最新人教版五年级数学上册教案优秀9篇
作为一名老师,常常要根据教学需要编写教案,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?下面是众鼎号为大伙儿带来的9篇《最新人教版五年级数学上册教案》,如果能帮助到亲,我们的一切努力都是值得的。
五年级上册数学教案 篇一
教学目的:
1.使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。
2.培养学生观察、比较、抽象、慨括的能力。
3.培养学生自主探究的精神和独立思考的能力。教学重点:质数和合效的概念。
教学难点:
质数、台数、济数、偶数的区别
教学过程:
课前谈话:
给教室里的人分类。体会:同样的事物,依据不问的分类标准,可以有多种小-的分类方法。明确:分类的际准很重要。
一、复习旧知
说一说,在我们学习的空间,你可以得到那些数?(要求与同学说的尽也不重复)
给这些自然数分类。根据自然数能不能被2整除,可以分成新数和偶数两类。
板书对应的集合图。
自然数
(能不能被2整除)
把学生列举的数填写在对应的集合圈里。
问:看了集合图,你想说什么么?(学生看图说自己的想法,复习奇数和偶数的有关知识)
说明:这是一种有价值的分类方法,在以后的学习中很有用。
问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?
二、进行新课
今天我们就用找约数的方法来给自然数分类。
复习:什么叫约数?怎样找一个数所有的约数?
同桌合作。找出列举的各数的所有的约数。(同时板演)
引导学生观察:观察以上各数所含的`数的个数,你能把它们分成几种情况‘!
根据学生的回答板书。
自然数
(约数的个数)
(只有两个约数)(有3个或3个以上的约数)
引导学生思考:只含有两个约数的,这两个约数有什么特点?引出约数的概念。
明确合数的概念。提问:合数至少有几个约数?想一想:1的约数有哪几个?它是质数吗?它是合数吗?
明确:这是一种新的分类方法。看厂集合圈,你想说什么?(学生看图说自己的想法,巩固寺数阳台数的知识)
猜一猜:奇数有多少个?合数呢?
明确:因为自然数的个数是无限的,所以,新数阳偶数的个数也是无限的。运用新知,解决问题。
出示例1 下面各数,哪些是质数?哪些是合数?
15、28、31、53、77、89
学生独立完成。
问:你是怎么判断的?
明确:可以找出每个数所有的约数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的约数来,这样可以提高判断的效率。
说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。
完成练一练。
三、练习巩固
1、坚持下面各数的约数的个数,指出哪些是质数哪些是合数,再用质数表检查。
22、29、35、49、51 79、 83
2、出示2到50的数。先划掉2的倍数,再依次划掉3、5、7的倍数(但2、3、5、7本身不划掉。)
学生操作后,提问:剩下的都是什么数?
告诉学生:古代的数学家就是用这样的方法来找质数的。
四、全课总结
学到这里,一种新的分类方法,你掌握了吗?学生回答:相机揭示课题,质数和合数
讨论:质数、合数、奇数、偶数之间是这样的关系呢?
五、布置作业(略)。
小学五年级上册数学教案 篇二
【教学目标】
1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2、知道100以内的质数,熟悉20以内的质数。
3、培养学生自主探索、独立思考、合作交流的能力。
4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【重点难点】
质数、合数的意义。
教学过程:
【复习导入】
1、什么叫因数?
2、自然数分几类? (奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
【新课讲授】
1、学习质数、合数的概念。
(1)写出1 ~20各数的因数。(学生动手完成)
点四位学生上黑板写,教师注意指导。
(2)根据写出的因数的个数进行分类。
(3)教学质数和合数概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。
如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)
2、教学质数和合数的判断。
判断下列各数中哪些是质数,哪些是合数。
17 22 29 35 37 87 93 96
教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)
质数:17 29 37
合数:22 35 87 93 96
3、出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。
③注意1既不是质数,也不是合数。
五年级数学上册教案 篇三
学习目标
1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。
2、结合现实情景,体验数学与日常生活的密切联系,激发学生对数学的兴趣
学情分析重点、难点:
在现实情景中理解正负数及零的意义。
易混点、易错点:感受用正数和负数来表示一些相反意义的量
学生认知基础:生活中见到过负数。
时间分配学20讲10练10
教法学法
自主探索法,练习法,讲授法。
教学过程
一、自学例1
1、通过查资料了解“℃”和“℉”的含义,并学会看温度计的方法。
2、从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
3、上海和北京的气温一样吗?不一样在哪儿?
