有理数的混合运算教案(优秀7篇)
作为一位杰出的老师,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。那么问题来了,教案应该怎么写?以下是人见人爱的小编分享的7篇《有理数的混合运算教案》,在大家参考的同时,也可以分享一下众鼎号给您的好友哦。
有理数的混合运算 篇一
教学目标
1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;
2.培养学生的运算能力及综合运用知识解决问题的能力。
教学重点和难点
重点:有理数的运算顺序和运算律的运用。
难点:灵活运用运算律及符号的确定。
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.叙述有理数的运算顺序。
2.三分钟小测试
计算下列各题(只要求直接写出答案):
(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;
(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;
(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);
二、讲授新课
例1 当a=-3,b=-5,c=4时,求下列代数式的值:
(1)(a+b)2; (2)a2-b2+c2;
(3)(-a+b-c)2; (4) a2+2ab+b2.
解:(1) (a+b)2
=(-3-5)2 (省略加号,是代数和)
=(-8)2=64; (注意符号)
(2) a2-b2+c2
=(-3)2-(-5)2+42 (让学生读一读)
=9-25+16 (注意-(-5)2的符号)
=0;
(3) (-a+b-c)2
=[-(-3)+(-5)-4]2 (注意符号)
=(3-5-4)2=36;
(4)a2+2ab+b2
=(-3)2+2(-3)(-5)+(-5)2
=9+30+25=64.
分析:此题是有理数的混合运算,有小括号可以先做小括号内的,
=1.02+6.25-12=-4.73.
在有理数混合运算中,先算乘方,再算乘除。乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写
例4 已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。
解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.
所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995
=x2-x-1.
当x=2时,原式=x2-x-1=4-2-1=1;
当x=-2时,原式=x2-x-1=4-(-2)-1=5.
三、课堂练习
1.当a=-6,b=-4,c=10时,求下列代数式的值:
2.判断下列各式是否成立(其中a是有理数,a≠0):
(1)a2+1>0; (2)1-a2<0;
四、作业
1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:
2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:
3.计算:
4.按要求列出算式,并求出结果。
(2)-64的绝对值的相反数与-2的平方的差。
5*.如果|ab-2|+(b-1)2=0,试求
课堂教学设计说明
1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练。
2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径。
有理数的混合运算 篇二
(一)
教学目标
1.进一步掌握有理数的运算法则和运算律;
2.使学生能够熟练地按有理数运算顺序进行混合运算;
3.注意培养学生的运算能力。
教学重点和难点
重点:.
难点:准确地掌握有理数的运算顺序和运算中的符号问题。
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.计算(五分钟练习):
(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;
(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;
(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;
(24)3.4×104÷(-5).
2.说一说我们学过的有理数的运算律:
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
二、讲授新课
前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?
1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行。
审题:(1)运算顺序如何?
(2)符号如何?
说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果。带分数分成整数部分和分数部分时的符号与原带分数的符号相同。
课堂练习
审题:运算顺序如何确定?
注意结果中的负号不能丢。
课堂练习
计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);
2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减。
例3 计算:
(1)(-3)×(-5)2; (2)[(-3)×(-5)]2;
(3)(-3)2-(-6); (4)(-4×32)-(-4×3)2.
审题:运算顺序如何?
解:(1)(-3)×(-5)2=(-3)×25=-75.
(2)[(-3)×(-5)]2=(15)2=225.
(3)(-3)2-(-6)=9-(-6)=9+6=15.
(4)(-4×32)-(-4×3)2
=(-4×9)-(-12)2
=-36-144
=-180.
注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方。(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减。
课堂练习
计算:
(1)-72; (2)(-7)2; (3)-(-7)2;
(7)(-8÷23)-(-8÷2)3.
例4 计算
(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4.
审题:(1)存在哪几级运算?
(2)运算顺序如何确定?
解: (-2)2-(-52)×(-1)5+87÷(-3)×(-1)4
=4-(-25)×(-1)+87÷(-3)×1(先乘方)
=4-25-29(再乘除)
=-50.(最后相加)
注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1.
课堂练习
计算:
(1)-9+5×(-6)-(-4)2÷(-8);
(2)2×(-3)3-4×(-3)+15.
