首页 > 教师教学 > 教学设计 >

因数和倍数教学设计【优秀8篇】

众鼎号分享 167080

众鼎号 分享

因数和倍数教学设计 篇一

一、创设情景,明确探究目标

师:人与人之间存在着许多种关系,我和你们的关系是……?

生:师生关系。

师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

1.操作激活。

师:我们已经认识了哪几类数?

生:自然数,小数,分数。

师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘、除算式。

2.全班交流。

1×12=12                    2×6=12           3×4=12

12×1=12                    6×2=12           4×3=12

12÷1=12                    12÷2=6           12÷3=4

12÷12=1                    12÷6=2           12÷4=3

师:在这3组乘、除法算式中,都有什么共同点?

生汇报。

师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?请看课本p12。

师:2和6与12的关系还可以怎样说呢?

生:2和6是12的因数,12是2的倍数,也是6的倍数。

师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

小组合作,交流汇报。

师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

揭示课题:今天我们要根据这些算式研究数学新本领。因数和倍数。

师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

3.举例内化:

你能写出一个算式,让你的同桌找一找因数和倍数吗?(学生互说,教师巡视找出典型例子)

4.下面的说法对吗?说出理由。

(1)48是6的倍数。

(2)在13÷4=3……1中,13是4的倍数。

(3)因为3×6=18,所以18是倍数,3和6是因数。

师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

生:因为没有说明18是谁的倍数,所以不对。

师:你认为怎样说才正确呢?

生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

师强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

二、自主探究,找因数和倍数

1.拓展提升,主动建构:

⑴迁移尝试:请学生试着找出36的所有因数。

⑵交流方法:教师即时捕捉开发学生在课堂上的基础性教学资源,并及时创生为生成性的教学资源,引导学生在交流中评价,在评价中探究,在发现中建构。预计学生会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,如2,3,6,而且仅此写出了几个;二是有顺序地用乘法(  )×(   )=36的方法,一对一对地写出了1,36,2,18,3,12,4,9,6,但没有按照从小到大的顺序写;三是用除法36÷(  )=(  )的方法想,而且是有顺序地从小到大全部写出: 1,2,3,4,6,9,12,18,36。

⑶启迪思考:怎样找才能不重复不遗漏?

小组合作,自主探究,汇报交流。

找一个数的因数时要做到不重复也不遗漏,方法可以有:

用乘法(  )×(   )=36的方法,一对一对地写;

或者是用除法36÷(  )=(  )的方法想,而且是有顺序地从小到大全部写。

36的因数有:1,2,3,4,6,9,12,18,36。(板书)

⑷试一试找20的所有因数。

⑸介绍36的因数的另一种写法----集合

用集合形式写18的因数

2.创设情境,自主探究:

请学生写出6的倍数。预计学生在写6的倍数时,会有这样几种情况出现:一是写得多与少的区别,二是找的方法上的区别。具体表现为:一是无序、没有方法地写出了一些,6二是有顺序地用乘法口诀写6,三是用加法的方法,每次递加6;四是用除法想,(    )÷6=1、(    )÷6=2、(    )÷6=3的方法写。同时可能还会有学生在教师宣布时间到的时候会因为6的倍数写不完而抱怨时间太少。

请写得又多又快的同学介绍自己的好方法、小窍门。在此基础上交流评价小结方法。(评价时突出有序思维的策略)

3.迁移内化,自主探究:

⑴尝试迁移:请学生尝试迁移,用自己喜欢的方法写出2的倍数和5,4,7的倍数。

2的倍数有:2,4,6,8,10,12……

5的倍数有:5,10,15,20,25……

⑵引导观察:请学生观察以上这些数的倍数,有什么发现?

(一个数的倍数的个数是无限的,一个数最小的倍数是它本身。)

(3)还记得因数吗,出示课件

观察:看一看这些数的因数,你有什么发现?(36最小的因数是1,最大的是36,……一个数最小的因数是1,最大的因数是它本身。)

三、变式拓展,实践应用

指导学生做书本“练习二”的第2题和第3题。

四、全课总结

师:今天这节课我们一起学习了“约数和倍数”,你有哪些收获?

课堂练习:游戏:“我的朋友在哪里?”

游戏规则:(1)一位同学提出所要找的朋友的要求,例:“我的因数在哪里?”或“我的倍数在哪里?”(2)相应学号的同学站起来,其他同学判断是否正确。

作业安排:

引导学生根据实际猜老师年龄,给出范围:老师的年龄既是2的倍数也是5的倍数

教学目标:

1.通过动手操作和写不同的乘法算式,认识倍数和因数。

2.依据倍数和因数的含义和已有的乘除法知识,自主探索并总结找一个数的倍数和因数的方法。

3.在探索中,培养学生抽象,概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

教学重点、难点分析:

由于学生对辨析、理清除尽和整除的关系、整除的两种读法等易混淆的概念,使学生明确了一个数是否是另一个数的倍数或因数时,必须是以整除为前提,因数和倍数是相互依存的概念,不能独立存在。所以本节课的教学我把重点定位于理解因数和倍数的含义。教学难点是自主探索并总结找一个数的倍数和因数的方法。

