首页 > 教师教学 > 教案模板 >

初一数学优秀3篇

众鼎号分享 131585

众鼎号 分享

总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,为此我们要做好回顾,写好总结。总结怎么写才能发挥它的作用呢?众鼎号的小编精心为您带来了3篇《初一数学》,如果能帮助到您,众鼎号将不胜荣幸。

初一数学 篇一

喜欢数学的同学觉得暑假作业数学是最简单的,但是做完了需要对照一下标准答案哦,下面是整理关于2019初一数学暑假作业答案,欢迎参考!

暑假过得开心吗?一定不要忘记还有作业要做哦,如果已经完成了,就来看看小编给你的答案吧。

1.1 整式

1.(1)c、d、f;(2)a、b、g、h;(3)a、b;(4)g;(5)e、i;2. ;3. ; 4.四,四,- ab2c,- ,25 ;5.1,2;6. a3b2c;7.3x3-2x2-x;8. ;9.d;10.a; 11.b-;12.d ;13.c;14. ;15.a= ;16.n= ;四。-1.

1.2 整式的加减

1.-xy+2x2y2; 2.2x2+2x2y; 3.3; 4.a2-a+6; 5.99c-99a; 6.6x2y+3x2y2-14y3; 7. ; 8. ; 9.d; 10.d; 11.d; 12.b; 13.c; 14.c; 15.b; 16.d; 17.c;18.解:原式= ,当a=-2,x=3时, 原式=1.

19. 解:x=5,m=0,y=2,原式=5.20.(8a-5b)-[(3a-b)- ]= ,当a=10,b=8时,上车乘客是29人。21. 解:由 ,得xy=3(x+y),原式= .

22. 解:(1)1,5,9,即后一个比前一个多4正方形。

(2)17,37,1+4(n-1).

四。解:3幅图中,需要的绳子分别为4a+4b+8c,4a+4b+4c,6a+6b+4c,

所以(2)中的用绳最短,(3)中的用绳最长。

1.3 同底数幂的乘法

1. , ;2.2x5,(x+y)7 ;3.106;4.3;5.7,12,15,3 ;6.10;7.d ;8.b-; 9.d;10.d; 11.b;12.(1)-(x-y)10 ;(2)-(a-b-c)6;(3)2x5 ;(4)-xm

13.解:9.6×106×1.3×108≈1.2×1015(kg).

14.(1)① ,② .

(2)①x+3=2x+1,x=2 ②x+6=2x,x=6.

15.-8x7y8 ;16.15x=-9,x=- .

四。105.毛

1.4 幂的乘方与积的乘方

1. , ;2. ;3.4 ;4. ;5. ; 6.1,-1;7.6,108; 8.37;9.a、d;10.a、c;11.b;12.d ;13.a ;14.;15.a;16.b.17.(1)0;(2) ;(3)0.

18.(1)241 (2)540019. ,而 , 故 .20.-7;

21.原式= ,

另知的末位数与33的末位数字相同都是7,而 的末位数字为5,

∴原式的末位数字为15-7=8.

四。400.毛

1.5 同底数幂的除法

1.-x3,x ;2.2.04×10-4kg;3.≠2;4.26;5.(m-n)6;6.100 ;7. ;8.2;9.3-,2,2; 10.2m=n;11.b; 12.;13.c;14.b;15.c;16.a;

17.(1)9;(2)9;(3)1;(4) ;18.x=0,y=5;19.0;20.(1) ;

(2) .21. ;

四。0、2、-2.

1.6 整式的乘法

1.18x4y3z2;2.30(a+b)10;3.-2x3y+3x2y2-4xy3;4.a3+3a;5.-36;6.a4--16;7.-3x3-x+17 ;8.2,3 9. ;10.c;11.c;12.c;13.d;14.d;15.d;16-.;17.a ; 18.(1)x= ;(2)0;

19. ∵ ∴ ;

20.∵x+3y=0 ∴x3+3x2y-2x-6y=x2(x+3y)-2(x+3y)=x2・0-2・0=0,

21.由题意得35a+33b+3c-3=5,

∴35a+33b+3c=8,

∴(-3)5a+(-3)3b+(-3)c-3=-(35a+33b+3c)-3=-8-3=-11,

22.原式=-9,原式的值与a的取值无关。

23.∵ ,

= ,

= .