3.在带有括号的运算中,先算小括号,再算中括号,最后算大括号。
课堂练习
计算:
三、小结
教师引导学生一起总结有理数混合运算的规律。
1.先乘方,再乘除,最后加减;
2.同级运算从左到右按顺序运算;
3.若有括号,先小再中最后大,依次计算。
四、作业
1.计算:
2.计算:
(1)-8+4÷(-2); (2)6-(-12)÷(-3);
(3)3·(-4)+(-28)÷7; (4)(-7)(-5)-90÷(-15);
3.计算:
4.计算:
(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5.
5*.计算(题中的字母均为自然数):
(1)(-12)2÷(-4)3-2×(-1)2n-1;
(4)[(-2)4+(-4)2·(-1)7]2m·(53+35).
有理数的混合运算 篇三
一。 教材分析
本节内容是有理数的混合运算,共分两个课时。本课时重点是培养学生具有准确的运算能力,难点是能熟练运用各种运算律解决计算问题。通过这节课的学习,能让学生具备明确的运算次序和一些常规的方法,提高准确性和高效性。在教学中通过例题分析、易错辨析、学生讨论、动手操作等进行难点突破。
知识目标:
熟悉有理数混和运算的顺序,并能运用这种运算顺序进行计算
能力目标:
通过本节课的学习能熟练掌握有理数的运算,提高运算能力及观察问题、分析问题、解决问题的能力,学会用类比的方法分析问题
情感目标:
培养严谨的思维品质、合作学习和不怕困难的精神
二。 学方法和手段
创设问题情境 发现式 讨论式 合作学习
三。 学习方法
通过问题情境引入新知的学习欲望,学生通过观察、合作、辨析、对比、分析去解决问题
四。教学设计思路
首先创设问题情境,让学生观察式子 有哪几种运算,从而引出有理数的混合运算的定义,并且让学生自已举出有理数的混合运算的其它例子,从而加强对概念的理解,并且强调不需要同时含有加、减、乘、除、乘方运算,只含有部分运算符号也是混合运算。
通过小学四则混合运算的运算顺序进行对比,从而让学生自然引出有理数的混合运算的运算顺序,明确一级运算、二级运算、三级运算的概念,先算高级运算后算低级运算。接着通过7个例子:
让学生明确运算顺序,形式是学生自已寻找,其它同学更正评价。
接着老师讲评例1,计算: ,同时要求学生进一步的明确方法,进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法。之后让学生辨析思考题 通过学生自己发现分析,从而加深学生对有理数运算中含有括号的理解。
接着试一试计算: 让学生在下面练习,找一个同学上台演板。一个学生上来讲评。之后练习书本后的三道练习题。三位同学上台演板。之后学生评价,老师最后小结更正。通过这个过程主要强化学生的技巧的熟练程度,进一步的加深对运算顺序的理解认识。
最后小结本节课的内容和布置作业。
总体说来本节课分为这样一个流程,通过这样一个活动教学力求让学生掌握所学的知识,提高对数学思维的严谨性、逻辑性和敏捷性。
五。设计理念
根据新的课程改革的基本理念:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展,数学的教学必需面向全体学生,体现基础性、普及性和发展性的基本精神。因此本节课力求从学生的个性出发,从学生的认知规律出发,从特殊到一般再到特殊,从已知到未知,从学生的易错点出发,在思维的层次深入挖掘,并通过练习加以强化。另外通过全体学生的共同参与,多数学生的合作学习,每个学生的讨论发现来进一步明确有理数的混合运算的运算顺序,从而提高学生运算的准确性和高效性。当然在教学中还要体现学生的个性差异性必需进行分层施教,以让不同的人在数学上得到不同的发展。通过练习的梯度、作业的梯度、教学上的要求来进行表现。另外在教学中还要体现学生合作学习的气氛、探索未知的勇气、敢于发现的精神,初步学会用比较的方法去分析问题和解决问题的能力,学会用已知的方法去解决未知的问题。
六。板书设计
有理数的混和运算
有理数的运算顺序:
1. 先算乘方,再算乘除,最后算加减
2. 同级运算,按照从左到右的顺序进行
3. 如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的
注意:进行分数的乘除运算,一般要把带分数化为假分数,把除法转化为乘法
上一篇:有理数的混合运算
下一篇:《有理数的混合运算》教案
有理数的混合运算教案 篇四
教学目标
1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;
2.培养学生的运算能力及综合运用知识解决问题的能力.