4、那你知道在数学上是怎样区分和表示这两个不同的温度的呢?
二、自学例2
1、了解海拔的意义。
2、思考从图上你知道了什么?
3、试着用今天所学的知识来表示这两个地方的海拔高度。
学生活动教师助学课后改进
第一课时
第一板块:学生汇报预习情况。第二板块:根据预习情况,学习例1
(1)交流“℃”和“℉”的含义,说明我国是用“℃”来计量温度的,并指导看温度计的方法。
(2)交流:从图中你能知道些什么?上海的气温和南京比,怎么样?北京的气温和南京比,怎么样?
(3)上海和北京的气温一样吗?不一样在哪儿?
(5)那你知道在数学上是怎样区分和表示这两个不同的温度的呢?(零上4摄氏度记作+4℃或4℃,零下4摄氏度﹣4℃)
第三板块:正数和负数的读、写方法。
根据课本要求,记住读写方法。
学生看温度计,选择合适的卡片表示各地气温。
第三板块:交流学习例2
交流:从图上你知道了什么?
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
共同小结:以海平面为基准,比海平面高8844米,通常称为海拔8844.43米,可以计作+8844.43米;比海平面低155米,通常称为海拔负155米,可以计作﹣155米。
学生根据今天所学知识把这些数分类。
正数都大于0,负数都小于0。
先指名读一读,再用正数或负数表示图中数据。
先读一读,再说说这些海拔高度是高于海平面还是低于海平面。
一:教学例1
1.出示例1的三幅分别显示三个城市某一天最低气温的温度计图。
根据学生的预习,共同学习交流认识新知。
(4)上海的气温是零上4摄氏度,北京的气温是零下4摄氏度。以0摄氏度分界,一个在0摄氏度以上,一个在0摄氏度以下。一上一下,正好相反。
2.教学正数和负数的读、写方法。
“+4”读作正四,“+4”的正号也可以省略不写,直接把“+4”写成“4”。“﹣4”读作负四。
3.指导完成“试一试”。
(卡片上分别写有+11℃、﹣11℃、19℃、+19℃、﹣7℃、+7℃)
二:教学例2
1.师:同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2.出示例2中珠穆朗玛峰与吐鲁番盆地的海拔高度图。
三:初步归纳正数和负数。
⑴出示+4、﹣4、﹣7、﹣11 、19、+8844.43、﹣155这些数,提出要求:前面,我们用这些数来表示零上和零下的温度以及海平面以上和以下的高度。大家仔细观察这些数,你能将它们分分类吗?
⑵小结:像+4、19、+8844.43这样的数都是正数。像-4、﹣7、﹣11 、-155这样的数都是负数;而0既不是正数,也不是负数。
⑶提问:正数、负数和0比一比,它们的大小关系怎样?
四:练习
做“练一练”1,2题
2.做练习一第1题。
3.做练习一第2题。
4、练习一4、5、6题。
五:作业
练习一第3题。
交流认识新知。
正数和负数的读、写方法。
根据课本要求,记住读写方法。
交流:你能用今天所学的知识来表示这两个地方的海拔高度吗?
正数、负数和0比一比,它们的大小关系怎样?
正数都大于0,负数都小于0。
新人教版五年级上册数学教案最新例文 篇四
教学目标:
1、让学生理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、 根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数,为学习约分和通分打下基础。
学习目标:
1、理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系。
2、根据分数的基本性质,学会把一个分数化成用指定的分母做分母或指定的分子做分子而大小不变的分数
重点难点:
1、使学生理解分数的基本性质。
2、让学生自主探索,发现和归纳分数的基本性质,以及应用它解决相关的问题。
过程设计:
一、激情导入
1、导入课题
生读故事。
唐僧师徒四人在西天取经的路上得到了一个大西瓜,他们知道猪八戒想多吃。师傅说:“分给他二分之一,他嫌少,分给他四分之二,他还嫌少,之后师傅说分给他八分之四,这次猪八戒觉得已经很多了,高兴得答应了。可是悟空却在旁边一个劲地笑,你知道孙悟空为什么笑吗?
师:孙悟空为什么笑呢?二分之一、四分之二、八分之四这三个分数到底有什么关系呢?下面我们用折纸的方法来看一下它们之间有什么样的关系?