∴能被13整除。

四。 ,有14位正整数。毛

1.7 平方差公式(1)

1.36-x2,x2- ; 2.-2a2+5b;3.x+1;4.b+c,b+c; 5.a-c,b+d,a-c,b+d ;6. ,159991;7.d; 8.c;9.d;10. -1;11.5050 ;12.(1) ,-39 ; (2)x=4;13.原式= ;14.原式= .15.这两个整数为65和63.

四。略。

1.7 平方差公式(2)

1.b2-9a2;2.-a-1;3.n-m;4.a+,1; 5.130+2 ,130-2 ,16896; 6. 3x-y2;7.-24 ;8.-15;9.b; 10.d;11.c;12.a;13.c;14.b.15.解:原式= .

16.解:原式=16y4-81x4;17.解:原式=10x2-10y2. 当x=-2,y=3时,原式=-50.

18.解:6x=-9,∴x= .

19.解:这块菜地的面积为:

(2a+3)(2a-3)=(2a)2-9=4a2-9(cm2),

20.解:游泳池的容积是:(4a2+9b2)(2a+3b)(2a-3b),

=16a4-81b4(米3).

21.解:原式=-6xy+18y2 ,

当x=-3,y=-2时, 原式=36.

一变:解:由题得:

m=(-4x+3y)(-3y-4x)-(2x+3y)(8x-9y)

=(-4x)2-(3y)2-(16x2-18xy+24xy-27y2)

=16x2-9y2-16x2-6xy+27y2=18y2-6xy.

四。2n+1.

1.8 完全平方公式(1)

1. x2+2xy+9y2, y-1 ;2.3a-4b,24ab,25,5 ;3.a2+b2+c2+2ab-2ac-2bc;4.4ab-,-2, ;5.±6;6.x2-y2+2yz-z2;7.2cm;8.d; 9.; 10.c; 11.; 12.; 13.a;

14.∵x+ =5 ∴(x+ )2=25,即x2+2+ =25

∴x2+ =23 ∴(x2+ )2=232 即 +2+ =529,即 =527.

15.[(a+1) (a+4)] [(a+2) (a+3)]=(a2+5a+4) (a2+5a+6)= (a2+5a)2+10(a2+5a)+24

= .

16.原式= a2b3-ab4+2b. 当a=2,b=-1时,原式=-10.

17.∵a2+b2+c2-ab-bc-ca=0

∴2(a2+b2+c2-ab-bc-ca)=0

∴(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)=0

即(a-b)2+(b-c)2+(a-c)2=0

∴a-b=0,b-c=0,a-c=0

∴a=b=c.

1.8 完全平方公式(2)

1.5y;2.500;2;250000+2000+4;252019.3.2;4.3a;6ab;b2;5.-6;6.4;7.2xy;2xy;

8. ,4;9.d ; 10.d ; 11.; 12.b; 13.c; 14.b;

15.解:原式 =2a4-18a2.16.解:原式 =8x3-2x4+32.当x=- 时,原式= .

17.解:设m=1234568,则1234567=m-1,1234569=m+1,

则a=(m-1)(m+1)=m2-1,b=m2.

显然m2-1

18.解:-(x2-2)2>(2x)2-(x2)2+4x,

-(x4-4x2+4)>4x2-x4+4x,

-x4+4x2-4>4x2-x4+4x,

-4>4x,∴x<-1.

19.解:

由①得:x2+6x+9+y2-4y+4=49-14y+y2+x2-16-12,

6x-4y+14y=49-28-9-4,

6x+10y=8,即3x+5y=4,③

由③-②×③得:2y=7,∴y=3.5,

把y=3.5代入②得:x=-3.5-1=-4.5,

20.解:由b+c=8得c=8-b,代入bc=a2-12a+52得,

b(8-b)=a2-12a+52,8b-b2=a2-12a+52,

(a-b)2+(b-4)2=0,

所以a-6=0且b-4=0,即a=6,b=4,

把b=4代入c=8-b得c=8-4=4.

