首页 > 教师教学 > 教案模板 >

九年级数学上册二次函数教案模板(优秀7篇)

众鼎号分享 132827

众鼎号 分享

作为一名教学工作者,常常需要准备教案,借助教案可以提高教学质量,收到预期的教学效果。那么教案应该怎么写才合适呢?以下是人见人爱的小编分享的7篇《九年级数学上册二次函数教案模板》,希望能够对困扰您的问题有一定的启迪作用。

九年级数学上册二次函数教案2021模板 篇一

一、素质教育目标

(一)知识教学点

使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30°、45°、60°角的正、余弦值,并能根据这些值说出对应的锐角度数。

(二)能力训练点

逐步培养学生观察、比较、分析、概括的思维能力。

(三)德育渗透点

渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点。

二、教学重点、难点

1.教学重点:使学生了解正弦、余弦概念。

2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念。

三、教学步骤

(一)明确目标

1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的。”

2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值——正弦和余弦。

(二)整体感知

只要知道三角形任一边长,其他两边就可知。

而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定。这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了。

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象。

(三)重点、难点的学习与目标完成过程

正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点。

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”。如图6-3:

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力。教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.

若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则

引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sina<1,0<cosa<1(∠a为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来。< p="">

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点。

例1 求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值。

学生练习1中1、2、3.

让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻。

例2 求下列各式的值:

为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1)sin45°+cos45; (2)sin30°•cos60°;

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神。还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小。”为查正余弦表作准备。

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值。知道任意锐角A的正、余弦值都在0~1之间,即

0<sina<1, p="" 0<cosa<1(∠a为锐角).

还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小。”

四、布置作业

教材习题14.1中A组3.

预习下一课内容。

五、板书设计

二次函数教案 篇二

教学目标:

1、经历描点法画函数图像的过程;

2、学会观察、归纳、概括函数图像的特征;

3、掌握 型二次函数图像的特征;

4、经历从特殊到一般的认识过程,学会合情推理。

教学重点:

型二次函数图像的描绘和图像特征的归纳

教学难点:

选择适当的自变量的值和相应的函数值来画函数图像,该过程较为复杂。

教学设计:

一、回顾知识

前面我们在学习正比例函数、一次函数和反比例函数时时如何进一步研究这些函数的? 先(用描点法画出函数的图像,再结合图像研究性质。)

引入:我们仿照前面研究函数的方法来研究二次函数,先从最特殊的形式即 入手。因此本节课要讨论二次函数 ( )的图像。

板书课题:二次函数 ( )图像

二、探索图像

1、 用描点法画出二次函数 和 图像

(1) 列表

引导学生观察上表,思考一下问题:

①无论x取何值,对于 来说,y的值有什么特征?对于 来说,又有什么特征?

②当x取 等互为相反数时,对应的y的值有什么特征?

(2) 描点(边描点,边总结点的位置特征,与上表中观察的结果联系起来).

(3) 连线,用平滑曲线按照x由小到大的顺序连接起来,从而分别得到 和 的图像。

2、 练习:在同一直角坐标系中画出二次函数 和 的图像。

学生画图像,教师巡视并辅导学困生。(利用实物投影仪进行讲评)

3、二次函数 ( )的图像

由上面的四个函数图像概括出:

(1) 二次函数的 图像形如物体抛射时所经过的路线,我们把它叫做抛物线,

(2) 这条抛物线关于y轴对称,y轴就是抛物线的对称轴。

(3) 对称轴与抛物线的交点叫做抛物线的顶点。注意:顶点不是与y轴的交点。

(4) 当 时,抛物线的开口向上,顶点是抛物线上的最低点,图像在x轴的上方(除顶点外);当 时,抛物线的开口向下,顶点是抛物线上的最高点图像在x轴的 下方(除顶点外)。

(最好是用几何画板演示,让学生加深理解与记忆)

三、课堂练习

观察二次函数 和 的图像

(1) 填空:

抛物线

顶点坐标

对称轴

位 置

开口方向

(2)在同一坐标系内,抛物线 和抛物线 的位置有什么关系?如果在同一个坐标系内画二次函数 和 的图像怎样画更简便?