2、明确目标
理解和掌握分数的基本性质,知道它与整数除法中商不变性质之间的联系;并会应用分数的基本性质。
3、预期效果
达到教学目标
二、民主导学
任务一
任务呈现
动手操作 验证性质
自主学习
师:拿出准备好的三张正方形纸。按照下面的要求来进行操作。请一同学读学习要求
1、把三张正方形纸平均对折一次、二次、三次,将纸平均分成2、4、8份,分别把2分之二、4分之二、8分之四涂上颜色,并标出二分之一、四分之二、8分之四。
2、仔细观察三张纸的涂色部份,你们能发现什么?
师:同位分工合作完成。现在开始。
师选择一份作品粘贴在黑板上,请一同学说一说你们有什么发现?
请二至三位同学说一说。
师:我们都发现了涂色部份的面积是相等的,那你们能不能把二分之一、四分之二、八分之四列成一个等式呢?
生回答。师:现在你们知道孙悟空为什么笑了吗?请同学回答。
师:猪八戒每次分到的都是一样多的。它还以为啊,开始分得少,后来分得多。不过猪八戒也许也正纳闷呢?这几个分数的分子和分母各不一样,那它们的大小怎么会一样呢?你们想帮猪八戒解决这个问题吗?(想)
下面请同学们把这个式子从左往右地观察,看一下每个分数的分子分母怎样变化?才得到下一个分数。
生:我发现了二分之一的分子与分母同时乘以2得到了四分之二、四分之二的分子和分母同时乘以2得到了八分之四。
请二名同学重复。
师:你们想得一样吗?我把二分之一的分子分母同时乘2得到了四分之二、四分之二的分子和分母同时乘2又得到了八分之四。那在这个式子中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5分数的大小变吗?同时乘以10呢?那你们能不能根据这个式子来总结一个规律呢?
生回答:一个分数的分子分母同时扩大相同的倍数,它们分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘 相同的数 ,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师: 这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往右观察,你们又会发现什么呢?
请一同学回答,
生:我们发现了8分之四的分子与分母同时除以2得了四分之二,四分之二的分子与分母同时除以2得到了二分之一。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以4大小会变吗?同时除以5呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。 (二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
展示交流
师指着板书说明:我们说分子分母同时乘或除以相同的数,分数的大小不变,那是不是包括所有的数呢?我们一起来看这样一个分数。板书八分之四同时除以0,问:这个式子成立吗?(打上问号)
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。(画叉)
师:我再说一个式子,我不除以0了,我乘以0,这个式子成立吗?(板书:8分之四乘以0,打上问号)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,大家都知道0不能作除数,所以这两个式子都是不成立的?(画叉)我们刚才总结的分数的分子分母同时乘或者除以相同的数,不是所有的数需要加上一句什么话
生:0除外
师板书0除外
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题)
师:我相信如果当时猪八戒会这个分数的基本性质,那就不会出现这样的笑话了,那咱们同学们千万不要范它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。
任务二
任务呈现
课本76页的例2,请一同学读题。
自主学习
生独立完成,完成后和同位的同学说一说你是怎样想的。
展示交流
每题请二名同学回答,(集体订正答案)
检测导结
1、目标练习
76页“做一做”
练习十四的1、2、6、7题
2、结果反馈
生做完后同桌交流,再指名说说结果。
3、反思总结
今天这节课你都学会了哪些知识?请大家谈谈学习了分数的基本性质的收获。
三、辅助设计
教具课件设计
小黑板 正方形纸数块
板书设计
分数的基本性质
练习和作业设计
1、完成课本76页做一做中的1、2题。
生独立完成,师指名回答。
2、完成练习十四中的1、2、5、6、7题。
师小结:这节课我们学习了分数基本性质,而且我们还学会了根据分数的基本性质把一个分数转化成和它相等的另外一个分数,其实生活当中还有许多的数学知识,如果你留心观察,你就能够发现,我希望大家都能做一个在学习上面的有心人。
五年级上册数学教案 篇五
【教学内容】
质数和合数(课本第14页例1及第16页练习四1~3题)。
【教学目标】
1.使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。
2.知道100以内的质数,熟悉20以内的质数。
3.培养学生自主探索、独立思考、合作交流的能力。
4.让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。
【教学重难点】
重点:理解质数、合数的意义。
难点:掌握判断质数与合数的方法。
【教学过程】
一、复习导入
1.什么叫因数?
2.自然数分几类?(奇数和偶数)
教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。
二、新课讲授
1.学习质数、合数的概念。
(1)写出1~20各数的因数。(学生动手完成)点四位学生上黑板板演,教师注意指导。
(2)根据写出的因数的`个数进行分类。(填写下表)
(3)教学质数和合数的概念。
针对表格提问:什么数只有两个因数,这两个因数一定是什么数?