教学重点和难点
重点:有理数的运算顺序和运算律的运用.
难点:灵活运用运算律及符号的确定.
课堂教学过程设计
一、从学生原有认知结构提出问题
1.叙述有理数的运算顺序.
2.三分钟小测试
计算下列各题(只要求直接写出答案):
(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;
(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;
(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);
二、讲授新课
例1当a=-3,b=-5,c=4时,求下列代数式的值:
(1)(a+b)2; (2)a2-b2+c2;
(3)(-a+b-c)2; (4) a2+2ab+b2.
解:(1) (a+b)2
=(-3-5)2 (省略加号,是代数和)
=(-8)2=64; (注意符号)
(2) a2-b2+c2
=(-3)2-(-5)2+42 (让学生读一读)
=9-25+16 (注意-(-5)2的符号)
=0;
(3) (-a+b-c)2
=[-(-3)+(-5)-4]2 (注意符号)
=(3-5-4)2=36;
(4)a2+2ab+b2
=(-3)2+2(-3)(-5)+(-5)2
=9+30+25=64.
分析:此题是有理数的。混合运算,有小括号可以先做小括号内的,
=1。02+6。25-12=-4。73.
在有理数混合运算中,先算乘方,再算乘除.乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写
例4已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。
解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.
所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995
=x2-x-1.
当x=2时,原式=x2-x-1=4-2-1=1;
当x=-2时,原式=x2-x-1=4-(-2)-1=5.
三、课堂练习
1.当a=-6,b=-4,c=10时,求下列代数式的值:
2.判断下列各式是否成立(其中a是有理数,a≠0):
(1)a2+1>0; (2)1-a2<0;
四、作业
1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:
2.当a=-5。4,b=6,c=48,d=-1。2时,求下列代数式的值:
3.计算:
4.按要求列出算式,并求出结果.
(2)-64的绝对值的相反数与-2的平方的差.
5*.如果|ab-2|+(b-1)2=0,试求
课堂教学设计说明
1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练.
2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径.
有理数的混合运算 篇五
教材分析:为体现新课标的要求,减少运算的繁琐,增加学生探究创新能力的培养,混合计算的步骤锐减,增加学生喜闻乐见的“二十四”点游戏。
教学目标;
[知识与技能]
1.掌握有理数混合运算法则,并能进行有理数的混合运算的计算。
2.经历“二十四”点游戏,培养学生的探究能力
教学重点:有理数混合运算法则。
教学难点:培养探索思维方式。
教学流程:运算法则→混合运算→探索思维。
教学准备:多媒体
教学活动过程设计:
一、生活应用引入:
从学生喜爱的“开心辞典”中王小丫做节目的图片入手引学生进入学习兴趣
[师]我们已学过哪种运算?
[生] 乘方、乘、除、加、减五种;复习各种运算的法则;
例 计算:
① ② (教师板书)
③ ④ (学生计算)
二、混合运算举例。
1. (生口答)下列计算错在哪里?应如何改正?
(1)74-22÷70=70÷70=1
(2)(-112 )2-23=114 -6 = -434
(3)23-6÷3×13 =6-6÷1=0
2.计算:(学生上台做,教师讲评)
(1)(-6)2×(23 - 12 )-23; (2)56 ÷23 - 13 ×(-6)2+32
解:(1)(-6)2×(23 -12 )-23=36×16 -8=6-8=-2。
(2)56 ÷23-13 ×(-6)2+32
=56 ×32 -13 ×36+9。
=54 -12+9=-74
三、合作学习1
请看实例:
如图:一圆形花坛的半径为3m,中间雕塑的底面是边长为1.2m的正方形。你能用算式表示该花坛的关际种花面积吗?这个算式有哪几种运算?应怎样计算?这个花坛的实际种化面积是多少?
