高中数学教案【优秀7篇】
教学计划的重要性对于每一位教师们而言都是不言而喻的!读书破万卷下笔如有神,以下内容是众鼎号为您带来的7篇《高中数学教案》,在大家参考的同时,也可以分享一下众鼎号给您的好友哦。
高中数学基本不等式教案设计 篇一
教材分析
本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。 要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。 通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、实际问题的解决)的过程呈现。启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式 的证明过程及应用。
难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。
教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。
教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。
具体过程安排如下:
创设情景,提出问题;
设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实。基于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。
[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式 。在此基础上,引导学生认识基本不等式。
二、抽象归纳:
一般地,对于任意实数a,b,有 ,当且仅当a=b时,等号成立。
[问] 你能给出它的证明吗?
学生在黑板上板书。
特别地,当a>0,b>0时,在不等式 中,以 、 分别代替a、b,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础。
答案: 。
【归纳总结】
如果a,b都是正数,那么 ,当且仅当a=b时,等号成立。
我们称此不等式为基本不等式。 其中 称为a,b的算术平均数, 称为a,b的几何平均数。
三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。
2、联想数列的知识理解基本不等式
已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。
3、符号语言叙述:
若 ,则有 ,当且仅当a=b时, 。
[问] 怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)
“当且仅当a=b时,等号成立”的含义是:
高中数学教案 篇二
学习目标:
1、了解本章的学习的内容以及学习思想方法
2、能叙述随机变量的定义
3、能说出随机变量与函数的关系,
4、能够把一个随机试验结果用随机变量表示
重点:能够把一个随机试验结果用随机变量表示
难点:随机事件概念的透彻理解及对随机变量引入目的的认识:
环节一:随机变量的定义
1.通过生活中的一些随机现象,能够概括出随机变量的定义
2能叙述随机变量的定义
3能说出随机变量与函数的区别与联系
一、阅读课本33页问题提出和分析理解,回答下列问题?
1、了解一个随机现象的规律具体指的是什么?
2、分析理解中的两个随机现象的随机试验结果有什么不同?建立了什么样的对应关系?
总结:
3、随机变量
(1)定义:
这种对应称为一个随机变量。即随机变量是从随机试验每一个可能的结果所组成的
到的映射。
(2)表示:随机变量常用大写字母。等表示。
(3)随机变量与函数的区别与联系
函数随机变量
自变量
因变量
因变量的范围
相同点都是映射都是映射
环节二随机变量的应用
1、能正确写出随机现象所有可能出现的结果2、能用随机变量的描述随机事件
例1:已知在10件产品中有2件不合格品。现从这10件产品中任取3件,其中含有的次品数为随机变量的学案。这是一个随机现象。(1)写成该随机现象所有可能出现的结果;(2)试用随机变量来描述上述结果。
变式:已知在10件产品中有2件不合格品。从这10件产品中任取3件,这是一个随机现象。若Y表示取出的3件产品中的合格品数,试用随机变量描述上述结果
例2连续投掷一枚均匀的硬币两次,用X表示这两次正面朝上的次数,则X是一个随机变
量,分别说明下列集合所代表的随机事件:
(1){X=0}(2){X=1}
(3){X<2}(4){x>0}
变式:连续投掷一枚均匀的硬币三次,用X表示这三次正面朝上的次数,则X是一个随机变量,X的可能取值是?并说明这些值所表示的随机试验的结果。
练习:写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机变量的结果。
(1)从学校回家要经过5个红绿灯路口,可能遇到红灯的次数;
(2)一个袋中装有5只同样大小的球,编号为1,2,3,4,5,现从中随机取出3只球,被取出的球的号码数;
小结(对标)
高中数学教案 篇三
教学目标:
通过生动有趣的“数学乐园”活动,使学生加深对10以内数的认识,进一步巩固10以内的加减法,充分感受数学与日常生活的密切联系。使学生在理解和掌握知识的同时,感受到学习数学的乐趣,提高学习数学的兴趣。教学准备:
1.数字迷宫图十幅,信箱四个,口算卡片40张
2.自制教学课件,教室场景布置,学生坐成4行。
教学过程:
一、导入:小朋友们,今天老师带大家到“数学乐园”去玩(老师指“数学乐园”场景布置)。大家想不想去呀可是在“数学乐园”的门口有四个信箱,需要每个小朋友当一回“小小邮递员”,把“数字娃娃”藏在你们抽屉里的“信”送到正确的信箱里,就能进人数学乐园,大家有没有信心
二、活动送信游戏
1.分组送信。教室讲台上放四个标有数字的信箱,老师问:怎样才能把“信”送到正确的信箱里呢只要把“信”(即口算卡片)上的题目得数算出来,得数是几,就把“信”送到标有这个数的信箱里。每个学生从抽屉里拿出一封“信”(即口算卡片),在音乐声中分组走上讲台送“信”。注意:有的卡片上面的得数不是信箱的标号,是没法送出的信。对于没有送出的信,让学生说说为什么送不出去。
2.检查送信游戏的正确性。学生投完信后,老师把四个信箱分发到四个小组(课前学生坐成四行),由小组长主持检查每个信箱里的口算卡片是否送对了,学生做手势表示对错进行检查,看有没有送错的信。对于送错的信,让学生说说为什么送错了。各组检查完后,小组长向老师汇报检查结果。
三、活动二起立游戏
好啊,我们进人数学乐园啦!看,数学乐园里有很多小动物在等着我们呢!老师出示包括乖乖虎、皮卡丘、机器猫的画面(课件),你们喜欢它们吗让学生分组选择喜欢的小动物。全班坐成四行,每行10人,各行报数(同时进行)。
老师根据学生的选择点击小动物图案,出示下列四题:
1.请这一组的前面四个小朋友站起来。请第四个小朋友拍四下手。从前往后数你是第几个从后往前数你是第几个
2.请从前往后数第五个小朋友站起来,:你前面有几个小朋友后面有几个小朋友你这一组有几个小朋友你是怎么知道的
3.请从前往后数第六个小朋友站起来。不许往后看,你知道你后面有几个小朋友吗你是怎么知道的
4.请从后往前数第二个小朋友站起来。你这一组有几个男孩有几个女孩合起来一共有几个小朋友你是怎么知道的
高中数学教案 篇四
1.教学目标
(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程。
(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识。
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣。
2.教学重点。难点
(1)教学重点:圆的标准方程的求法及其应用。
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题。
3.教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导] 画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)
将x=2.7代入,得 .