教学课时:人教版五年级下册第二单元《因数与倍数》第一课时

教具学具准备:

1.学生每人准备12个大小完全相同的小正方形,一张写有自己学号的卡片。

2.教师准备多媒体课件。

什么叫做因数和倍数 篇二

一、教学分析

(一)教学内容分析

本课教学内容是国标苏教版小学数学四年级(下册)第九单元的第一课时,教材第70~72页。

例1通过用12个同样大的正方形拼成不同长方形的操作,让学生写出不同的乘法算式,在此基础上教学倍数和因数的意义。例2教学找一个数的倍数,并结合“试一试”引导发现一个数倍数的特征。例3教学找一个数的因数,再结合“试一试”引导发现一个数因数的特征。

(二)教学对象分析

在学习本单元之前,学生已经分阶段认识了百以内、千以内、万以内、亿以内以及一些整亿的数。较为系统地掌握了十进制计数法,同时也基本完成了整数四则运算的学习。但这只是对数字的浅在认识,为学生进一步学习公倍数和公因数,以及分数的约分、通分和四则运算奠定基础。

(三)教学环境分析

这节课,我采用“活动单”导学模式,依托多媒体互动视频教学系统来开展各项活动,力求通过多媒体互动视频教学系统将抽象的概念形象具体地呈现出来,将学生操作和思维清晰地展示出来,从而使学生更好地理解和掌握本节课的学习内容。

二、教学目标

知识技能:理解倍数和因数的意义,掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。

数学思考:初步意识到可以从一个数的角度来研究非零自然数的特征及其相互关系。

解决问题:在探索一个数的倍数和因数的过程中培养学生观察、分析、概括能力,培养有序思考能力。

情感态度:让学生学会用数学的眼光观察生活、思考问题,能积极参与对数学问题的探究活动,真真切切地体验学习数学的快乐和价值。

三、教学重点、难点

理解倍数和因数的含义,能按要求找出一个数的倍数和因数。

四、教学流程

整合点1:用图像声音创设情境

第一步,情境导入。我运用多媒体创设了帮助神探柯南破译密码的问题情境,通过这样的问题,激发学生的探究欲望。在突出“倍数”和“因数”这两个关键词之后,板书课题,揭示本节课的教学内容。

整合点2:用直观演示深化体验

在“建立概念”部分,通过这样几个层次,进行教学。学生根据活动要求操作思考,我把学生的操作情况通过摄像头整体投射到屏幕上,根据学生的汇报把相应的组满屏显示,并把各种拼法及对应的算式剪切入电子白板中,为下一步教学做好准备。通过旋转操作,让学生直观感受到这样的两个图形代表同一种拼法。根据学生得出的乘法算式,拖出本节课的两个概念,并让学生举一反三,说说这两个算式中数字间的倍数和因数关系。

整合点3:用动态展示突出本质

在“应用概念”部分,通过这样几个环节展开教学。首先让学生自己对这些问题进行探索,在学生汇报找到的3的倍数时,有选择性地进行截屏,同时展示学生多样化的方法,让学生比较、辨析、优化,建立有序地寻找一个数倍数的方法。根据3个实例,归纳倍数的特征,我使用白板的圈画功能,形象地突出了倍数的特点,突破了难点。

接着教学找一个数因数的方法,归纳因数的特征。在学生独立思考、初步探究后,我将学生中两种典型的想法,同时呈现在白板上,这样学生的思维过程就清晰地展示了出来,在此基础上点拨提升,通过层技术显示几乘几等于36和36除以几等于几,这两个一般性的算式,并通过圈画突出列举的有序性,强调“成对找,分开写”的口诀。接着归纳因数的特征,我仍使用白板的圈画功能,突显了因数的特征。新授结束后,通过这样的练习,让学生自己在白板上操作,及时进行方法的巩固。

由于本节课的知识点比较多,所以在回顾总结时,我通过重点画面的回放,帮助学生梳理、回顾本节课的学习内容,再让学生用本节课所学知识解决课始的问题,有问有答,前后呼应。最后进行检测反馈。

教学感悟

多媒体互动视频教学系统有着强大的人机交互功能和便捷的'信息采集功能,能够将课堂中的生成性资源即时保存,随时调用。在本节课中,学生操作、探究得到的各种生成性资源被有选择地展现出来,在此基础上点拨提升,言之有物、针对性强;而且这些生成性资源还是下一环节必要的教学素材,这样环环相扣、前后贯通,一步步引领学生走进倍数和因数的世界。

因数和倍数教学设计 篇三

教学过程:

一,创设情境,明确相互依存的关系。

师:同学们,我们人与人之间存在着各种关系,比如说(指某位同学)他同他的爸爸是什么关系呢?(父子关系)老师和你们是——师生关系。

师:“老师是师生关系”可以这样说吗?为什么?

生:师生关系是指老师和学生之间的相互关系,不能单独说。

师:是呀,人与人之间的关系是相互的,在数学王国里,也有一些存在着相互依存关系的数,这节课我们就来学习。

二、动手操作,感受并认识因数和倍数

(一)、新课引入:

1、师:同学们的桌上都放着12个同样大的正方形,请你用这12个正方形拼成一个长方形,注意每排摆几个?摆了几排?用乘法算式表示你的摆法。

2、进行交流:

师:谁愿意把自己摆长方形的方法和列出的算式讲给大家听?

