首页 > 教师教学 > 教学设计 >

数学整理复习资料(精选6篇)

众鼎号分享 86258

众鼎号 分享

数学整理复习资料 篇一

第一单元 位置与方向

1、东与西相对,南与北相对。

(东南西北)相对,(西南东北)相对

2、地图通常是按上北下南,左西右东绘制的。

3、判断位置方向时的两种句式:在字型和的字型

在字型的以在字后的地点为中心,画上北下南,左西右东作判断。

的字型的以的字前的地点为中心,画上北下南,左西右东作判断。

4、简单的线路图的描述:有方向、有距离、有目标。如:从学校向南走500米到新校区。注意公交路线走几站的容易出错,记得起始站不算一站。

第二单元 除数是一位数的除法

1、除数是一位数的计算法则:

(1)除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,

(2)除到被除数的哪一位,商就写到被除数那一位的上面。

(3)除到被除数的哪一位不够商1,用0占位。

(4)每一次除得的余数必须比除数小。

2、0乘任何数都得0。0除以(任何不是0的)数都得0。

(注:在除法算式中,0不能做除数)

3、笔算除法:

(1) 余数一定要比除数小。

(2)除法验算:用乘法

① 没有余数:商除数=被除数;

② 有余数:商除数+余数=被除数

4、判断商的位数:先看被除数的最高位,被除数最高位大于或等于除数,则商的位数与被除数相同;如果被除数最高位小于除数,则商的位数比被除数少一位。

第三单元 统 计

1、平均数: ①平均数 = 总数量总份数。

②总数量 = 平均数总份数

③总份数 = 总数量 平均数

2、(平均数)能比较好地反映一组数据的总体情况。

第四单元 年 月 日

1、 一年有12个月;一年有4个季度。

1、2、3月第一季度 90天(平年)91天(闰年)

4、5、6月第二季度 91天

7、8、9月第三季度 92天

10、11、12月 第四季度 92天

2、记大小月的方法:

一、三、五、七、八、十、腊,

31天永不差;

四、六、九、冬,30天,

只有2月有变化。

3、① 平年:2月(28)天,全年(365)天;上半年有(181)天。

② 闰年:2月(29)天,全年(366)天,上半年有(182)天。

③ 每年下半年都是(184)天。

4、公历年份是4的倍数的,一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、20xx、2400等是闰年。

① 一般的公历年份4,没有余数,就是闰年;

② 公历年份是整百的400,没有余数,就是闰年。

5、年、月、日、时、分、秒都是时间单位。

6、在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。

7、普通计时法与24小时计时法的区分:时间前没有标记上午下午等字样的是24小时计时法

8、普通计时法与24小时计时法的互相转换:

第一圈(0点到12点):

由24时制化到普通时制,数字不变,只要添上早上上午等

由普通时制化到24时制,数字不变,只要去掉早上上午等

第二圈(12点到24点)

由24时制化到普通时制,小时数减去12,且要添上早上上午等

由普通时制化到24时制,小时数加上12,且要去掉早上上午等

9、经过的天数的计算:

公式 结束时间开始时间+1=经过的天数

例如:6月12到6月30日是多少天?(30-12+1=19天)

10、经过时间的小时数:结束时间-开始时间=经过时间

如果时间跨过两天,要分为第一天与第二天两段来计算,最后再加起来

11、计算周年的方法是用(现在的年份-原来的年份=周年)。如:到20xx年10月1日,是中国成立(59)周年。用20xx-1949=59周年

第五单元 两位数乘两位数

1、两位数乘两位数

(1)、先用第二个因数的个位去乘第一个因数,得数末尾与第一个因数的个位对齐。

(2)、再用第二个因数的十位去乘第一个因数,得数末位与第一个因数的十位对齐。

(3)、然后把两次乘得的积加起来。

2、两位数乘两位数积可能是( 三 )位数,也可能是( 四 )位数。

3、估算:1822,可以先把因数看成整十、整百的数,再去计算。(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

第六单元 面积

1、物体的表面或封闭图形的大小,就是他们的面积。

2、比较两个图形面积的大小,要用统一的面积单位来测量。

3、常用的面积单位有平方厘米,平方分米、平方米。

边长(1厘米)的正方形面积是1平方厘米。

边长(1分米)的正方形面积是1平方分米。

边长(1米)的正方形面积是1平方米。

边长(100米)的正方形面积是1公顷(10000平方米)。

边长1千米(1000米)的正方形面积是1平方千米。

4、测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。(如:公园、学校的。面积用公顷作单位)、(如:省、市、区或县的面积用平方千米作单位)。