[生]列出算式3.14×32-1.22
包括:乘方、乘、减三种运算
[师]原式=3.14×9-1.44
=28.26-1.44=26.82(m2)
[师]请同学们说说有理数的混合运算的法则
(生相互补充、师归纳)
一般地, 有理数混合运算的法则是:
先算乘方,再算乘除,最后算加减。如有括号,先进行括号里的运算。
四、合作学习2
例2:如图,半径是10cm,高为30cm的圆柱形水桶中装满了水,小明先将桶中的水倒满2个底面半径为3cm,高为6cm的圆柱形杯子,再把剩下的水倒入长、宽、高分别为50cm,30cm和20cm的长方体容器内,长方体容器内水的高度大约是多少cm(π取3,容器的厚度不计)?
分析:如下图所示
解:水桶内水的体积为π×102×30cm3,倒满2个杯子后,剩下的水的体积为
(π×102×30-2×π×32×6)cm3
(π×102×30-2×π×32×6)÷(50×30)
=(9000-324) ÷1500 = 8676÷1500≈6(cm)
答:容器内水的高度大约为 6cm。
三、分组探索(见ppt)
下面请同学来玩“24点”游戏
从一副扑克牌(去掉大、小王)中,任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次)使得运算结果可能为24或—24,其中红色扑克牌代表负数,黑色扑克牌代表正数,j、q、k分别代表11、12、13。
(1)甲同学抽到了,a、8、7、3,他运用下列算式凑成24, =24。
(2)乙同学抽到了,q、q、-3、a,他能凑成24或-24吗? =24。
(3)丙同学抽到了,a、2、2、3,他能凑成24或-24吗? =24.
(4)某同学如抽到下列一组牌6、5、3、a,你帮她设计一下算式使之能凑成24或-24。或-12×3-12×(-1)=-24
(5)老师抽到下列四张牌,1、-2、2、3,你认为能凑成24或-24吗?
(6) 老师抽到下列四张牌,9、2、4、10,你认为能凑成24吗?
试一试,你自编两组可凑成24或-24的牌,请邻座同学帮你设计算式。
四、作业:课本第54页,作业题。
教学反思:对于有理数混合运算,关键要把握好两点,运算次序和符号,不必让学生训练太繁琐、太复杂的计算,而多应该增加探索计算题(编不同的“二十四”点题就很好)。
上一篇:有理数的混合运算(1)说课教案
下一篇:有理数的混合运算(二)
有理数的混合运算 篇六
有理数的混合运算(二)
教学目标
1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;
2.培养学生的运算能力及综合运用知识解决问题的能力。
教学重点和难点
重点:有理数的运算顺序和运算律的运用。
难点:灵活运用运算律及符号的确定。
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.叙述有理数的运算顺序。
2.三分钟小测试
计算下列各题(只要求直接写出答案):
(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;
(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;
(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);
二、讲授新课
例1 当a=-3,b=-5,c=4时,求下列代数式的值:
(1)(a+b)2; (2)a2-b2+c2;
(3)(-a+b-c)2; (4) a2+2ab+b2.
解:(1) (a+b)2
=(-3-5)2 (省略加号,是代数和)
=(-8)2=64; (注意符号)
(2) a2-b2+c2
=(-3)2-(-5)2+42 (让学生读一读)
=9-25+16 (注意-(-5)2的符号)
=0;
(3) (-a+b-c)2
=[-(-3)+(-5)-4]2 (注意符号)
=(3-5-4)2=36;
(4)a2+2ab+b2
=(-3)2+2(-3)(-5)+(-5)2
=9+30+25=64.
分析:此题是有理数的混合运算,有小括号可以先做小括号内的,
=1.02+6.25-12=-4.73.
在有理数混合运算中,先算乘方,再算乘除。乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写
例4 已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。
解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.
所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995
=x2-x-1.
当x=2时,原式=x2-x-1=4-2-1=1;
当x=-2时,原式=x2-x-1=4-(-2)-1=5.