师:还有其它摆法吗?

还有不同的乘法算式吗?猜一猜,他是怎样摆的?

学生交流几种不同的摆法。随着学生交流屏幕上一一演示。

师:12个同样大小的正方形能摆出不同的的长方形,可以用乘法算式来表示,千万别小看这些算式,这节课我们就从这些算式中学习两个重要的数学概念”因数和倍数”。(板书课题)

师:我们以一道乘法算式为例。(屏幕出示)

4×3=12,

师:在这个算式中,4、3、12有什么关系呢?

我们一起来读一读:

因为:4×3=12,

所以:4是12的因数,3也是12的因数。

12是4的倍数,12也是3的倍数。

师:读读看,能读懂吗?说一说读后你想到了什么?

生:乘法算式中,两个数存在因数和倍数的关系。

师:他的说法正确吗?我们来继续读。

出示:因为:6×2=12 ,所以——

2和6是12的因数,12是2和6的倍数。

因为:1×12=12 ,所以——

生: 1和12是12的因数,12是1和12的倍数。

师:请把书打到12页,齐读最后自然段的注意。

生:注意,为了方便,在研究因数和倍数的时候,我们所说的数指的是的整数(一般不包括0)。

师:现在你们能把存在因数和倍数关系的条件说得更准确些吗?

生:在非0的整数乘法算式中,两个数之间存在因数和倍数关系。

师:谁也来出个乘法算式说一说。(略)

课件出示:32÷4=8,你能从这个算式中找到因数和倍数吗?

师:我们不仅可以根据乘法算式找因数和倍数,也可以根据除法算式找因数和倍数。 二、创设情境,自主探究找因数和倍数的方法。

1、师:我们刚才初步认识了因数和倍数,明白了因数和倍数都表示几个数之间的关系?(两个)。所以,不能单说哪个数是倍数,哪个数是因数。下面我们进一步来研究因数和倍数。

屏幕显示:

试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

2、3、5、9、18、20

师:老师在听的时候发现有好几个数都是18的因数,你也发现了吗?谁能把这6个数中18的因数一口气说完?

生:2、3、9、18都是18的因数。

师:18的因数只有这4个吗?

师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。请你选择你喜欢的方式,可以同桌合作,小组合作,也可以独立完成,找出18的所有因数。如果能把怎么找到的方法写在纸上就更好了。

生:写后小组内交流。

学生填写时师巡视搜集作业。

2、交流作业。(略)

投影仪出示学生的不同作业。交流找因数的方法。

师:出示18的因数有:1、18;2、9;3、6;

你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?

生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。

师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?

生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……

师:用乘法和除法找都可以,你们认为用什么方法更容易呢?

生:乘法。

板书:18的因数有:1、2、3、6、9、18。

师:18的因数也可以这样表示。(课件出示集合圈图)

组织交流:

通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?

突出要点:有序(从小往大写),一对对找(哪两个整数相乘得这个数),再按从小到大的顺序写出来。

用我们找到的方法,试一个。

课件出示:

填空:

24=1×24=2×( )=( ) ×( )=( ) ×( )

24的因数有:_______________

再试一个:16的因数有

师:一个数的因数,我们都是一对一对地找的,为什么16的因数只有5个呢?

生:因为4×4=16,只写一个4就可以了。

师:观察18、16的所有因数,你有什么发现吗?可以从因数的个数,最小的因数和最大的因数三个方面观察。

生:18的因数有6个,最小的是1,最大的是18.

16的因数有5个,最小的是1,最大的是16.

师:谁能把同学们的发现,用数学语言概括起来。先说给小组同学听。

边交流边板书:

个数 最小 最大

因数 有限 1 它本身

倍数

因数与倍数教案 篇四

教材分析

“底和高”是在认识三角形、平行四边形、梯形之后进行的教学内容,以此来进一步认识三角形、平行四边形和梯形的特征,也为后续学习图形的面积计算打下基础。本课时内容以直角以及垂直为知识基础,以三角形、平行四边形和梯形的认识为认知背景,教材利用一块平行四边形的木板做成一张尽可能大的长方形桌面作为认知情境,展开自主活动,让学生主动积累高的表象,并形成高的概念。值得注意的是:本课时认识的高主要指图形内的高,而对于图形外的高不作要求

教学目标

1.通过动手把一块平行四边形木板做成一长尽可能大的长方形桌面等相关活动,找到高这条特殊线段,体验高的基本特征;

2.能判断、画出、测量三角形、平行四边形、梯形的高;

3.在方格纸上根据图形的高和底的数据画符合条件的图形。

教学重点:

判断、画出、测量三角形、平行四边形、梯形的高

教学难点:

在画一个图形高的过程中对高的概念的运用

教学准备

(平行四边形、三角形、梯形)卡片、剪刀、三角板

教学过程

(一)谈话导入

1、教师:请同学们说说你们家的餐桌是什么形状的?还见过什么形状的餐桌?