∴c=b=4,因此△abc是等腰三角形。

四。(1)20192+(2019×2019)2+20192=(2019×2019+1)2.

(2) n2+[n(n+1)]2+(n+1)2=[n(n+1)]2.

1.9 整式的除法

1. ; 2.4b; 3. -2x+1; 4. ; 5.-10× ; 6.-2yz,x(答案-不惟一); 7. ; 8.3; 9.x2+2; 10.c; 11.b; 12.d; 13.a; 14.c; 15.d;

16.(1)5xy2-2x2y-4x-4; (2)1 (3)2x2y2-4x2-6;

17.由 解得 ;

∴ .

18.a=-1,b=5,c=- ,

∴原式= .

19. ;

20.设除数为p,余数为r,则依题意有:

80=pa+r ①,94=pb+r ②,136=pc+r ③,171=pd+r ④,其中p、a、b、c、d-为正整数,r≠0

②-①得14=p(b-a),④-③得35=p(d-c)而(35,14)=7

故p=7或p=1,当p=7时,有80÷7=11…3 得r=3

而当p=1时,80÷1=80余0,与余数不为0矛盾,故p≠1

∴除数为7,余数为3.

四。略。毛

单元综合测试

1. , 2.3,2; 3.1.23× ,-1.49× ;4.6;4; ; 5.-2 6-.单项式或五次幂等,字母a等; 7.25; 8.4002;9.-1;10.-1; 11.36;12.a=3,b=6-,c=4 ;13.; 14.a ; 15.a ;16.a ; 17.c ; 18.d;

19.由a+b=0,cd=1,│m│=2 得x=a+b+cd- │m│=0

原式= , 当x=0时,原式= .

20.令 ,

∴原式=(b-1)(a+1)-ab=ab-a+b-1-ab=b-a-1= .

21.∵

=

∴ =35.

22.

= =123×3-12×3+1=334.毛

第二章 平行线与相交线

2.1余角与补角(本文来源于:兔笨笨英语网 tooben )

1.×、×、×、×、×、√;2.(1)对顶角(2)余角(3)补角;3.d;4.110°、70°、110°;5.150°;6.60°;7.∠aoe、∠boc,∠aoe、∠boc,1对;8.90°9.30°;10.4对、7对;11.c;12.195°;13.(1)90°;(2)∠mod=150°,∠aoc=60°;14.(1)∠aod=121°;(2)∠aob=31°,∠doc=31°;(3)∠aob=∠doc;(4)成立;

四。405°.

2.2探索直线平行的条件(1)

1.d;2.d;3.a;4.a;5.d;6.64°;7.ad、bc,同位角相等,两直线平行;8、对顶角相等,等量代换,同位角相等,两直线平行;9.be∥df(答案不唯一);10.ab∥cd∥ef;11.略;12.fb∥ac,证明略。

四。a∥b,m∥n∥l.

2.2探索直线平行的条件(2)

1.ce、bd,同位角;bc、ac,同旁内角;ce、ac,内错角;2.bc∥de(答案不唯一);3.平行,内错角相等,两直线平行;4.c;5.c;6.d;7.(1)∠bed,同位角相等,两直线平行;(2)∠dfc,内错角相等,两直线平行;(3)∠afd,同旁内角互补,两直线平行;(4)∠aed,同旁内角互补,两直线平行;8.b;9.c;10.b;11.c;12.平行,证明略;13.证明略;14.证明略;15.平行,证明略(提示:延长dc到h);

四。平行,提示:过e作ab的平行线。

2.3平行线的特征

1.110°;2.60°;3.55°;4.∠cgf,同位角相等,两直线平行,∠f,内错角相等,两直线平行,∠f,两直线平行,同旁内角互补;5.平行;6.①② ④(答案不唯一);7.3个 ;8.d;9.c;10.d;11.d;12.c;13.证明略;14.证明略;

四。平行,提示:过c作de的平行线,110°.