100 10000 100 100

平方千米 公顷 平方米 平方分米 平方厘米

1平方米=100平方分米 1平方分米=100平方厘米

1公顷=10000平方米 1平方千米=100公顷

⑴相邻两个常用的长度单位之间的进率是( 10 )。

⑵相邻两个常用的面积单位之间的进率是( 100 )。

5、长方形的面积=长宽 长 = 面积宽 宽 = 面积 长

正方形的面积=边长边长

长方形的周长=(长+宽)2 长 = 周长2-宽 、宽 = 周长2-长

正方形的周长=边长4 正方形的边长=周长4

6、 注 意:

(1) 面积相等的两个图形,周长不一定相等。

周长相等的两个图形,面积不一定相等。

(2) 大单位换算小单位(乘它们之间的进率)

小单位换算大单位(除以它们之间的进率)

(3) 长度单位和面积单位的单位不同,无法比较。

第七单元 小数的初步认识

1、小数的组成:整数部分、小数部分和小数点

小数的读法:先读整数部分(按照整数的读法),.读作点,小数部分依次读出数字

小数的写法:先写整数部分(按照整数的写法),点写作.,小数部分依次写出数字

2、写小数的类型与方法(写小数不够位时,只需在前面补够0)

(1)分数与小数

分母是10的分数写成一位小数(0.1)

分母是100的分数写成两位小数(0.01)

分母是1000的分数写成两位小数(0.001)

(2)单名数的改写(由小单位名改写成大单位名)

进率是10的写成一位小数

进率是100的写成两位小数

进率是1000的写成三位小数

(3)复名数改写成单名数

同名部分作整数部分,小单位部分作小数部分

2、比较两个小数的大小:

先看整数部分,整数部分大的小数就大。

整数部分相同的,再比较十分位上的数,十分位上的数大的小数大,十分位上的数相同的再比较百分位上的数

3、小数加减法计算:

相同数位对齐 ,也就是小数点对齐。

要从低位开始算起,位数不够用0补齐。

在得数里,对齐横线上的小数点,点上小数点。

4、小数不一定比整数小

数学整理复习资料 篇二

直线与角

-------------4.1几何图形

形状:方的、圆的等

(1)①几何图形大小:长度、面积、体积等

位置:相交、垂直、平行等

②几何体也简称体。包围着体的是面。

③常见的立体图形:圆柱(一曲面二平面)、圆椎(一曲面一平面)、圆台、球(一曲面)、长方体(六面八点十二棱)、四面体(三棱锥)、三棱柱(各部分不都在一个平面内,在一个平面内就是平面图形。)

④点线面体:是组成几何图形的基本元素(是几何图形);点动成线,线动成面,面动成体。

(2)展开与折叠:圆柱的侧面展开图是矩形;圆锥的侧面展开图是扇形;正方体展开六个面可用“1字型”、“Z字型”模型认识。

(3)三视图:主视图(从正面看)、左视图(从左面看)、俯视图

(从上面看)。

----------4.2直线、射线、线段

1、特点与表示方法:

①直线没有端点,向两方无限延伸(不能用延长描述),可用两个大

写字母或小字字母表示;

②射线只有一个端点,向一方无限延伸,用端点和延伸方向中的任意

一点表示;端点相同,延伸方向相同的两条射线是同一条射线(两个相同)。

③线段有两个端点,可用两个大写字母或小字字母表示(不能延长)。

2、连接两点间的线段的长度,叫做这两点之间的距离。线段是图形,距离有大小。

3、经过两点有一条直线,并且只有一条直线。(两点确定一条直线)。

4、经过两点的所有连线中----------线段最短(两点之间,线段最短)