(抛物线 与抛物线 关于x轴对称,只要画出 与 中的一条抛物线,另一条可利用关于x轴对称来画)

四、例题讲解

例题:已知二次函数 ( )的图像经过点(-2,-3)。

(1) 求a 的值,并写出这个二次函数的解析式。

(2) 说出这个二次函数图像的顶点坐标、对称轴、开口方向和图像的'位置。

练习:(1)课本第31页课内练习第2题。

(2) 已知抛物线y=ax2经过点a(-2,-8)。

(1)求此抛物线的函数解析式;

(2)判断点b(-1,- 4)是否在此抛物线上。

九年级数学上册二次函数教案2021模板 篇三

1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念。

2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解。

重点

通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题。

难点

一元二次方程及其二次项系数、一次项系数和常数项的识别。

活动1 复习旧知

1.什么是方程?你能举一个方程的例子吗?

2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式。

(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=1

3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念。

A.0    B.1    C.2    D.3

活动2 探究新知

根据题意列方程。

1.教材第2页 问题1.

提出问题:

(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?

(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?

(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程。

2.教材第2页 问题2.

提出问题:

(1)本题中有哪些量?由这些量可以得到什么?

(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?

(3)如果有x个队参赛,一共比赛多少场呢?

3.一个数比另一个数大3,且两个数之积为0,求这两个数。

提出问题:

本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?

4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?

活动3 归纳概念

提出问题:

(1)上述方程与一元一次方程有什么相同点和不同点?

(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?

(3)归纳一元二次方程的概念。

1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程。

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。

提出问题:

(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?

(2)为什么要限制a≠0,b,c可以为0吗?

(3)2x2-x+1=0的一次项系数是1吗?为什么?

3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).

活动4 例题与练习

例1 在下列方程中,属于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程。

例2 教材第3页 例题。

例3 以-2为根的一元二次方程是(  )

A.x2+2x-1=0 B.x2-x-2=0

C.x2+x+2=0 D.x2+x-2=0

总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等。

练习:

1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.

2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4页 练习第2题。

4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.

答案:1.a≠1;2.略;3.略;4.k=4.

活动5 课堂小结与作业布置

课堂小结

我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?

作业布置

教材第4页 习题21.1第1~7题。

数学《二次函数》优秀教案 篇四

一、教材分析

1.教材的地位和作用

(1)函数是初等数学中最基本的概念之一,贯穿于整个初等数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届佛山市中考试题中,二次函数都是必不可少的内容。

(2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。

(3)二次函数与一元二次方程、不等式等知识的联系,使学生能更好地将所学知识融会贯通。

2.课标要求:

①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。

②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。

③会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导)。

④会根据二次函数的性质解决简单的实际问题。

3.学情分析:

(1)初三学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。

(2)学生的分析、理解能力较学习新课时有明显提高。

(3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。

(4)学生能力差异较大,两极分化明显。

4.教学目标

◆认知目标

(1)掌握二次函数 y=图像与系数符号之间的关系。通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力。

◆能力目标

提高学生对知识的整合能力和分析能力。

◆ 情感目标

制作动画增加直观效果,激发学生兴趣,感受数学之美。在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会感受探索与创造,体验成功的喜悦。

5.教学重点与难点:

重点:(1)掌握二次函数y=图像与系数符号之间的关系。

(2) 各类形式的二次函数解析式的求解方法和思路。

(3)本节课主要目的,对历届中考题中的。二次函数题目进行类比分析,达到融会贯通的作用。

难点:(1)已知二次函数的解析式说出函数性质

(2)运用数形结合思想,选用恰当的数学关系式解决几何问题。

二、教学方法:

1、 运用多媒体进行辅助教学,既直观、生动地反映图形变换,增强教学的条理性和形象性,又丰富了课堂的内容,有利于突出重点、分散难点,更好地提高课堂效率。

2.将知识点分类,让学生通过这个框架结构很容易看出不同解析式表示的二次函数的内在联系,让学生形成一个清晰、系统、完整的知识网络。

3.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初三学生的求知心理和已有的认知水平开展教学.形成学生自动、生生助动、师生互动,教师着眼于引导,学生着眼于探索,侧重于学生能力的提高、思维的训练。同时考虑到学生的个体差异,在教学的各个环节中进行分层施教,让每一个学生都能获得知识,能力得到提高。

三、学法指导:

1.学法引导

“授人之鱼,不如授人之渔”在教学过程中,不但要传授学生基本知识,还要培育学生主动思考,亲自动手,自我发现等能力,增强学生的综合素质,从而达到教学终极目标。

2.学法分析:新课标明确提出要培养“可持续发展的学生”,因此教师有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主学习,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

3、设计理念:《课标》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要.”

4、设计思路:不把复习课简单地看作知识点的复习和习题的训练,而是通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。

四、教学过程:

1、教学环节设计:

根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.