2.4用尺规作线段和角(1)

1.d;2.c;3.d;4.c;5.c;6.略;7.略;8.略;9.略;

四。(1)略(2)略(3)①a② .

4.4用尺规作线段和角(2)

1.b;2.d;3.略;4.略;5.略;6.略;7.(1)略;(2)略;(3)相等;8.略;9.略;10.略;

四。略。

单元综合测试

1.143°;2.对顶角相等;3.∠acd、∠b;∠bdc、∠acb;∠acd;4.50°;5.65°;6.180°;7.50°、50°、130°;8.α+β-γ=180°;9.45°;10.∠aod、∠aoc;11.c;12.a;13.c;14.d;15.a;

16.d;17.d;18.c;19.d;20.c;21.证明略;22.平行,证明略;23.平行,证明略;24.证明略;

第三章 生活中的数据

3.1 认识百万分之一

1,1.73×10 ;2,0.000342 ; 3,4×10 ; 4,9×10 ; 5,c; 6,d;7,c ; 8,c; 9,c;10,(1)9.1×10 ; (2)7×10 ;(3)1.239×10 ;11, =10 ;10 个。

3.2 近似数和有效数字

1.(1)近似数;(2)近似数;(3)准确数;(4)近似数;(5)近似数;(6)近似数;(7)近似数;2.千分位;十分位;百分位;个位;百位;千位;3. 13.0, 0.25 , 3.49×104 , 7.4*104;4.4个, 3个, 4个, 3个, 2个, 3个;5. a;6、c;7. ;8. d ;9. a ;10. b;

11.有可能,因为近似数1.8×102cm是从范围大于等于1.75×102而小于1.85 ×102中得来的,有可能一个是1.75cm,而另一个是1.84cm,所以有可能相差9c

12. ×3.14×0.252×6=0.3925mm3≈4.0×10-10m3

13.因为考古一般只能测出一个大概的年限,考古学家说的80万年,只不过是一个近似数而已,管理员却把它看成是一个精确的数字,真是大错特错了。

四:1,小亮与小明的说法都不正确。3498精确到千位的近似数是3×103

3.3 世界新生儿图

1,(1)24% ;(2)200m以下 ;(3)8.2%;

2,(1)59×2.0=118(万盒);

(2)因为50×1.0=50(万盒),59×2.0=118(万盒),80×1.5=120 (万盒),所以该地区盒饭销量最大的年份是2019年,这一年的年销量是120万盒;

(3) =96(万盒);

答案:这三年中该地区每年平均销售盒饭96万盒。

初一数学 篇二

反思一

在这个学期的教学中,我欣喜地看到传统的接受式教学模式已被生动活泼的数学活动所取代。课堂活起来了,学生动起来了:敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲。下面,我结合一些具体案例,对本学期教学进行反思:

一: 交流让学生分享快乐和共享资源

学生已有的生活经验、活动经验以及原有的生活背景,是良好的课程资源。在“图形认识初步”这节课中,有一道题问一个正方体的盒子有几个不同的展开面,我想,如果直接给学生答案有11种基本图形,他们不但不明白为什么,也想象不出来这11种基本图形会是怎样形成的,于是我让同学们从家带来正方体图形,让学生在课堂上进行剪,彼此间的交流,实现了他们对立体图形关键特性的理解和认识,大家共同分享发现和成功的快乐,共享彼此的资源。

二:从生活出发的教学让学生感受到学习的快乐

由于在新教材中没有 “代数式”这节课,但在选学内容中,却有“代数的故事”为了让学生能简洁地明白代数式,我采用了由生活实际出发,只要让学生能明白代数式实质就是用数来代替字母,就完成了教学目的,在举例时,指出,“其实,代数式不仅在数学中有用,而且在现实生活中也大量存在。下面,我说一个事实,如“一本书p元,6p可以表示6本书价值多少钱”,谁能用代数式表示出来。学生们开始活跃起来,受到启发,每个学生都在生活中找实例,学生从这节课中都能深深感受到“人人学有用的数学”的新理念。