教师:只有1和它本身两个因数,那么这样的数叫做质数(或素数)。如果一个数,除了1和它本身还有别的因数,那么这样的数叫做合数。(板书)
2.教学质数和合数的判断。
3.出示课本第14页例题1。
找出100以内的质数,做一个质数表。
(1)提问:如何很快地制作一张100以内的质数表?
(2)汇报:
①根据质数的概念逐个判断。
②用筛选法排除。首先排除掉2的倍数,再排除掉3 的倍数。提问:4的倍数还需不需要排除呢?(不用)接下来我们可以排除掉5、7的倍数,剩下的就是质数。
③注意1既不是质数,也不是合数。
100以内质数表
三、课堂作业
完成教材第16页练习四的第1~3题。
四、课堂小结
这节课,同学们又学到了什么新的本领?
学生畅谈所得。
【教学反思】
教学质数与合数时,先复习了因数的概念,然后再让学生找出1~20各数的所有因数,并引导学生观察这些数的因数有什么不同,再进行分类,在此基础上引出了质数、合数的概念,学生对一些知识的掌握就会水到渠成,而且还会作出正确判断。
五年级数学上册教案 篇六
教学目标
1、通过收集图案,小组交流,感受图案的美,并为自身以后创作图案提供借鉴。
2、通过欣赏图案,发展同学的审美意识和空间观念。
3、自身经历创作实践的整个过程,感受创作的乐趣,进一步培养同学的审美情趣。
重点难点:
1、进一步利用对称、平移、旋转等方法绘制精美的图案。
2、加深感受图形的内在美,培养同学的审美情趣。
教学准备:
课件、方格纸、正方形白板纸、手工纸三张和剪刀等。
教学过程:
一、展览导入
课前让同学收集图案,以小组为单位进行交流。
考虑:这些图案是怎样设计的,它有什么特点?
指名介绍本组中最美的图案,并结合考虑说一说它的特点。
二、学习新课
(一)尝试发明:
让同学做第8页第1、2题。
1、鼓励同学用学过的图形设计图案,对不同的同学提出不同的要求。
2、交流时,教师对有创意、绘图美观的同学给予褒扬和激励。
(二)设计图案:
做第10页“实践活动”7题。
1、提出三个步骤:
(1)先选择一个喜欢的图形;
(2)再确定你选用的对称、平移和旋转的方法;
(3)动手绘制图案。
2、分别利用对称、平移和旋转创作一个图案后,全班交流。
三、巩固练习
(一)反馈练习:
1、制作“雪花”:
取一张正方形纸,按书上所示的方法对折和剪裁。可以经过多次练习,直到会剪一朵美丽的“雪花”。
2、作品展示。
3、独立观察并尝试做第9页第5题。
四、全课总结
全班交流各自的作品,选出好的作品互相评价,全班展览。
新人教版五年级上册数学教案最新例文 篇七
教学内容:
教材第122 、123 页的内容及第124 、125 页练习二十四的第1-3题。
教学目标:
1、使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2、能根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3、体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。
重点难点:
1、重点:理解众数的含义,会求一组数据的众数。
2、弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。
教具准备:
投影。
教学过程:
一、导入
提问:在统计中,我们已学习过哪些统计量?(学生回忆)指出:前面,我们已经对平均数、中位数等一些统计量有了一定的认识。今天,我们继续研究统计的有关知识。
二、教学实施
1、出示教材第122 页的例1 。
提问:你认为参赛队员身高是多少比较合适?
学生分组进行讨论,然后派代表发言,进行汇报。
学生会出现以下几种结论:
( 1)算出平均数是1 。 475 ,认为身高接近1 。 475m 的比较合适。
( 2)算出这组数据的中位数是1 。 485 ,身高接近1 。 485m 比较合适。
( 3)身高是1 。 52m 的人最多,所以身高是1 。 52m 左右比较合适。
2、老师指出:上面这组数据中,1 。 52 出现的次数最多,是这组数的众数。众数能够反映一组数据的集中情况。
3、提问:平均数、中位数和众数有什么联系与区别?