本节课的教学设计环节:

◆创设情境,引入新知 :复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”。学生自主完成,不仅体现学生的自主学习意识,调动学生学习积极性,也能为课堂教学扫清障碍。为了更好地理解、掌握二次函数图像与系数之间的关系,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了6个由浅入深的题型,让每一个学生都能为下一步的探究做好准备。

◆自主探究,合作交流:本环节通过开放性题的设置,发散学生思维,学生对二次函数的性质作出全面分析。让学生在教师的引导下,独立思考,相互交流,培养学生自主探索,合作探究的能力。通过学生观察、思考、交流,经历发现过程,加深对重点知识的理解。

◆运用知识,体验成功:根据不同层次的学生,同时配有两个由低到高、层次不同的巩固性习题,体现渐进性原则,希望学生能将知识转化为技能。让每一个学生获得成功,感受成功的喜悦。

安排三个层次的练习。

(一)从定义出发的简单题目。

(二)典型例题分析,通过反馈使学生掌握重点内容。

(三)综合应用能力提高。

既培养学生运用知识的能力,又培养学生的创新意识。引导学生对学习内容进行梳理,将知识系统化,条理化,网络化,对在获取新知识中体现出来的数学思想、方法、策略进行反思,从而加深对知识的理解。并增强学生分析问题,运用知识的能力。

(四)方法与小结

由总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

2、作业设计:(见课件)

3、板书设计:(见课件)

五、评价分析:

本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。本节教学过程主要由创设情境,引入新知――合作交流;探究新知――运用知识,体验成功;知识深化――应用提高;归纳小结――形成结构等环节构成,环环相扣,紧密联系,体现了让学生成为行为主体即“动手实践、自主探索、合作交流“的《数学新课标》要求。本设计同时还注重发挥多媒体的辅助作用,使学生更好地理解数学知识;贯穿整个课堂教学的活动设计,让学生在活动、合作、开放、探究、交流中,愉悦地参与数学活动的数学教学。

初中数学二次函数教案 篇五

老师讲课认真听讲,不会的问题及时标记。在课堂上,做一个好学生,认真听讲,对于老师讲的问题及时记录,进行相应的标记,在下课的时候,及时询问老师,早日解决问题。

一定要课前预习一下知识点。在上课前或平时闲暇时间,一定要注意课下多多预习,预习比复习更加重要,真的很重要,关乎到课堂的思维能力的转变,多多看看,对自己的理解有帮助。

课上要学会学习,记笔记,也要记住老师讲的知识点。课堂上,自己要活跃一点,带给老师感觉,让老师对你有印象,便于日后学习高中数学,与老师探讨学习方法,记笔记,记住讲的重点。

多做一些比较普通而又常出的问题,来熟悉自己学的知识。在课下的时候,自己找出适合自己做的题,在做题中找出适合自己的题目,来进行做和学,总有一份题目适合自己做,便会更熟悉自己学的知识。

学会总结本节课的知识点,重点,做一个学会学习的人。及时总结所学的知识点,做一个学好习的人,让自己的心中有着大致的思路,能够解答出老师的,这便是可以了。

建立一个记错本,错误的题记录到本子上。将自己以前做过的错题,及时的整理出来,并且能够及时的回顾,便于日后在本子上学习到知识,能够复习到自己以前错过的题。

与老师经常交流学习方法,总有一个适合你。多多的与老师交流,给老师留下一个好印象,便于自己和老师更深入的交流学习,及时的询问一下高中数学的学习方法,总有一个适合自己。

数学《二次函数》优秀教案 篇六

一、 教学目标

1.知识目标:通过学生观察生活中的实际问题,让学生体会到二次函数在现实模型的刻画的意义,归纳出二次函数的概念,进而列出相应的函数关系式。

2.拓展目标:能在二次函数的学习过程中,归纳总结出求因变量的取值范围的方法,以及运用二次函数的概念的深入理解解决相关问题。

3.情感目标:(1)培养学生分析问题,解决问题的能力,让学生体会到生活中处处有数学的乐趣;

(2)充分调动学生的学习积极性、主动性。

二、 教学重、难点

1.重点:认识二次函数,归纳出二次函数的概念,

2.难点:遇到一些实际问题,如何通过题目信息列出相应的二次函数的关系式,以及确定因变量、自变量的取值范围。

教学设备:多媒体、投影仪

三、 复习旧知

1. 同学们,前面我们已经学习过一次函数和反比例函数的有关知识,谁能说出它们的分别的形式是什么吗?(让学生举手回答)