学生:圆形、椭圆形、长方形、正方形……

2、教师:说得很好!老师就特别喜欢方形的餐桌,而且老师有个习惯,自己能做到的事情就尽量自己去做。老师家里有一块平行四边形的木板,可是太大了,搬到课堂上比较麻烦,但老师带来了与它形状一样的图形(出示平行四边形),老师也为每位同学准备了一张,老师想用这块木板做一张尽可能大的长方形桌面,该从哪锯呢?同学们帮帮老师,行吗?那我们就动手做一做。

板书课题:动手做

(设计意图:从学生的学生活经验出发,调动学生的积极性,激发学生乐于助人的情操,营造宽松、自由的空间,使学生在积极主动参与探究活动中去寻求正确的答案,把学习数学的主动权交给学生

3、学生制作,教师巡视指导。

(设计意图:学生在动手实践中探索不同的制作方法,在小组中展示、交流、学习,留给学生充分的思考及表现自我的时间和空间)。

4、教师:同学们好聪明!想出了很多种方法做出了尽可能大的长方形,老师会选择其中的一种方法。谢谢你们帮了老师的忙!

(二)认识“高”

1、出示平行四边形。

(1)请同学们想一想,刚才剪的过程中你是怎样想的?谁来说说你的理由。(贴平行四边形)

(2)学生回答。(引导学生抓住对边之间的线段、垂直等关键词)

(3)教师小结:其实刚才同学们都是沿着平行四边形其中的一条高剪的,那怎样概括平行四边形的高呢,请大家在小组里互相说一说。

(4)教师收集各小组的信息、意见,引出平行四边形的高的概念。

教师:同学们同意这样的小结吗?

学生:同意。

2、出示三角形

(1)教师:这是什么图形?请同学们对比平行四边形,看了这个三角形你想说点什么?请大家在小组里说一说,什么是三角形的高?

(2)各小组汇报,教师收集信息,出示三角形的高的概念。

(设计意图:培养学生与人合作、交流的能力,让学生经历数学知识的形成过程,培养学生学习数学的兴趣。)

(3)尝试练习。

①教师:同学们想不想自己动手画一画三角形的高?

②学生试画,教师巡视指导。

教师:同学们画的时候发现什么问题?

学生:我用直尺画很难画垂直……

③师生交流得出:画各种图形的高最好用三角板画 ,画出的高更精确。

④师生共议用三角板画图形的高的最佳方法。

3、出示梯形

(1)教师:看到这个图形,你想提出什么数学问题?

(引导学生说出梯形有几组平行的对边,它的高是怎样得到的。)

(2)师生共同小结梯形的高的概念。

4、教师:从三种图形的高的概念中你发现了什么?和你周围的同学说一说。

(引导学生观察、说出它们的高都是垂直线段。)

(三)练习巩固

1、课本21页试一试第1题。

学生依次找出各个图形中的高是哪条(众鼎号☆www.1126888.com)线段,并在图中标出来,完成后集体订正。

2、课本21页练一练第1、2题

让学生任选一个图形画出相对边的高。完成后要求小组内互评,说说对方所画图形的高的意见。(通过练习使学生体会到边和高的对应关系)

3、课本21页练一练第3题

动手量一量,你发现了什么?

让学生在小组内测量三个同高但形状不同的三角形的高,说说他们的发现。(设计意图:充分发挥小组合作学习的优势,将发现的问题在小组内讨论,这样不仅让学生掌握了解决问题的策略,也培养了学生的合作精神。)

(四)总结反思

这节课大家有什么收获?有什么问题要向老师提出的吗?