三、课堂练习
1.当a=-6,b=-4,c=10时,求下列代数式的值:
2.判断下列各式是否成立(其中a是有理数,a≠0):
(1)a2+1>0; (2)1-a2<0;
四、作业
1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:
2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:
3.计算:
4.按要求列出算式,并求出结果。
(2)-64的绝对值的相反数与-2的平方的差。
5*.如果|ab-2|+(b-1)2=0,试求
课堂教学设计说明
1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练。
2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径。
有理数的混合运算(二)
教学目标
1.进一步熟练掌握有理数的混合运算,并会用运算律简化运算;
2.培养学生的运算能力及综合运用知识解决问题的能力。
教学重点和难点
重点:有理数的运算顺序和运算律的运用。
难点:灵活运用运算律及符号的确定。
课堂教学过程 设计
一、从学生原有认知结构提出问题
1.叙述有理数的运算顺序。
2.三分钟小测试
计算下列各题(只要求直接写出答案):
(1)32-(-2)2;(2)-32-(-2)2;(3) 32-22;(4)32×(-2)2;
(5)32÷(-2)2;(6)-22+(-3)2;(7)-22-(-3)2;(8)-22×(-3)2;
(9)-22÷(-3)2;(10)-(-3)2·(-2)3;(11)(-2)4÷(-1);
二、讲授新课
例1 当a=-3,b=-5,c=4时,求下列代数式的值:
(1)(a+b)2; (2)a2-b2+c2;
(3)(-a+b-c)2; (4) a2+2ab+b2.
解:(1) (a+b)2
=(-3-5)2 (省略加号,是代数和)
=(-8)2=64; (注意符号)
(2) a2-b2+c2
=(-3)2-(-5)2+42 (让学生读一读)
=9-25+16 (注意-(-5)2的符号)
=0;
(3) (-a+b-c)2
=[-(-3)+(-5)-4]2 (注意符号)
=(3-5-4)2=36;
(4)a2+2ab+b2
=(-3)2+2(-3)(-5)+(-5)2
=9+30+25=64.
分析:此题是有理数的混合运算,有小括号可以先做小括号内的,
=1.02+6.25-12=-4.73.
在有理数混合运算中,先算乘方,再算乘除。乘除运算在一起时,统一化成乘法往往可以约分而使运算简化;遇到带分数通分时,可以写
例4 已知a,b互为相反数,c,d互为倒数,x的绝对值等于2,试求 x2-(a+b+cd)x+(a+b)1995+(-cd)1995值。
解:由题意,得a+b=0,cd=1,|x|=2,x=2或-2.
所以 x2-(a+b+cd)x+(a+b)1995+(-cd)1995
=x2-x-1.
当x=2时,原式=x2-x-1=4-2-1=1;
当x=-2时,原式=x2-x-1=4-(-2)-1=5.
三、课堂练习
1.当a=-6,b=-4,c=10时,求下列代数式的值:
2.判断下列各式是否成立(其中a是有理数,a≠0):
(1)a2+1>0; (2)1-a2<0;
四、作业
1.根据下列条件分别求a3-b3与(a-b)·(a2+ab+b2)的值:
2.当a=-5.4,b=6,c=48,d=-1.2时,求下列代数式的值:
3.计算:
4.按要求列出算式,并求出结果。
(2)-64的绝对值的相反数与-2的平方的差。
5*.如果|ab-2|+(b-1)2=0,试求
课堂教学设计说明
1.课前三分钟小测试中的题目,运算步骤不太多,着重考查学生运算法则、运算顺序和运算符号,三分钟内正确做完15题可算达标,否则在课后宜补充这一类训练。
2.学生完成巩固练习第1题以后,教师可引导学生发现(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2,使学生做题目的过程变成获取新知识的重要途径。
有理数的混合运算 篇七
一、素质教育目标
(一)知识教学点
能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算。
(二)能力训练点
培养学生的观察能力和运算能力。
(三)德育渗透点
培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯。
(四)美育渗透点
通过本节课的学习,学生会认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识的普适性美。
二、学法引导
1.教学方法:尝试指导法,以学生为主体,以训练为主线。
2.学生学法:
三、重点、难点、疑点及解决办法
重点和难点是如何按有理数的运算顺序,正确而合理地进行有理数混合计算。
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片。
六、师生互动活动设计
教师用投影出示练习题,学生用多种形式完成。
七、教学步骤
(一)复习提问
(出示投影1)
1.有理数的运算顺序是什么?