2. 老师总结:我们已经学习了一次函数的形式为y=kx+b。其中当k≠0,b=0时为一种特殊形式y=kx,这就是我们熟知的正比例函数。

反比例函数的一般形式为y=k﹙k≠0) x

(让学生进入数学课堂的氛围,从复习的形式带入函数的课堂,激发学生学习二次函数的欲望。)

四、 新课引入

同学们有没有看到过以下的情形,我们又是怎么想的呢”

1. PPT展示:如图所示,这是永州八景之一的愚溪桥,桥身横跨愚溪,面临溪水,桥下冬暖夏冻,常有游船停于桥下避晒纳凉,已知主桥为抛物线型,在正常的水位下测得主桥宽24m,最高离水面8m,以水平AB为x轴,AB的中点为原点,建立坐标系,求出次抛物线的表达式。

2. 同学们喜欢打篮球吗“你们知道在打篮球的过程中所形成的抛物线式什么曲线吗?你能计算出最高点的位置吗?

3. 已知圆的半径为r,求圆的面积的表达式?

同学们能建立适应题目的坐标系,并列出函数表达式吗?

同学们通过实际生活中的例子,能体会到生活中处处有数学,避免枯燥无味,培养学生分析问题的能力和概括能力。

同学们自己的演算本上依次列出关系式。y=πr2,y=2x2+3x+1

老师引导学生观察以上关系式,提出问题让学生思考回答,这些函数关系式的共同点。

总结:1.函数都是由自变量的二次式表示的;

2.都是由y=ax2+bx+c(a≠0)的形式

五、 板书

形式y=ax2+bx+c(a,b,c均为常数)的函数叫做二次函数。

??为二次函数 ????2叫做二次项

其中 ??为一次函数 ????叫做一次项最高点叫做定点,在坐标轴上可找出定点坐标

??为常数?叫做常数项

观察函数的表达式,应当注意的知识点为:

1.最高次数必须为2;2.a≠0; 3.轴对称图形。

六、 课堂演练(运用新知、深化理解)

例1、判断哪些是二次函数?

① y=y=x(2-x)③(x-4)-16 ??22

(让学生识别二次函数,强化二次函数的概念)

2例2、①y=4x2+1 ②y=(x-1)-2x③ y=5x2+4x+3

分别说出下列二次函数的a、b、c?

(让学生正确判断解析式中的a,b,c)

例3、已知二次函数有=(m+3)????-9是二次函数的解析式,求m的值?

2 ???9=2→综上m=3 ??+3≠02

在这里,一定要注意,m+3≠0(即a≠0)这个条件

活动:俗话说:“男女搭配,干活不累。”那么我们今天就一起进入学习的世界吧! 活动展示两段:所有的男生分成一组,所有的女生分成一组,比赛规则根据二次函

数的解析式y=3x+4x+2,选一女生说出一个x的取值,如男生回答,时间为两分钟;反过来,由任一个男生说出y的取值,女生回答,看谁说的最多?

(活跃课堂气氛,让学生体会到学习的乐趣)

同学们都表现的非常好,希望以后能再接再励。

(采用鼓励的方式,提高学生对学习的'信心)

现在我们一起做这道题,好吗?

21.已知二次函数的解析式为y=x+4x+3

问题1:当x=1时,y=? 当x=2时,y=?

问题2:当y=0时,x=? 当y=7时,x=?

解答:当x=1,y=2;当x=2,y=15

当y=0,x1=-1,x2=-3;当y=7,x=-2

2例1:已知二次函数的解析式为y=ax+bx+c(a≠0),其经过三点(0,1),(2,1),

(3,4),求二次函数的解析式?

如果已知二次函数的顶点坐标,对称轴呢?

22.已知二次函数的解析式为y=2(x-h)+k,顶点坐标为(2,-1),求二次函数的

解析式?

??=3 16??+4??+??=1

4??+2??+??=3

例2:已知二次函数的解析式为y=2(x-h)+k,顶点坐标为(2,1),对称轴为x=2,求二次函数的解析式?

2y=2(x-2)+1

例3:已知抛物线与x轴的交点的横坐标为2,-2,a=3,求二次函数的解析式?

3?4+2??+??=0 12?2??+??=0

归纳总结(板书)二次函数的解析式有三种基本形式:

21. 一般式:y=ax+bx+c(a≠0)

22. 顶点式:y=a(x-h)+k(a≠0)其中点(h,k)为顶点,对称轴为x=h

3. 交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是抛物线与x轴的交点的坐标轴。

求二次函数的解析式一般用待定系数法,但根据不同的条件设出恰当的解析式解出更方便。 22

七、 实战训练

例:抛物线与x轴交点为(-1.0),(2,0),且a=4,求解析式?