三:实践是学好数学的前提

在本学期习题中有关 “几何体的切截”的问题,我想没有实践学生是不会有立体感的于是,我就让学生带来土豆,让学生在课堂上进行实践,调动了学生的学习积极性 。

四:在本学期中我还采取了激励政策,我从家中拿来印泥,如果某个学生回答的问题比他本人的能力强,就奖励给他一个大奖,这样就大大提高了学生的学习数学的兴趣。不论什么档次的学生都有获奖的可能,使学生能抬抬脚就得到满足。 以上就是我的教学反思,在教学中还有很多不足,在以后的教学中要继续努力,迈上新的台阶。

反思二

作为一名学从教数学多年的教师,不断摸索和学习中开展教学工作是我的工作本色。对于本学期的初一数学教学工作,我有所收获,也遇到了许多问题。现将本学期教学工作反思如下:

1、对教材内容的反思

教材是如此安排,我们教师在教学过程中就应该遵循教材的编排原则,先易后难的教授学生。提到教授学生,目标新课标要求不是教学生知识,而应该说成教学生方法,教学生学习的方法,让他们带着问题去学习,去思考。教师应该总体了解整个初中数学中所学习的内容有哪些,以便有针对性地教学。

2、对教学理念的反思

教学过程中应该把学生放在首位,学生是主体,教会他们方法才是重要的。以画图为例,尺规作图法,不是教他们如画角平分线,而是教会他们用尺规作图的方法,学会了这种方法,无论是画角平分线,还是画中线,高线,或者找中点等等,提示他们用尺规作图法,学生便知道怎么做了。再如等式的性质,只要教会他们用等式的性质的方法,在解方程时他们就觉得简单了,就算是解不等式时遇到移项,提示一下,他们也能够想到借用等式的性质。

3、对教学对象的反思

在教学时,必须全面理解学生的基础与能力,低起点、多层次、高要求地施教,让学生一步一个脚印,扎扎实实学好基础知识,在学知识中提高能力。

我这里重点要讲的是后进生的话题。一个班几十名学生,每个人都有自己的个性和优点,他们中有先进、中间、后进的不同层次和状态。后进生变差的原因又很复杂,多是外在的、客观的,很难凭借他们自身的力量去解决。作为一名负责任的老师,要充分了解后进生,正确对待后进生,关心热爱后进生。千万不能置之不理,将其边缘化。

4、对教学反馈意见的反思

教师与学生的知识水平与接受能力往往存在很大反差,就学生而言,接受新知识需要一个过程,绝不能用教师的水平衡量学生的能力。潜心于提高自己教学水平的教师,往往向学生征询对自己教学的反馈意见,这是教师对其教学进行反思的一个重要的渠道。

若在课堂上设计了良好的教学情境,则整节课学生的学习积极性始终很高。课后我总结出以下两点体会:(1)抓住知识本质特征,设计一些诱发性的练习能诱导学生积极思维,刺激学生的好奇心。(2)问题的设计不应停留在简单的变式和肤浅的问答形式上,而应设计一些既能让学生动手触摸、又能动脑思考的问题,这样可使学生在“观察、实践、归纳、猜想和证明”的探究过程中,激发起他们对新知识的渴望。

教学的过程不仅是促进学生学习的过程,也是教师指导自己认识自我的过程。我坚信只要我继续努力,更新观念,深刻反思自己的教学行为,教学规范,就一定能够有所发展,有所进步!