2.计算:(口答)
① , ② , ③ , ④ ,
⑤ , ⑥ .
【教法说明】2题都是学生运算中容易出错的题目,学生口答后,如果答对,追问为什么?如果不对,先让他自己找错误原因,若找不出来,让其他同学纠正,使学生真正明白发生错误的原因,从而达到培养运算能力的目的。
(二)讲授新课
1.例2 计算
师生共同分析:观察题目中有乘法、除法、减法运算,还有小括号。
思考:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了。带分数进行乘除运算时,必须化成假分数。
动笔:按思考的步骤进行计算,在计算时不要“跳步”太多,最后再检查这个计算结果是否正确。
一个学生板演,其他学生做在练习本上,教师巡回指导,然后师生共同订正。
【教法说明】通过此题的分析,引导学生在进行有理数混合运算时,遵循“观察—思考—动笔—检查”的程序进行计算,有助于培养学生严谨的学风和良好的学习习惯。
2.尝试反馈,巩固练习(出示投影2)
计算:
① ;
② .
【教法说明】让学生仿照例题的形式,自己动脑进行分析,然后做在练习本上,两个学生板演。由于此两题涉及负数较多,应提醒学生注意符号问题。教师根据学生练习情况,作适当评价,并对学生普遍出现的错误,及时进行变式训练。
3.例3 计算: .
教师引导学生分析:观察题目中有乘方、乘法、除法、加法、减法运算。
思考:容易看到 , 是彼此独立的,可以首先分别计算,然后再进行加减运算。
动笔:按思考的步骤进行计算,在计算时强调不要“跳步”太多。
检查计算结果是否正确。
一个学生口述解题过程,教师予以指正并板书做示范,强调解题的规范性。
4.尝试反馈,巩固练习(出示投影3)
计算:① ;
② ;
③ ;
④ .
首先要求学生观察思考上述题目考查的知识点有哪些?然后再动笔完成解题过程。四个学生板演,其他同学做在练习本上。
说明:1小题主要考查乘方、除法、减法运算法则及运算顺序等知识,学生容易出现 的错误。通过此题让学生注意运算顺序。3题主要考查:相反数、负数的奇次幂、偶次幂运算法则及运算顺序等知识点。让学生搞清 与 的区别; , .计算此题要特别注意符号问题;4题主要考查相反数运算法则及运算顺序等知识。本题要特别注意运算顺序。
【教法说明】习题的设计分层次,由易到难,循序渐进,符合学生的认知规律。注重培养学生的观察分析能力和运算能力。通过变式训练,也培养学生的思维能力。学生做练习时,教师巡回指导,及时获得反馈信息,对学生出现错误较多的问题,教师要进行回授讲解,然后再出一些变式训练进行巩固。
(三)归纳小结
师:今天我们学习了,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算。
【教法说明】小结起到“画龙点睛”的作用,教给学生运算的方法、步骤,培养学生良好的学习习惯,提高运算的准确率。
(四)反馈检测(出示投影4)
(1)计算① ; ②
③ ; ④ ;
⑤ .
(2)已知 , 时,求下列代数式的值
① ; ② .
以小组为单位计分,积分最高的组为优胜组。
【教法说明】通过反馈检测,既锻炼学生综合应用所学知识的能力,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。
八、随堂练习
1.选择题
(1)下列各组数中,其值相等的是( )
A. 和 B. 和
C. 和 D. 和
(2)下列各式计算正确的是( )
A. B.
C. D.
(4)下列说法正确的是( )
A. 与 互为相反数
B.当 是负数时, 必为正数
C. 与 的值相等
D.5的相反数与 的倒数差大于-2.
2.计算
(1) ;
(2) .
九、布置作业
(一)必做题:课本第118页3.(4)、(5);4.(6)、(7)、(8).
(二)选做题:课本第119页B组1.
十、板书设计
上面内容就是众鼎号为您整理出来的7篇《有理数的混合运算教案》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在众鼎号。