(五)作业

课本22页练一练第4题

《倍数和因数》教案 篇五

《倍数和因数》教案

《倍数和因数》教案 教学内容:教材第70――72页,“想想做做”1-3题 教学目标: 1、使学生结合具体情境初步理解倍数和因数含义,初步理解倍数和因数互相依存的关系。 2、使学生依据倍数和因数的含义以及已有乘法知识,通过尝试,交流等活动,探索并掌握找一个数的倍数和因数的方法,能在1-100的自然数中找出10以内某个数的所有倍数,找出100以内某个数的所有因数。 3、使学生在认识倍数和因数以及找一个数的倍数和因数的过程中进一步感受数学知识的内在联系,提高数学思考的水平。 教学重难点: 重点:理解倍数和因数的含义,知道它们的关系是互相依存的。 难点:探索并掌握一个数的因数方法。 教学具准备: 12个小正方形片、课件 教学过程: 一、认识倍数和因数概念: 师:请看大屏幕,老师这有12个同样大小的正方形,你能用它们拼成一个长方形吗?并说说每排摆了几个,可以摆几排?能不能就用一个非常简单的乘法算式表示出来? 生:能 师:请同学们自己动手尝试拼长方形,教师巡视。 生:自己拼长方形,整理,交流。 生:1×12 师:猜猜看,他每排摆了几个,摆了几排? 生:每排摆12个,摆了一排或每排摆1个,摆了12排。 师:(屏幕显示摆法)是这样吗?第二种摆法我们只要把他旋转一下就跟第一种怎么样?(一样)。我们可以把他忽略不计。还可以怎么摆?同样用一道乘法算式表达出来? 生:3×4 师:这一次每排摆了几个,摆了几排? 生:每排摆3个,摆了4排或每排摆4个,摆了3排。 师:(屏幕显示摆法)同样第二种摆法也可以省。还有吗? 生齐:2×6 师:张老师来猜测一下同学们脑子里怎么想的,有同学可能想每排摆6个,摆2排。也有同学可能想每排摆2个,摆6排。(屏幕显示摆法)同样第二种摆法也可以省。 师:还有不同的想法吗? 生:没有。 师:12个同样大小的正方形能摆3种不同的乘法算式,这些乘法算式我们很熟悉,但是今天我们仍要从中研究新的知识。咱们就以第一道乘法算式为例,3×4=12,数学上把3叫做12的因数, 3是12的因数,那4(也是12的因数,)倒过来12是3的倍数,12(也是4的倍数)。同学们很有迁移的能力,这就是我们今天所要研究的倍数和因数。 师板书:倍数和因数 师:这儿还有两道乘法算式,先自己说一说谁是谁的因数?谁是谁的倍数?行不行? 生:自己独说。 师:谁先来?指3-4为学生说说。 师:如果我说4是因数,12是倍数,行吗? 明确:倍数和因数表示的是两个数之间的关系,所以不能单说谁是倍数,谁是因数,一定要说“谁是谁的倍数,谁是谁的`因数。” 师:刚才在听的时候发现1×12说因数和倍数时有两句特别拗口,是哪两句啊? 生:12是12的因数,12是12的倍数。 师:虽然是拗口了点,不过数学上还真是这么回事,12的确是12的因数,12也是12的倍数。为了研究方便,以后来探讨倍数和因数的时候所说的数都是什么数啊? 生:自然数 师:而且0还得除外。 师:好了,刚才我们已经初步研究了倍数和因数,下面我还得考考大家:请同学们自己说一个算式,然后考考同桌谁是谁的倍数,谁是谁的因数。 师:哪两位同学愿意来试一试? 教师指名回答。 师:谁能举一些和它们不同的式子?(例如○×□=☆ 18÷3=6) 若学生没有举到除法算式,就由老师举例一道除法算式。“能说谁是谁的倍数,谁是谁的因数吗?” 学生自由发言,统一认识。 小结:乘法可以转化成除法,只要满足两个自然数的乘积等于另外一个自然数,它们之间就存在倍数和因数的关系。 二、探索找倍数的方法 1、谈话过渡:刚才我们认识了倍数和因数,知道了12是3的倍数,你知道3的倍数还有哪些? 让学生思考片刻后自己试着找一找,再小组交流。 全班汇报:(学生可能是无序地找的;也可能是有序地找的。) 提问:你能把3的倍数全部写下来吗? 生:不能,太多了。 师:那怎么办?写不完可以用省略号表示。 指名学生汇报答案。 师:同学们虽然找的答案差不多,但脑子想的方法各不同,我想听听你是怎么找的? 指名学生回答。 在引导学生相互评价的基础上明确: 3与一个数相乘的积就是3的倍数,所以可以用3依次乘1、2、3、4、5……来找3的倍数;也可以每次加3来找3的倍数。 2、学生理解寻找一个数的倍数的方法,互相说说。 3、请同学们分别写出2和5的倍数,做在数学书P71页。 指名汇报,教师板书:2的倍数有2、4、6、8、10…… 5的倍数有5、10、15、20、25…… 4、请同学们观察上面的例子,说说看一个数的倍数有什么特点?先小组讨论,再交流。 课件提示小结:一个数最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的。(教师简要板书) 5、学生齐读理解。 三、探索找因数的方法 过渡:寻找一个数的倍数同学们掌握的不错,这节课我们还要研究因数,会找一个数的因数吗? 生:会 师:那好,请同学们说说看36的因数有哪些? 学生思考后回答 师:其实要找出36的一个因数并不难,难就难在你有没有能力把36的所有因数全部找出来?能不能? 你可以独立完成也可以和同桌合作完成,想一想怎么找不遗漏,并把它们填写在课堂作业本上。如果能把怎么找到的方法写在下面更好。 学生填写时教师巡视收集作业(找有遗漏的,无序的找的,有序找的) 师:老师找到了3份不同的作业,大家仔细观察这4份作业,可有意思了。我把他命名为A、B、C、D师出示: A:2、4、13、12、18、36 B:1、2、4、3、9、6、18、12、36 C:1、36、2、18、3、12、4、9、6 D:1、2、3、4、6、9、12、18、36 师:关于A这种方法你有什么话要说?(学生纷纷举手)能不能从正面的角度说一说,这个同学找出的因数有没有值得肯定的地方? 师:大伙来思考一下,6、9这两个因数是36的因数吗?看来这个同学是没有找全,没有找全仅仅是因为粗心吗?是因为什么? 所以我们在找的过程中为了能做到不遗漏,应该怎样去找? 突出“有序”两个字 师:哪位同学来说说你是怎样有序找的? 生1:利用乘法算式1×36=36,所以1和36是36的因数 生2:利用除法算式36÷1=36,所以1和36是36的因数 (学生可能在利用除法算式做的过程中,往往会注意到除数是它的因数,而忽略了商也是它的因数) 师:我们在找因数的过程中是一个一个的找好,还是一对一对的找好啊? 师:第二个同学有没有找全,有没有更好的建议送给他。 师:做了一个微调就不仅仅是美观的问题,更带给我们一种寻找的有序。第三个同学是最没有顺序的,什么1、36,2、18了,你们觉得有道理吗? 师:最好的是D同学。 师:虽然这位同学找到了36的所有因数,但老师想问问你,为什么你的7,8没有试,你怎么知道找全了呢? 生1:找到开始重复就不用找了 生2:因为36÷7,除不尽,所以7和8就不是36的因数。 师:我们在写的过程中先把1写在头,36写在尾,然后再把2写在中间,这样依次写下去,这样不仅仅美观,更显得有序。 你在找的过程中利用了什么啊(乘法口诀)采用了什么方法?两种方法你认为哪种方法呢? 小结:我们应养成“有序成对找,按从小到大顺序书写。” 师:现在学着刚才所学的方法会有序的进行找一个数的所有因数了吗? 师:请同学们尝试找15和16的所有因数,做在数学书P72上。 请同学们观察上面的例子,说说看一个数的因数有什么特点?先小组讨论,再交流。 课件提示小结:一个数最小的因数是1,最大的因数是它本身,一个数的因数的个数是有限的。 (教师简要板书) 学生:齐读理解。 四、巩固练习(一)、智慧乐园: 1p一个数的最大因数是17,这个数是( ),它的最小的因数是( ),17的因数的个数是( ), 一共有( )个。 2p一个数的最小倍数是17,这个数是( ),它(  )最大的倍数,17的倍数的个数是( ). 3p在4、8、16、32、64、84、100这些数中,40的因数有(  ),80的因数有(  ),16的倍数有( )。 (二)、质疑乐园: ①12是倍数,3是因数。 (  ) ②34的最小倍数是34,34的最小因数是17.(  ) ③6既是2的倍数,也是3的倍数。 (  ) (三)、数学小游戏 给每一位同学一个编号,当老师报一个数时,请是这个数的倍数或因数的同学站起来,让站出来的学生报自己的编号,并请同学判断是否正确,并在这个游戏中感受1是所有数的因数。 五课堂小结 通过今天这节课的学习,你有哪些收获? 六课堂作业 想想做做的1,2,3题。 板书设计:  倍数 和  因数   (有序的  一对一对的找) 最小  本身 1 最大  没有  本身 个数  无限的  有限的

