引导学生先阅读教材,根据建立的空间直角坐标系,写出所求

点的坐标。

(解的分析和过程见投影)

练习1、教材p136练习第2小题

1、空间直角坐标系的建立

2、空间直角坐标系的画法

3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系

教材p136练习第1、3小题。

4.3.1空间直角坐标系

1、建立过程

2、空间直角坐标系画法

3、空间直角坐标系是右手系

1、坐标轴上点的坐标特征

2、坐标平面上点的坐标特点

高二数学教学计划 篇九

教学目标

1、通过实例理解样本的数字特征,如平均数,方差,标准差。

2、能根据实际问题的需求合理地选取样本,从数据样本中提取基本的数字特征,并作出合理的解释。

重点难点

重点(1)用算术平均数作为近似值的理论根据。(2)方差和标准差刻画数据稳定程度的理论根据。

难点:(1)平均数对总体水平进行评价时的可靠性(和中位数和众数之间的联系)。(2)通过实例使学生理解样本数据的方差,标准差的意义和作用。

教学过程

算术平均数和加权平均数

(一)问题情境

某校高一(1)班同学在老师的布置下,用单摆进行测试,以检验重力加速度。全班同学两人一组,在相同条件下进行测试,得到下列实验数据(单位:m/s2):

9.62 9.54 9.78 9.94 10.019.66 9.88

9.68 10.32 9.76 9.45 9.99 9.81 9.56

9.78 9.72 9.93 9.94 9.65 9.79 9.42 9.68 9.70 9.84 9.90

问题1:怎样用这些数据对重力加速度进行估计?

一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数(median)。

一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数的中位数

一组数据中出现次数最多的那个数据叫做这组数的众数,

算术平均数是指资料中各观测值的总和除以观测值个数所得的商,简称平均数或均数。

问题2:用这些特征数据对总体进行估计的优缺点是什么?

21世纪教育网

用平均数作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数都有关系。对这些数据所包含的信息的反映最为充分,因而应用最为广泛,特别是在进行统计推断时有重要作用,但计算较繁琐,并且易受极端数据的影响。

用众数作为一组数据的代表,可靠性较差,但众数不受极端数据的影响,并且求法简便,当一组数据中个别数据变动较大时,适宜选择众数来表示这组数据的“集中趋势”。

用中位数作为一组数据的代表,可靠性也较差,但中位数也不受极端数据的影响,也可选择中位数来表示这组数据的“集中趋势”。

平均数、中位数、众数都是描述数据的“集中趋势”的“特征数”,它们各自特点如下:

任何一个样本数据的改变都会引起平均数的改变。这是中位数、众数都不具备的性质,也正是这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息。

问题3:我们常用算术平均数 (其中ai(i=1,2,…,n)为n个实验数据)作为重力加速度的近似值,它的依据是什么呢?

处理实验数据的原则是使这个近似值与实验数据之间的离差尽可能地小,我们考虑(x-a1)2+(x-a2)2+…+(x-an)2,当x为何值时,此和最小。

(x-a1)2+(x-a2)2+<www.1126888.com>…+(x-an)2=nx2-2(a1+a2+…+an)x+ a12+a22+…+an2.

所以当x=a1+a2+…+ann时离差的平方和最小。

(二)数学理论

故可用x=a1+a2+…+ann作为表示这个物理量的理想近似值,称其为这n个数据a1+a2+…+an的平均数或均值一般记为:

-a=a1+a2+…+ann.