------------4.3线段的长短比较

①线段的比较:叠合法(线段上、线段的延长线上)或度量法。

②中点:将一条线段分成两条相等的线段的点称这条线段的中点。

③线段的和、差、倍、分(整体求部分,部分求整体)可以设未知数

④点在线段上、点在线段的延长线上、甚至在线段外。

-----------4.4角

1、定义:有公共端点的两条射线组成的图形叫角。角的端点为顶点,两条射线为角的两边(一条射线绕端点旋转后形成的图形)。

2、1°=60′1′=60″1周角=360度1平角=180度;直角=90度;钟表上分针每分钟走6°,时针每分钟走0.5°。

3、度化为度、分、秒(整数不动,小数下放);度、分、秒化为度(逐级上调)。

4、度、分、秒的加、减、乘、除(余数下放)运算:对口(秒与秒、分与分、度与度)运算,满60进1,借1算60-----------4.5角的比较与补(余)角

①角的比较:叠合法(在角的内部、在角的外部)或度量法。

②角的平分线:角平分线把一个角分成两个相等的角,角平分线是一条射线。

③如果两个角的和等于90度(直角),(∠⒈+∠⒉=90°)就说这两个叫互为余角,即其中每一个角是另一个角的余角。(不要遗漏)。

④如果两个角的和等于180度(平角),(∠⒈+∠⒉=180°)就说这两个叫互为补角,即其中每一个角是另一个角的补角(不要遗漏)。

⑤等角(同角)的补角相等。等角(同角)的余角相等。

⑥角的和、差、倍、分(角在角的内部、在角的外部)可以设未知数

⑦方位角:北偏东30o(就是从北望东旋转30o),西南方向:就是南偏西45o--------------4.6用尺规作线段与角

1、尺规作图:几何中,通常用没有刻度的直尺和圆规来画图,这种画图的方法叫做尺规作图

2、作一条线段等于已知线段:(1)作一条射线AM(2)在射线AM上,以点A为圆心,以线段a的长度为半径画弧,交射线AM于点B则线段AB为所求作的线段

3、作一个角等于已知角:(1)在∠AOB上以O为圆心,任意长为半径画弧,分别交OA、OB于点P、Q

(2)作射线EG,并以点E为圆心,OP长为半径画弧交EG于点D;

(3)以点D为圆心,PQ长为半径画弧交第(2)步中所画弧于点F;

(4)作射线EF,∠DEF即为所求作的角

数学整理复习资料 篇三

1、递等式

同级运算:符号都是加减或乘除的运算。

两级运算:符号既有加减又有乘除的运算。

同级运算可以巧算。两级运算不能巧算,只能按运算顺序计算。

递等式运算顺序:先算括号,再算乘除,最后加减。

巧算(加括号:前面是加号,后面加括号,不变号。前面是减号,后面加括号,要变号。

移位置:符号跟着后面数字一起移动。)

2、不规则图形的面积

大于等于半个的算一格,小于半格的舍去。

用满格的格数加上大于等于半格的格数,就是不规则图形的面积。

3、面积单位1dm2

(1)读作1平方分米,写作1dm2,表示边长是1dm的正方形的面积

(2)面积单位有m2 dm2 cm2

(3)1 m2=100 dm2 1 dm2=100 cm2 1 m2=250000px2

4、组合图形的面积用割、补的方法

求组合图形的面积

步骤(1)根据图形选择割或者补的方法,用尺画出虚线(2)计算出和面积有关的边的长度(3)计算面积,再相加或者相减(4)注意单位是cm2,dm2,m2(5)凸字形用割,凹字形用补

1、速度

每分(每秒、每时)行的路程叫做速度。速度单位是复合单位。

例写作:85米/分读作:八十五米每分表示:每分钟行85米

2、速度、路程、时间的关系(做题时请注意单位)

时间×速度=路程

路程÷时间=速度

路程÷速度=时间

3、用两位数乘

(1)两位数与两位数的估算

例:48×63的积在(2520)与(3150)之间,接近(3150)。

思考方法:48离整十数50更近,用48估算,估成40×63=2520与50×63=3150。

(2)两位数与三位数的估算

用两位数估算成相邻的整十数

如152×56中,虽然152更接近整十数,但还是用56去估算。

(3)两位数与两位数的分拆计算

参考书p14①可以把其中一个两位数分拆成两个一位数相乘。②可以把一个两位数分拆成一个整十数加一个一位数,再分别与另一个数相乘。③或者可以一个两位数分拆成一个整十数减一个一位数,再分别与另一个数相乘。