因数与倍数教案 篇六

刘浩中心小学许夏敏

教学目标:1进一步加深学生对方程意义的理解,巩固用等式的性质解简易方程的方法,理解简单实际问题中数量关系,并能根据等量关系解决实际问题。

2进一步理解公倍数和公因数,最小公倍数和最大公因数的意义,掌握求最大公因数和最小公倍数的方法。

3通过小组合作交流,培养学生的数学交流能力和合作能力。

教学重点:理解方程的意义,巩固解方程的方法,进一步掌握求最小公倍数和最大公因数的方法。

教学难点:理解实际问题中的数量关系,根据数量关系列方程解答。

教学实施:一、疏通概念

1、同学们,本学期的内容已经全部学完了。从今天开始,我们要对所有的知识进行与复习。首先让我们一起走进“数的世界”,在十个单元中哪些是与数打交道呢?根据学生回答板书方程

公倍数与公因数

认识分数

分数的基本性质

分数的加减法

2、揭题

今天这节课我们先来复习方程,公倍数与公因数(出示课题)

3、讨论与思考:本学期学习了方程的哪些知识?

什么是公倍数与公因数?

怎样求两个数的最小公倍数和最大公因数?

二、专项练习

1、方程的复习

⑴与练习第1题,在方程下面打√,集体汇报时说出为什么不是方程?

等式

方程

X+2.5<828-12=165a分别叫什么?你觉得方程与等式有什么关系?你能用一副图来表示吗?

⑵与复习第2题

提问:根据什么来解方程?指名4人板演,校对时说说是怎么想的?

出示练一练,找出括号中方程的解

①3x=1.5(x=0.5x=2)

②x-210=30(x=240x=180)

③x÷5=120(x=24x=600)

⑶列方程解决实际问题

?米11.7平方米?米

2.7米

6.9米3.9米

学生独立完成,集体订正时说说根据什么数量关系式列方程的?

教师,用方程计算可以使很多问题变的简单,容易解决。

⑷与复习第4题学生读题后独立用方程解决。

2、公倍数和公因数的复习

对公倍数和公因数你有那些了解?怎样求两个数的最小公倍数和最大公因数呢?

出示练习①写出每组数的最小公倍数

6和94和82和3

②写出每组数的最大公因数

18和2415和602和3

请做得快的同学介绍经验

三、全课

今天我们复习了什么,你有哪些收获?