(三)数学应用

例1 某校高一年级的甲、乙两个班级(均为50人)的语文测试成绩如下(总分:150分),试确定这次考试中,哪个班的语文成绩更好一些。

甲班:

112 86 106 84 100 105 98 102 94 107

87 112 94 94 99 90 120 98 95 119

108 100 96 115 111 104 95 108 111 105

104 107 119 107 93 102 98 112 112 99

92102 93 84 94 94 100 90 84 114

乙班

116 95 109 96 106 98 108 99 110 103

94 98 105 101 115 104 112 101 113 96

108 100 110 98 107 87 108 106 103 97

107 106 111 121 97 107 114 122 101 107

107 111 114 106 104 104 95 111 111 110

分析:我们可用一组数据的平均数衡量这组数据的水平,因此,分别求得甲、乙两个班级的平均分即可。

解:用科学计算器分别求得

甲班的平均分为101.1,

乙班的平均分为105.4,

故这次考试乙班成绩要好于甲班。

此处介绍Excel的处理方法。

例2:已知某班级13岁的同学有4人,14岁的同学有15人,15岁的同学有25人,16岁的同学有6人, 求全班的平均年龄。

解:13×4+14×15+15×25+16×64+15+25+6

=13×450+14×1550+15×2550+16×650

这里的450,1550,2550,650,其实就是13,14,15,16的频率。

[数学理论]一般地若取值为x1,x2,…xn的频率分别是p?1,p2,…pn,则其平均数为x1p1+x2p2+…+xnpn.

睡眠时间 人 数 频 率

[6,6.5) 5 0.05

[6.5,7) 17 0.17

[7,7.5) 33 0.33

[7.5,8) 37 0.37

[8,8.5) 6 0.06

[8.5,9] 2 0.02

合计 100 1

例3.下面是某校学生日睡眠时间的抽样频率分布表(单位:h),试估计该校学生的日平均睡眠时间。

分析:要确定这100名学生的平均睡眠时间,就必须计算其总睡眠时间。由于每组中的个体睡眠时间只是一个范围,可以用各组区间的组中值近似地表示。

解法1:总睡眠时间约为

6.25×5+6.75×17+7.25×33+7.75×37+8.25×6

+8.75×2=739(h)。

故平均睡眠时间约为7.39h.

解法2:求组中值与对应频率之积的和

原式=6.25×0.05+6.75×0.17+7.24×0.33

+7.75×0.37+8.25×0.06+8.75×0.02=7.39(h)。

答 估计该校学生的日平均睡眠时间约为7.39h.

21世纪教育网

例4.某单位年收入在10000到15000、15000到20000、20000到25000、25000到30000、30000到35000、35000到40000及40000到50000元之间的职工所占的比分别为10%,15%,20%,25%,15%,10%和5%,试估计该单位职工的平均年收入。

分析:上述比就是各组的频率。

解 估计该单位职工的平均年收入为

12500×10%+17500×15%+22500×20%+27500×25%+32500×15%

+37500×10%+45000×5%=26125(元)。

答估计该单位人均年收入约为26125元。

例5.小明班数学平均分是78分,小明考了80分,老师却说他是倒数几名,你觉得这可能吗?(再看书P64思考)

高二数学的教学计划 篇十

1、培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。

2、根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。

高二5班共有学生73人, 8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。

①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。

②他山之石,可以攻玉。一个人由于生活的环境,面对的对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。

③ 强化课改意识。新课改已经全面铺开,新课改的精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前必须要做的,只有这样,才能使自己的知识新陈代谢。

④认真参与组内备课。珍惜每周一次的集体备课,充分利用好这次集体备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并积极实施好组内的各项安排,落实好课时要求。

⑤增强听课意识。按照学校的要求,积极参加新课改年级的`课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。

①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实意义,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。

②精选精讲例题。对于学生自己学得会的,不讲,对于学生讨论后可以解决的,给以适当点拨,对于学生在老师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受能力的,一概不讲。

③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。

①利用晚自习,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。

②利用自习课时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。

学生认真完成作业和考卷,老师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。

现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。

兴趣是最好的老师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣的好方法。

高二年级上册数学教学计划就为大家介绍到这里,希望对你有所帮助。

以上就是众鼎号为大家整理的10篇《高二数学教学计划》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:学前班语言教学计划(优秀5篇)

下一篇:返回列表