第②种方法。

(4)两位数与三位数的分拆计算

把两位数分拆成整十数加一位数,再分别乘以三位数。

(5)两位数乘以两位数,两位数乘以三位数的竖式计算

数位对齐;多位因数放上面;下面因数从个位乘起,再计算十位,积相加;注意进位。

因数中的数字在十位上表示几十,数字在百位上表示几百

例:25×86中86的8在十位上表示的是80,

(6)末尾有零的竖式计算

把零前面的数字对齐,画虚线,先在虚线左边竖式计算,再在虚线右边加上0,两个因数末尾一共有几个0就加几个0。

注意300×120这类题目,0前面的数字对齐后,12的位数比3多,要把120放在上面,300放下面。

4、两位数除两位数,两位数除多位数

(1)分拆计算(见书p31)

(2)除法的计算方法

①推算法②整十数试商法③首位试商法④同头无除初商9

当初商乘以除数的积大于被除数,初商大了,要改小

当余数大于除数,初商小了,要改大

(3)竖式计算(商、乘、减、落)

先确定位的位置,以及几位数每次除得的余数要比除数小

除到被除数的哪一位,就把商写在哪一位的上面不够商1用0来占位

验算:商×除数+余数=被除数

特别注意除数末尾、中间有零的情况

(4)三位数除以两位数时,只要看被除数的前两位,当前两位小于除数时,商是一位数,当前两位大于或等于除数时,商是两位数。

四位数除以两位数时,只要看被除数的前两位,当前两位小于除数时,商是两位数,当前两位大于或等于除数时,商是三位数。

方框不在首位,要考虑0。

例:1)□74÷57的□里填( ),商是一位数?

思考方法:只有□7<57,在十位上不够商1,看前三位,位在个位上,商是一位数,所以□里填1—4

2)□74÷57的□里填( ),商是两位数?

思考方法:只有□7≥57,在十位上够商1,位在十位上,商是两位数,所以□里填5—9

5、运动会上的小统计

条形统计图要写标题,单位,统计项目(横),刻度(竖),长条

长条要用尺画,斜线涂色

注意每一格的数量(根据数据和格子数,用数据÷格子数,合理安排每一格的数量,一般每格为1、2、5、10、100等)

数学整理复习资料 篇四

1、2和6是12的因数。12是2的倍数,也是6的倍数。

2、为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)

3、一个数的最小因数是1,最大的因数是他本身。

4、一个数的因数的个数是有限的。

5、像6、28、496、8128这样的数叫做完全数

6、自然数中,是2的倍数的数叫做偶数(0也是偶数,不是2的倍数的数叫做奇数

7、个位上是0,2,4,6,8的数都是2的倍数。

8、个位上是0或5的数,是5的倍数。

9、一个数各位上的数的和是3的倍数,这个数就是3的倍数。

10、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)

11、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

12、质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、

13、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

14、在一个长方体中,相对的面完全相同,相对的棱长度相等。

15、相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

16、正方体是由6个完全相同的正方形围成的立体图形。

17、正方形可以看成是长、宽、高都相等的长方体。

18、长方体或正方体6个面的总面积,叫做它的表面积。

19、物体所占空间的大小叫做物体的体积。

20、计量体积要用体积单位,常用的体积单位有立方厘米,立方分米和立方米,可以写成cm/3,dm/3,和m/3。

21、长方体或正方体底面的面积叫做底面积。

22、箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。

23、计量液体的体积,如水油等,常用容积单位升和毫升,也可以写成L和ml。

24、长方体或正方体容器的计算方法,跟体积的计算方法相同。但要从容器里量长、宽、高。

在进行测量、分物或计算时,往往不能正好得到整数的结果,这是常用分数来表示。

25、一个物体、一些物体等都可以看作一个整体,把这个整体分成若干份,这样的一份或几份都可以用分数来表示。一个整体可以用自然数1来表示,通常把它叫做单位“1”

26、把单位“1”平均分成若干份,表示其中的一份的数叫分数单位。

27、a÷b=a/b(被除数÷除数=被除数/除数)