学生比较,并用自己的语言进行概括,交流。
老师总结并指出:描述一组数据的集中趋势,可以用平均数、中位数和众数,它们描述的角度和范围有所不同,在具体问题中,究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。
4、指导学生完成教材第123 页的“做一做”。
学生独立完成,并结合生活经验谈一谈自己的建议。
5、完成教材第124 页练习二十四的第1 、2 、3 题。
学生独立计算平均数、中位数和众数,集体交流。
三、思维训练
小军对居民楼中8 户居民在一个星期内使用塑料袋的数量进行了抽样调查,情况如下表。
( 1)计算出8 户居民在一个星期内使用塑料袋数量的平均数、中位数和众数。(可以使用计算器)
( 2)根据他们使用塑料袋数量的情况,对楼中居民(共72 户)一个月内使用塑料袋的数量作出预测。
数学上册五年级教案 篇八
教学内容:
p53--54练习十一1,2,3
教学目标:
1、 通过观察天平演示,使学生初步理解方程的意义;
2、 使学生能够判断一个式子是不是方程,并能解决简单 的实际问题;
3、 培养学生观察、描述、分类、抽象、概括、应用等能力。
教学重点:
判断一个式子是不是方程;初步理解方程的意义。
课前准备:
课件,习题板
教学过程:
一、复习旧知,激趣导入
同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有88位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:88+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!
二、出示学习目标
1、初步理解方程的意义,会判断一个式子是否是方程
2、按要求用方程表示出数量关系,培养学生观察、比较、分析概括的能力。
三、学习过程。
(一)认识天平
(二)新课学习
自学指导(一)。
自学p53, 分别说一说图1,图2,,显示的信息。
图1天平两边平衡,一个空杯重100克。
图2在空杯里加一杯水后天平不平衡了。
自学指导(二)
再看图3说说图3 显示的信息。
天平1杯子和里面的水比200克法码重
天平2杯子和里面的水比300克法码轻
自学指导(三)
请用算式表示图3数量关系。
天平1、100+x>200
天平2、100+x<300
自学指导(四)
再看图4说说图4 显示的信息,请用算式表示图4数量关系
100+x=250
自学指导(五)
观察比较下列算式说说你的发现
观察比较
100+x>200
100+x<300
100+x=250
前面两个算式两边不相等,后面一个算式两边是相等的。
教师总结:像这样两边相等的算式我们把它叫做等式。(板书)
课堂练习(一)
写出几个等式
自学指导(六)
请学生把这里的等式分类,并说说你们是如何分类的?
20+30=50
20+χ=100
50×2=100
14-8=6
3y=180
78× 3=234
100+2ywww.众鼎号1126888众鼎号.com=3×50
学生汇报后让学生说出分类的理由。(有的含有未知数,有的没有未知数)
教师总结:含有未知数的等式,称为方程。(板书)
课堂练习(二)
请大家写出几个方程。
四、小结:回答什么是方程?
五年级数学上册教案 篇九
教学内容:
第10页例6及后做一做、练习二1—3题。
教学目标
1、知识与技能:掌握用“四舍五入法”取积的近似数。
2、过程与方法:让学生应用迁移的方法来求积的近似数。
3、情感、态度与价值观:培养学生能根据实际需要正确求积的近似数。
教学重点
学生能用“四舍五入法”取积的近似数。
教学难点
学生能根据实际需要正确求积的近似数。
教学过程:
一、复习。
1、口算:0.8×40.32×40.8×12.57.8×0.01
3.2×0.20.08×0.089.3×0.014.8-0.48
2、把下面各数精确到百分位。
0.256≈ 12.889≈ 40.00001≈
二、新授
1、教学教材第10页例题6.
(1)出示例题6:
(2)分析:题目的已知条件和问题分别是什么?怎样列式计算?
(3)生尝试练习。
(4)抽生板演:0.049×45≈2.2(亿个)
0.049
× 45
245
196
2.205
(5)分析订正:大家有什么不明白的地方吗?(学生质疑或师提问:)
①为什么用乘法计算?(根据小数乘整数的意义:求0.049的45倍用乘法计算。)
②结果2.205保留一位小数约是2.2是怎么来的?(根据四舍五入法:看小数部分的第二位小于五,就从第二位开始省略掉。)
(6)小结:当我们求出的积的小数位数比较多,我们可以根据需要,按“四舍五入法”保留一定的小数位数。
三、练习
1、完成第10页“做一做”。
生完成在练习本上,抽生板演,并说出四舍五入的方法。
2、课堂作业:第13页练习二1、2、3题。
以上就是众鼎号为大家整理的9篇《最新人教版五年级数学上册教案》,希望对您的写作有所帮助。