首页 > 教师教学 > 教案模板 >

二次根式教案(优秀5篇)

众鼎号分享 127297

众鼎号 分享

一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。读书破万卷下笔如有神,下面众鼎号为您精心整理了5篇《二次根式教案》,希望朋友们参阅后能够文思泉涌。

次根式 篇一

一、教学目标

1.了解的意义;

2. 掌握用简单的一元一次不等式解决中字母的取值问题;

3. 掌握的性质 和 ,并能灵活应用;

4.通过的计算培养学生的逻辑思维能力;

5. 通过性质 和 的介绍渗透对称性、规律性的数学美。

二、教学重点和难点

重点:(1)二次根的意义;(2)中字母的取值范围。

难点:确定中字母的取值范围。

三、教学方法

启发式、讲练结合。

四、教学过程

(一)复习提问

1.什么叫平方根、算术平方根?

2.说出下列各式的意义,并计算:

, , , , , , ,

通过练习使学生进一步理解平方根、算术平方根的概念。

观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,

, , , 表示的是算术平方根。

(二)引入新课

我们已遇到的 , , ,这样的式子是我们这节课研究的内容,引出:

新课:

定义: 式子 叫做。

对于 请同学们讨论论应注意的问题,引导学生总结:

(1)式子 只有在条件a≥0时才叫, 是吗? 呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。

(2) 是,而 ,提问学生:2是吗?显然不是,因此二次

根式指的是某种式子的“外在形态”。请学生举出几个的例子,并说明为什么是。下面例题根据定义,由学生分析、回答。

例1 当a为实数时,下列各式中哪些是?

分析: , , , 、 、 、 四个是。 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此, 与 不是。

例2 x是怎样的实数时,式子 在实数范围有意义?

解:略。

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义。

例3  当字母取何值时,下列各式为:

(1) (2) (3) (4)

分析:由的定义 ,被开方数必须是非负数,把问题转化为解不等式。

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是。

(2)-3x≥0,x≤0,即x≤0时, 是。

(3) ,且x≠0,∴x>0,当x>0时, 是。

(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是。

例4  下列各式是,求式子中的字母所满足的条件:

(1) ; (2) ; (3) ; (4)

分析:这个例题根据定义,让学生分析式子中字母应满足的条件,进一步巩固的定义,.即: 只有在条件a≥0时才叫,本题已知各式都为,故要求各式中的被开方数都大于等于零。

解:(1)由2a+3≥0,得 .

(2)由 ,得3a-1>0,解得 .

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是。 所以所求字母x的取值范围是全体实数。

(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

(三)小结(引导学生做出本节课学习内容小结)

1.式子 叫做,实际上是一个非负的实数a的算术平方根的表达式。

2.式子中,被开方数(式)必须大于等于零。

(四)练习和作业

练习:

1.判断下列各式是否是

分析:(2) 中, , 是;(5)是。 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是,(6)无意义。

2.a是怎样的实数时,下列各式在实数范围内有意义?

五、作业 

教材p.172习题11.1;a组1;b组1.

六、板书设计

次根式教案 篇二

教学内容:

1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;

2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范的解题格式。

教学方法:

1、类比的方法通过观察、类比,使学生感悟二次根式的模型,形成有效的学习策略。

2、阅读的方法让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。

3、分组讨论法将自己的意见在小组内交换,达到取长补短,体验学习活动中的交流与合作。

4、练习法采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内进行他检,提高学生的素质。

知识点

上节课我们认识了什么是二次根式,那么二次根式有什么性质呢?本节课我们一起来学习。

二、展示目标,自主学习:

自学指导:认真阅读课本第3页——4页内容,完成下列任务:

1、请比较与0的大小,你得到的结论是:________________________。

2、完成3页“探究”中的填空,你得到的结论是____________________。

3、看例2是怎样利用性质进行计算的。

4、完成4页“探究”中的填空,你得到的结论是:____________________。

5、看懂例3,有困难可与同伴交流或问老师。

课时作业

教师节要到了,为了表示对老师的敬意,小明≮www.1126888.com≯做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800cm2,另一张面积为450cm2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2m长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(≈1.414,结果保留整数)

次根式教案 篇三

教材分析:

本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。

学生分析:

本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。

设计理念:

新课程有效课堂教学明确倡导,学生是学习的主人,在学生自学文本的基础上动手实践、自主探究、合作交流,来倡导新的学习观,让他们完成二次根式加减知识研究。教师从过去知识的传授者转变为学生的自主性、探究性、合作性学习活动的设计者和组织者,与学生零距离接触共同探究。在教学过程中教师设置开放的、面向实际的、富有挑战性的问题情境,使学生在尝试、探索、思考、交流与合作中培养分析、归纳、总结的能力,把“要我学”变成“我要学”,通过开放式命题,尝试从不同角度寻求解决问题的方法,养成良好的学习习惯,掌握学习策略,并根据活动中示范和指导培养学生大胆阐述并讨论观点,说明所获讨论的有效性,并对推论进行评价。从而营造一个接纳的、支持的、宽容的良好氛围进行学习。