即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?
答:x2 y2=r2
2.如果圆心在 ,半径为 时又如何呢?
[学生活动] 探究圆的方程。
[教师预设] 方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}
由两点间的距离公式,点m适合的条件可表示为 ①
把①式两边平方,得(x―a)2 (y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在 ,半径为 ;
(3)经过点 ,圆心在点 .
2.根据圆的方程写出圆心和半径
(1) ; (2) .
ii.灵活应用(提升能力)
问题四:1.求以 为圆心,并且和直线 相切的圆的方程。
[教师引导]由问题三知:圆心与半径可以确定圆。
2.已知圆的方程为 ,求过圆上一点 的切线方程。
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是 ,经过圆上一点 的切线的方程是: .
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程。
2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程。
3.求圆x2 y2=13过点(-2,3)的切线方程。
4.已知圆的方程为 ,求过点 的切线方程。
高中数学教案 篇五
下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
(二)教学内容
本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。
二、教学目标分析
根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:
知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。
能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。
情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。
三、重难点分析
一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。
要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。
四、教法与学法分析
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
本节课设计的指导思想是:现代认知心理学——建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。
高中数学教学设计 篇六
一、目标
1、知识与技能
(1)理解流程图的顺序结构和选择结构。
(2)能用字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图
2、过程与方法
学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。
3情感、态度与价值观
学生通过动手作图,。用自然语言表示算法,用图表示算法。进一步体会算法的基本思想——程序化思想,在归纳概括中培养学生的逻辑思维能力。
二、重点、难点
重点:算法的顺序结构与选择结构。
难点:用含有选择结构的流程图表示算法。
三、学法与教学用具
学法:学生通过动手作图,。用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。
教学用具:尺规作图工具,多媒体。
四、教学思路
(一)、问题引入 揭示题
例1 尺规作图,确定线段的一个5等分点。
要求:同桌一人作图,一人写算法,并请学生说出答案。
提问:用字语言写出算法有何感受?
引导学生体验到:显得冗长,不方便、不简洁。
教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。
本节要学习的是顺序结构与选择结构。
右图即是同流程图表示的算法。
(二)、观察类比 理解题
1、 投影介绍流程图的符号、名称及功能说明。
符号 符号名称 功能说明
终端框 算法开始与结束
处理框 算法的各种处理操作
判断框 算法的各种转移
输入输出框 输入输出操作
指向线 指向另一操作
2、讲授顺序结构及选择结构的概念及流程图
(1)顺序结构
依照步骤依次执行的一个算法
流程图:
(2)选择结构
对条进行判断决定后面的步骤的结构
流程图:
3、用自然语言表示算法与用流程图表示算法的比较
(1)半径为r的圆的面积公式 当r=10时写出计算圆的面积的算法,并画出流程图。
解:
算法(自然语言)
①把10赋与r
②用公式 求s
③输出s
流程图
(2) 已知函数 对于每输入一个X值都得到相应的函数值,写出算法并画流程图。
算法:(语言表示)
① 输入X值
②判断X的范围,若 ,用函数Y=x+1求函数值;否则用Y=2-x求函数值
③输出Y的值
流程图
小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。
学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)
(三)模仿操作 经历题
1、用流程图表示确定线段A.B的一个16等分点
2、分析讲解例2;
分析:
思考:有多少个选择结构?相应的流程图应如何表示?
高中数学教学设计 篇七
一、指导思想与理论依据
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析
三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。本节是第一课时,教学内容为公式(二)、(三)、(四)。教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。
三、学情分析
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标
(1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2)能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3)创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
五、教学重点和难点
1、教学重点
理解并掌握诱导公式。
2、教学难点
正确运用诱导公式,求三角函数值,化简三角函数式。
六、教法学法以及预期效果分析
高中数学优秀教案高中数学教学设计与教学反思
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究。下面我从教法、学法、预期效果等三个方面做如下分析。
1、教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。
2、学法
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情。如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。
3、预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。
七、教学流程设计
(一)创设情景
1、复习锐角300,450,600的三角函数值;
2、复习任意角的三角函数定义;
3、问题:由,你能否知道sin2100的值吗?引如新课。
设计意图
高中数学优秀教案高中数学教学设计与教学反思
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。
(二)新知探究
1、让学生发现300角的终边与2100角的终边之间有什么关系;
2、让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;
3、Sin2100与sin300之间有什么关系。
设计意图
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫。
(三)问题一般化
探究一
1、探究发现任意角的终边与的终边关于原点对称;
2、探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;
3、探究发现任意角与的三角函数值的关系。
设计意图
首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二。同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进
它山之石可以攻玉,以上就是众鼎号为大家整理的7篇《高中数学教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在众鼎号。