初一数学 篇三

【教学内容】

第一章 1·4公式    1·5简易方程

【教学目标】

1、能运用公式解决比较简单的实际问题,并对简单公式的导出方法有一个初步的认识;

2、会解简单的方程及会利用简易方程解实际问题;

3、初步了解抽象概括的思维方法及特殊与一般的辩证关系。

【知识讲解】

一、本讲主要学习内容

1、公式;      2、方程中的有关概念;      3、解方程的依据。

下面讲述这几点的主要内容:

1、公式

用字母表示数的一类重要应用就是公式,在小学,我们已经学过许多公式。

如:(1)s=vt(路程公式), (速度公式), (时间公式)

(2)梯形面积公式:

(3)圆的面积公式:

(4)s圆环=

2、方程中的有关概念

(1)含有未知数的等式叫方程。

(2)使方程左右两边相等的未知数的值,叫方程的解。

(3)求方程的解的过程叫解方程。

3、解方程的依据

(1)方程两边都加上(或减去)同一个适当的数。

(2)方程两边都乘以(或除以)同一个适当的数。

二、典型例题

例1、图示是一个扇环,外圆半径是r,内圆半径是r,扇环的圆心角为n,写出扇环的面积公式,并计算当r=8cm,r=4cm,n=60°时的扇环面积( 取3.14,结果取一位小数)。

分析:扇环面积可以看作是环形面积的一部分,因为环形的圆心角是360°,所以圆心角是n的扇环面积是环形面积的 。

解:   当r=8cm  r=4cm  n=60°时,

答:扇环的面积约是25.1cm2。

说明:(1)公式计算时单位要一致,计算过程中一般不写单位,最后结果才写出单位,并用括号将单位括起来。

(2)上面所用的求扇环面积的方法体现了数学上的转化思想。一般在计算比较复杂的图形的面积时,都有采用此法,即将复杂的图形转化为几个简单图形的面积的和或差。

例2、一根钢管它的截面是一个圆环,圆环的外圆半径是r=10cm,内圆半径r=8cm,钢管长l=100cm。

求:(1)求此钢管的体积;

(2)若将此钢管内外都油漆起来,求油漆部分的面积。

分析:(1)由于圆柱体的体积是截面积×高,所以要求此圆柱的体积,首先应求出截面圆环的面积;圆环的面积转化为两圆面积之差。即s圆环=s外圆-s内圆;

(2)由于油漆部分包括四个方面,即内外两个侧面与两个圆环面。所以只要求出这四个面的面积之和就可以了。

解:(1)

(2)

答:(1)钢管的体积是 cm3;(2)油漆面积是3672 cm2。

说明:对于 ,若题中没有给出数值,结果可以保留 。

例3、一种树苗的高度用h表示,树苗生长的年数用a表示,测得有关数据如下表。

(树苗原高100cm)

年数a

1

2

3

4

……

高度h

100+5

100+10

100+15

100+20

……

写出用年数a表示高度h的公式并求当a=10时,n是多少?

分析:怎样用含a的代数式来表示h呢?在h这一栏中的数

是两部分的和,看“+”后的部分与a的关系:

因此得后一部分是5a,再加上100,得:h=5a+100

解:h=5a+100   当a=10时,h=5×10+100=150(cm)

例4、选择题:下列方程中,解是4的方程是(      )

a、2x+5=0     b、3x-8=0      c、 x+3=5       d、2(x-1)=8

答:c

说明:判别某数是不是方程的解只要将它代入方程,看等式是否成立即可。

例5、解方程

解:方程两边都加上 ,得:0.7x=

方程两都除以0.7,得:

注意:(1)上述解方程的过程也可写成:

解:0.7x= (两边都加上 )

(两边都除以0.7)

(2)为了防止发生差错,解方程时,必须严格按步进行。最后还可

以把求得的方程的解代入原方程,检验等式是否成立;

(3)方程两边都除以0.7,实际上就是乘以 ,一般在有小数或分

数的计算中,统一化为分数再计算要简便些。

例6、甲、乙两人去植树,甲种了全部树苗的 ,乙种了30棵。甲、乙两人共种了50棵,还剩有部分树苗,问原有树苗多少棵?