教学目标知识与技能目标:

会化简二次根式,了解同类二次根式的概念,会进行简单的二次根式的加减法;通过加减运算解决生活的实际问题。

过程与方法目标:

通过类比整式加减法运算体验二次根式加减法运算的过程;学生经历由实际问题引入数学问题的过程,发展学生的抽象概括能力。

情感态度与价值观:

通过对二次根式加减法的探究,激发学生的探索热情,让学生充分参与到数学学习的过程中来,使他们体验到成功的乐趣。

重点、难点:重点:

合并被开放数相同的同类二次根式,会进行简单的二次根式的加减法。

难点:

二次根式加减法的实际应用。

关键问题:

了解同类二次根式的概念,合并同类二次根式,会进行二次根式的加减法。

教学方法:.

1.引导发现法:在教师的启发引导下,鼓励学生积极参与,与实际问题相结合,采用“问题—探索—发现”的研究模式,让学生自主探索,合作学习,归纳结论,掌握规律。

2.类比法:由实际问题导入二次根式加减运算;类比合并同类项合并同类二次根式。

3.尝试训练法:通过学生尝试,教师针对个别问题进行点拨指导,实现全优的教育效果。

次根式 篇四

(第1课时)

一、教学目标

1.掌握二次根式的性质

2.能够利用二次根式的性质化简二次根式

3.通过本节的学习渗透分类讨论的数学思想和方法

二、教学设计

对比、归纳、总结

三、重点和难点

1.重点:理解并掌握二次根式的性质

2.难点:理解式子 中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式。

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、多媒体

六、师生互动活动设计

复习对比,归纳整理,应用提高,以学生活动为主

七、教学步骤

(一)教学过程

【复习引入】

1.求值 、 、 、 …

求值 、 、 、 …

结论:当 时, ;

当 时, .

2.求值 、 …

结论:当 时,式子有意义, ,对于 , 不能为负数。

3.求值 、 …

结论:当 时, .

问:若根号内这个式子中的底数 ,根式还有意义吗?其值等于什么?

例如, ,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中 与 互为相反数。

【讲解新课】

提出问题: 等于什么?引导学生讨论、猜测、联想,得到结论:

教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:若 时, 能否等于 ,以增强学生的辨别能力,加强学生对公式的理解和记忆。

例1  化简:

(1) ; (2) .

解:(略).

注: 可看作 ,把 先写为 ;

可看作 ,把 先写为 .

例2  化简: .

分析:底数 是非负数还是负数将直接影响结果,这时要注意条件,由条件 ,可得 .

∴ .

解:(略).

例3  化简下列各式:

(1) ( ); (2) ( );

(3) ( ); (4) ( ).

解:(1)∵

∴  .

.

(2)∵

∴ ,即 .

.

(3)∵

∴ ,即 .

.

(4)∵ ,

∵ ,即 .

∴ .

注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式 计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负。

在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力。

(二)随堂练习

1.求值:

(1) ;(2) ;(3) ( );

(4) ;(5) .

解:(1) .

(2) .

(3) .

(4) .

(5) .

注: ,学生易与 相混淆。

2.化简:

(1) ;(2) ;(3) ;

(4) ( ); (5) ( ).

解:(1) .

(2) .

(3) .

(4) .

(5) .

(三)总结、扩展

对公式 ,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断。

(四)布置作业

教材P213中1(2)、(3);2(1)、(2).

(五)板书设计

标  题

1.复习题 4.练习题

2.公式

3.例题

次根式教案 篇五

【教学目标】

1.运用法则

进行二次根式的乘除运算;

2.会用公式

化简二次根式。

【教学重点】

运用

进行化简或计算

【教学难点】

经历二次根式的乘除法则的探究过程

【教学过程】

一、情境创设:

1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

2.计算:

二、探索活动:

1.学生计算;

2.观察上式及其运算结果,看看其中有什么规律?

3.概括:

得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

将上面的公式逆向运用可得:

积的算术平方根,等于积中各因式的算术平方根的积。

三、例题讲解:

1.计算:

2.化简:

小结:如何化简二次根式?

1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

2.P62结果中,被开方数应不含能开得尽方的因数或因式。

四、课堂练习:

(一).P62练习1、2

其中2中(5)

注意:

不是积的形式,要因数分解为36×16=242.

(二).P673计算(2)(4)

补充练习:

1.(x>0,y>0)

2.拓展与提高:

化简:1).(a>0,b>0)

2).(y

2.若,求m的取值范围。

☆3.已知:,求的值。

五、本课小结与作业:

小结:二次根式的乘法法则

作业:

1).课课练P9-10

2).补充习题

以上就是众鼎号为大家整理的5篇《二次根式教案》,能够给予您一定的参考与启发,是众鼎号的价值所在。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:分数混合运算教案优秀8篇

下一篇:返回列表