四、课堂作业

与复习第3题、第5题、第6题。

教学反思

这是一堂复习课,主要复习方程、公倍数和公因数两个单元的内容。由于课堂时间有限,因此对知识的回顾与还不是很系统。特别是对潜能生而言,教师的提问不能及时沟起他们对知识概念的回忆,因此跟基础较好的同学相比就形成了鲜明的落差。

在列方程解决实际问题时,正确掌握题中的数量关系是关键,也是学生理解中的难点。大部分学生在列方程时,因为没能找出题中的数量关系而把方程列错,或者方程列到了,却不能把方程抽象成数量关系式。诸如这些现象,主要是学生的抽象能力还不够完善,分析问题的能力还不够仔细,深入,有待进一步的发展。

在公倍数和公因数一单元中,问题不大,主要是求两个数的最小公倍数和最大公因数。对较大的两个数,如求100以内两个数的最小公倍数和最大公因数,出错率较大。因此课后还应多补充一些相应的练习。

因数和倍数教学设计 篇七

教学目标:

1.从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

2.培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义的观点。

3.培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:理解因数和倍数的含义。

教学过程:

一、创设情境,引入新课

师:每个人都有自己的好朋友,你能告诉我你的好朋友是谁吗?

学生回答。

师:哦,老师知道了。是好朋友。如果他这样介绍:是好朋友。能行吗?

生:不行,这样就不知道谁是谁的好朋友了。

师:朋友是表示人与人之间的关系,我们在介绍的时候就一定要说清楚谁是谁的朋友,这样别人才能明白。在数学中,也有描述数与数之间关系的概念,比如说:倍数和因数。今天这节课我们就要来研究有关这个方面的一些知识。

二、探索交流,解决问题

1、师:我们已经认识了哪几类数?

生:自然数,小数,分数。

师:现在我们来研究自然数中数与数之间的关系。请你们根据12个小正方形摆成的不同长方形的情况写出乘、除算式。

根据学生的汇报板书:

1×12=12                    2×6=12           3×4=12

12×1=12                    6×2=12           4×3=12

12÷1=12                    12÷2=6           12÷3=4

12÷12=1                    12÷6=2           12÷4=3

师:在这3组乘、除法算式中,都有什么共同点?

生:第①组每个式子都有1、12这两个数。

生:第②组每个式子都有2、6、12这三个数。

生:第③组每个式子都有3、4、12这三个数。

师:(指着第②组)像这样的乘、除法式子中的三个数之间的关系还有一种说法,你们想知道吗?

师:2和6与12的关系还可以怎样说呢?

生:2和6是12的因数,12是2的倍数,也是6的倍数。

师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

生:可以说12是12的因数吗?

生:我认为可以,12×1=12,1和12都是12的因数。

师:说得真好,从上面3组算式中,

我们知道1,2,3,4,6,12都是12的因数。

师出示:

1、根据下面的算式,说说哪个数是哪个数的倍数,哪个数是哪个数的因数。

12 × 5=60    45 ÷ 3=15

11 × 4=44       9 × 8= 72

2、8是倍数,4是因数。…………… (   )

强调:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。

因数和倍数不能单独存在。

师出示:0×3   0×10

0÷3   0÷10

通过刚才的计算,你有什么发现?

生:我发现0和任何数相乘,都等于0。

生:0除以任何数都等于0。

生:我补充,0不能作为除数。

师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

师生小结:这节课,你们都学会了哪些知识?还有什么不明白的地方?

生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

师:这个问题提得好!谁能回答他的问题?

生:我觉得好像不一样,但不知道为什么?

生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能搞混哦!

2、试一试:你能从中选两个数,说一说谁是谁的因数? 谁是谁的倍数?

2、3、5、9、18、20

师:老师在听的时候发现有好几个数都是18的因数,你也发现了吗?谁能把这6个数中18的因数一口气说完?

生:2、3、9、18都是18的因数。

师:18的因数只有这4个吗?

师:看来要找出18的一个因数并不难,难就难在你能不能把18的所有因数既不重复又不遗漏地全部找出来。

投影仪出示学生的不同作业。交流找因数的方法。

师:出示18的因数有:1、18、2、9、3、6;

你知道这个同学是怎样找出18的因数的吗?看着这个答案你能猜出一点吗?

生:他是有规律,一对一对找的,哪两个整数相乘得18,就写上。

师:他是用乘法找的,其他同学还有补充吗?找到什么时候为止?

生:可以用除法找。用18除以1得18,18和1就是18的因数。再用18除以2……

师:用乘法和除法找都可以,你们认为用什么方法更容易呢?

生:乘法。

板书:18的因数有:1、2、3、6、9、18。

师:18的因数也可以这样表示。(课件出示集合圈图)

组织交流:

通过刚才的交流,找一个数的因数有办法了吗?有没有方法不重复也不遗漏?

突出要点:有序(从小往大写),一对对找哪两个整数相乘得这个数),再按从小到大的顺序写出来。

用我们找到的方法,试一个。

课件出示:

填空:

24=1×24=2×( )=( ) ×( )=( ) ×( )

24的因数有:_______________

再试一个:16的因数有(        )

师:一个数的因数,我们都是一对一对地找的,为什么16的因数只有5个呢?

生:因为4×4=16,只写一个4就可以了。

师:观察18、16的所有因数,你有什么发现吗?可以从因数的个数,最小的因数和最大的因数三个方面观察。

生:18的因数有6个,最小的是1,最大的是18.

16的因数有5个,最小的是1,最大的是16.