解:设原有树苗x棵,根据题意得: x+30=50

x =20(两边都减去30)

x =100(两边都乘以5)

答:原有树苗100棵。

注意:到方程解应用题时,必须仔细审题,在弄清题意的前提下,首先设未知数(一般可用x或y、z表示),再用代数式表示题中其至有关的数,并根据题 中的等量关系列出方程,最后是解方程,检验并作答。

例7、张明用a元钱购买国库券,n年期的年利率是i,那么到期时张明可得本息和多少元?并计算当a=100元,i=3%,n=5时的本息和。(本息和=本金+利息)

分析:在储蓄中,本金存入后不再变化,而利息随本金利率和存入时间的变化而变化。本题中n年期到期,则存期n=5年。

解:设本息和为y,则y=a+nia

当a=1000, i=3%,n=5时,y=1000+5×3%×1000=1000+150=1150(元)

答:本息和是1150元。

【一周一练】

1、填空题:

(1)若三角形的面积是s,底是a,那么它的高h=_____,当s= m,a=4m时,h=_____。

(2)若梯形两底之和是m,高是h,那么它的面积s=______,当m=6.8cm,h=1.5cm时,s=______。

(3)圆的直径是d,它的周长c=____,面积s=____,若d=2.68,那么c=____,s____。

( 取3.14)

(4)圆锥体的底面积是s,体积是v。它的高h=_____。若s=7cm2,v=105 cm3,那么h=_____。( 取3.14)

(5)已知 +3=4,那么代数式x2-1的值是_______。

(6)若代数式 与1的差为0,则x=______。

(7)一个数的2倍加上6得13,则此数是             。

(8)静水中船的速度是x千米/时,水流的速度是1.5千米/时,顺水航行t小时,行走的路程s1=          千米;逆水航行t小时,行走的路程s2=           千米。

(9)某商品标价为165元,若降价以九折出售。(即优惠10%),仍可获利10%(相对于进货价),则该商品的进货价是_______元。

2、选择题:

(1)下列方程中,解是x=3的方程是(     )

a、2x+1=0          b、  (x+1)=2          c、 x-2=0        d、3x-8=0

(2)已知x=2是方程m-3x= 的解,则m2- 的值是(     )

a、   &nb[www.1126888.com]sp;           b、                  c、            d、

(3)圆柱的高为x,底面直径等于高,则圆柱的体积是(     )

a、           b、               c、              d、

(4)下列各题中两个方程的解不同的是(     )

a、2x+5=10和10=2x+5

b、 和

c、 和x-1=10

d、 和0.1x=0

3、解方程:

(1)            (2)0.1x+ =            (3)

4、某种型号的汽车行驶时油箱里的剩油数与汽车行驶的路程之间的关系如下表:

行驶全程n(km)

每km耗油量q(l)

剩油量a(l)

1

0.04

20-0.04

2

0.08

20-0.08

3

0.12

20-0.12

4

0.16

20-0.16

……

……

……

写出用n表示a的公式,并计算当n=150时,a是多少?

5、一件工作,甲独做要16小时完成,乙独做要12小时完成。现先由甲独做6小时,余下的由乙单独做,还需几小时完成。

6、甲、乙两同学从同地出发,沿300米的环形跑道相背而行,甲的速度是6.5米/秒,25秒钟后两人第一次相遇,乙的速度是多少?

【一周一练答案】

1、填空题:

(1) , m;                       (2) ,5.1cm2;

(3) , ,8.42cm,5.64cm2;      (4)45cm;

(5)3;                                (6)10;

(7) ;                              (8)(x+1.5)t;(x-1.5)t;

(9)135。

2、选择题:

(1)c;         (2)d;         (3)a;         (4)d。

3、(1)x=3;    (2)x= ;      (3) 。

4、a=20-0.04a;    140升;

5、 ,x=7.5(时)

6、分析:两人在环形跑道上相背而行,第一次相遇,说明此时两人所行的路程之和是一个跑道长。

解:设乙的速度是x米/秒,则

6.5×25+x×25=300

∴ x=5.5

答:乙的速度是5.5米/秒。

上面内容就是众鼎号为您整理出来的3篇《初一数学》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:《过小孤山大孤山》(优秀4篇)

下一篇:返回列表