28、分子比分母小的分数叫真分数。真分数小于1。

29、分子比分母大或分子比分母相等的分数叫做假分数。假分数大于1或等于1。

30、像1 1/2,1 3/4.。.这样的数叫做带分数。

31、分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数大小不变。

32、两个数公有的因数,叫做它们的公因数。

33、它们最大共有的因数,叫做它们的最大公因数。

34、公因数只有1的两个数,叫做互质数。

35、4/3的分子和分母只有公因数1,(分子和分母是互质数)像这样的分数叫做最简分数。

36、把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

37、6、12、18是3和2共有的倍数,叫做它们的公倍数。其中,6是最小的公倍数,叫做它们的最小公倍数。

38、把异分母分数分别化成和原来分数相等的分母分数,叫做通分。用分子除以分母除不尽时,要根据需要按“四五入”法保留几位小数。

39、同分母分数相加、减,分母不变,只把分子相加减。

40、一组数据中,出现次数最多的一个数或几个数最多,就是这组数据的众数。

41、众数能够反映一组数据的集中情况。

42、在一组数据中,众数可能不只一个,也可能没有众数。

43、复线统计图能够清晰分析两组数据的差别。

数学整理复习资料 篇五

1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6、加数+加数=和 和-一个加数=另一个加数

7、被减数-减数=差 被减数-差=减数 差+减数=被减数

8、因数×因数=积 积÷一个因数=另一个因数

9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1、正方形 (C:周长 S:面积 a:边长 )

周长=边长×4 C=4a 面积=边长×边长 S=a×a

2、正方体 (V:体积 a:棱长 )

表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

3、长方形( C:周长 S:面积 a:边长 )

周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab

4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)

(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

(2)体积=长×宽×高 V=abh

5、三角形 (s:面积 a:底 h:高)

面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高

6、平行四边形 (s:面积 a:底 h:高) :面积=底×高 s=ah

7、梯形 (s:面积 a:上底 b:下底 h:高)

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圆形 (S:面积 C:周长 л d=直径 r=半径)

(1)周长=直径×л=2×л×半径 C=лd=2лr (2)面积=半径×半径×л

9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2

(3)体积=底面积×高 (4)体积=侧面积÷2×半径

10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积×高÷3

11、总数÷总份数=平均数

12、相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

13、浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

14、利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

常用单位换算

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算

1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=100平方毫米 1平方公里 =100 公顷 体(容)积单位换算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升

1立方厘米=1毫升 1立方米=1000升 1升=1000毫升 1升=1立方米

重量单位换算

1吨=1000 千克 1千克=1000克 1千克=1公斤

人民币单位换算

1元=10角 1角=10分 1元=100分

时间单位换算

1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时

1时=60分 1分=60秒 1时=3600秒

用字母表示几何形体的公式

长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。 c=2(a+b) s=ab 正方形的边长a用表示,周长用c表示,面积用s表示。 c=4a s=a

平行四边形的底a用表示,高用h表示,面积用s表示。 s=ah

三角形的底用a表示,高用h表示,面积用s表示。 s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。 s=(a+b)h/2 s=mh

圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。 c=∏d=2∏r s=∏ r 扇形的半径用r表示,n表示圆心角的度数,面积用s表示。 s=∏ nr/360

长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。 v=sh s=2(ab+ah+bh) v=abh

正方体的棱长用a表示,底面周长c用表示,底面积用s表示, 体积用v表示。 s=6a v=a

圆柱的高用h表示,底面周长用c表示,底面积用s表示, 体积用v表示。

s侧=ch s表=s侧+2s底 v=sh

圆锥的高用h表示,底面积用s表示, 体积用v表示。 v=sh/3

数学整理复习资料 篇六

【相似三角形】

1、在相似多边形中,最为简简单的就是相似三角形。

2、对应角相等、对应边成比例的三角形叫做相似三角形。相似三角形对应边的比叫做相似比。

3、全等三角形是相似三角的特例,这时相似比等于1.注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上。

4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。

5、相似三角形周长的比等于相似比。

6、相似三角形面积的比等于相似比的平方。

【统计】

科学记数法:一个大于10的数可以表示成A.10N的形式,其中1小于等于A小于10,N是正整数。

扇形统计图:

①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。

②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

近似数字和有效数字:

①测量的结果都是近似的。

②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

中位数与众数:

①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

②一组数据中出现次数的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。

调查:

①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。

②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。

③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。

频数与频率:

①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。

②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

它山之石可以攻玉,以上就是众鼎号为大家整理的6篇《数学整理复习资料》,希望可以对您的写作有一定的参考作用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:小学五年级数学应用题练习题(最新3篇)

下一篇:返回列表