师:谁能把同学们的发现,用数学语言概括起来。

边交流边板书:

因数: 个数   最小   最大

有限    1    它本身

2、师:刚才同学们通过自主探索和合作交流,不但掌握了找一个数的因数的方法,而且发现了一个数的因数的特点,那么一个数的倍数,怎样找呢?找一个小一点的,2的倍数,请你们在纸上写。

师:停,写完了吗?你能把2的倍数全部写下来吗?那怎么办?

生:不能全写下来,可以用省略号表示没写完的。

师:你写得这样快,有小窍门吗?

生:用这个数有顺序地乘1、2、3、4、……

先写2,再逐个加2。

板书:2的倍数:2、4、6、8、10……

师:2的倍数也可以这样表示。(出示用集合圈表示的2的倍数)

找出3的倍数:3、6、9、12、15 ……

观察2和3的倍数,你有什么发现:

板书:     倍数 :   个数     最小    最大

无限的   它本身     无

师:找出30以内5的倍数:

生:5、10、15、20、25、30

师:这一次你找到了哪几个?为什么不加省略号呢?

课件出示:30以内5的倍数的集合圈图。

引导学生抽象地概括出一个数的最小因数和最大因数分别是什么,总结出一个数的因数的个数是有限的结论,向学生渗透从个别到全体、从具体到一般的抽象归纳的思想方法。

三、巩固应用,内化提高

1.下面每一组数中,谁是谁的倍数,谁是谁的因数。

16和2      4和24      72和8      20和5

2.下面的说法对吗?说出理由。

(1)48是6的倍数。

(2)在13÷4=3……1中,13是4的倍数。

(3)因为3×6=18,所以18是倍数,3和6是因数。

师:第(3)题有两种不同的意见,请反对意见的同学说说理由。

生:因为没有说明18是谁的倍数,所以不对。

师:你认为怎样说才正确呢?

生:我认为应该这么说:18是3和6的倍数,3和6是18的因数。

师:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数),也就是说:因数和倍数不能单独存在。

3.在36、4、9、12、3、0这些数中,谁和谁有因数和倍数关系。

4.游戏。请生任意写一个60以内的自然数(0除外),听老师说要求,所写的数符合要求的请举手,同桌互相检查。

①( )是4的倍数

( )是60的因数

( )是5的倍数

( )是36的因数

②请一名学生模仿刚才老师的要求,继续练习。

③想一想,应该提什么要求,让全班同学都能举手?

生:( )是1的倍数。

师:全班都举手了,谁能总结刚才的说法。

生:任何不包括0的自然数都是1的倍数。

四、回顾整理、反思提升。

通过今天的学习,你有什么收获?

课后作业 :课后自已或与同学合作制作一个含有因数和倍数知识的转盘。

教后反思:

40分钟的时间一闪而过,轻松愉悦的课堂气氛,让学生的学习情绪空前高涨,学生的学习热情,学习过程中数学思维的提升,都在这短短的时间内让我感觉无尽的惊喜。

课堂导入,亲切,有效,让学生先在脑海中留下“关系”这种印象,学生通过自己阅读明白谁是谁的因数,谁是谁的倍数,然后通过试一试、练习、特别是(8是倍数,4是因数。…………… (   ))的辨析,让学生明白:在说倍数(或因数)时,必须说明谁是谁的倍数(或因数)。不能单独说谁是倍数(或因数)。

因数和倍数不能单独存在。

通过寻找一个数的因数,和一个数的倍数,让学生通过多个实例找到规律。

在教学中由于过分依赖课件,致使有的环节没有深入,没有给学生时间进行

因数和倍数教案 篇八

一、谈话导入,激发兴趣

1、回顾学过的数

2、明确学习主题

二、自主学习,探究新知

1、自主学习

自学指导:阅读课本P12和P13例1

(1)2x6=12,表示的意义是什么?在这个乘法算式中,谁是谁的因数,谁是谁的倍数?

(2)想一想:什么情况下,两个不是零的自然数之间是因数(倍数)的关系?

(3)怎样找出18的全部因数?你是怎样想的?

怎样表示出18的因数?

要求:

1、独立学习

2、时间6分钟

3、全班交流

问题一:初建模型

在图式结合中构建因数、倍数的概念,并从中感受因数和倍数是相互依存的,有着互逆关系的一组概念。

问题二:深化模型

明确因数与倍数的外延,进一步认识、内化因数、倍数的内涵,从中提炼出因数、倍数模型的本质意义。

ab=c(a、b、c为非零自然数)

问题三:应用模型

①交流找一个数的因数的方法及表示方法。

②找30、36的因数。

3、议一议

(1)今天学习的因数与乘法算式中的因数一样吗?倍数与倍一样吗?

(2)通过找一个数的因数,你有什么发现?

三、检测反馈,拓展运用

四、板书设计

因数和倍数

2x6=12

2和6是12的因数。

12是2和6的倍数。

3x4=12

ab=c(a、b、c为非零自然数)

a和b是c的因数,c是a和b的倍数。

以上就是众鼎号为大家带来的8篇《因数和倍数教学设计》,能够帮助到您,是众鼎号最开心的事情。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:《平行四边形面积的计算》教学设计【优秀7篇】

下一篇:返回列表