① 用待定系数法求解析式

② 用恰当的解析式

八、 创设情境

某种小商品的成本是10元/件,在试销阶段,当产品的售价为x元/件时,日销售

量为100x件。

写出用售价x(元/件)表示每日的销售利润y(元)的表达式

(情境问题是让同学们能运用所学知识解决实际问题,让数学走近生活)

数学《二次函数》优秀教案 篇七

一、教材分析

本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。在具体探究过程中,从特殊的例子出发,分别研究a>0和a<0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。

二、学情分析

本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。

三、教学目标

(一)知识与能力目标

1、 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;

2、 能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。

(二)过程与方法目标

通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。

(三)情感态度与价值观目标

1、 经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;

2、 在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。

四、教学重难点

1、重点

通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。

2、难点

二次函数y=ax2+bx+c(a≠0)的图像的性质。

五、教学策略与 设计说明

本节课主要渗透类比、化归数学思想。对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。

六、教学过程

教学环节(注明每个环节预设的时间)

(一)提出问题(约1分钟)

教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?

学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。

目的:由旧有的知识引出新内容,体现复习与求新的关系,暗示了探究新知的方法。

(二)探究新知

1、探索二次函数y=0.5x2-6x+21的函数图像(约2分钟)

教师活动:教师提出思考问题。这里教师适当引导能否将次一般式化成顶点式?然后结合顶点式确定其顶点和对称轴。

学生活动:讨论解决

目的:激发兴趣

2、配方求解顶点坐标和对称轴(约5分钟)

教师活动:教师板书配方过程:y=0.5x2-6x+21=0.5(x2-12x+42)

=0.5(x2-12x+36-36+42)

=0.5(x-6)2+3

教师还应强调这里的配方法比一元二次方程的配方稍复杂,注意其区别与联系。

学生活动:学生关注黑板上的讲解内容,注意自己容易出错的地方。

目的:即加深对本课知识的认知有增强了配方法的应用意识。

3、画出该二次函数图像(约5分钟)

教师活动:提出问题。这里要引导学生是否可以通过y=0.5x2的图像的平移来说明该函数图像。关注学生在连线时是否用平滑的曲线,对称性如何。

学生活动:学生通过列表、描点、连线结合二次函数图像的对称性完成作图。

目的:强化二次函数图像的画法。即确定开口方向、顶点坐标、对称轴结合图像的对称性完成图像。

4、探究y=-2x2-4x+1的函数图像特点(约3分钟)

教师活动:教师提出问题。找学生板 m.xiaozongshi.com 演抛物线的开口方向、顶点和对称轴内容,教师巡视,学生互相查找问题。这里教师要关注学生是否真正掌握了配方法的步骤及含义。

学生活动:学生独立完成。

目的:研究a<0时一个具体函数的图像和性质,体会研究二次函数图像的一般方法。

5、结合该二次函数图像小结y=ax2+bx+c(a≠0)的性质(约14分钟)

教师活动:教师将y=ax2+bx+c(a≠0)通过配方化成y=a(x-h)2+k(a≠0)的形式。确定函数顶点、对称轴和开口方向并着重讨论分析a>0和a<0时,y随x的变化情况、抛物线与y的交点以及函数的最值如何。

学生活动:仔细理解记忆一般式中的顶点坐标、对称轴和开口方向;理解y随x的变化情况。

目的:体会由特殊到一般的过程。体验、观察、分析二次函数图像和性质。

6、简单应用(约11分钟)

教师活动:教师板书:已知抛物线y=0.5x2-2x+1.5,求这条抛物线的开口方向、顶点坐标、对称轴图像和y轴的交点坐标并确定y随x的变化情况和最值。

教师巡视,个别指导。教师在这里可以用两种方法解决该问题:i)用配方法如例题所示;ii)我们可以先求出对称轴,然后将对称轴代入到原函数解析式求其函数值,此时对称轴数值和所求出的函数值即为顶点的横、纵坐标。

学生活动:学生先独立完成,约3分钟后讨论交流,最后形成结论。

目的:巩固新知

课堂小结(2分钟)

1、 本节课研究的内容是什么?研究的过程中你遇到了哪些知识上的问题?

2、 你对本节课有什么感想或疑惑?

布置作业(1分钟)

1、 教科书习题22.1第6,7两题;

2、 《课时练》本节内容。

板书设计

提出问题 画函数图像 学生板演练习

例题配方过程

到顶点式的配方过程 一般式相关知识点

教学反思

在教学中我采用了合作、体验、探究的教学方式。在我引导下,学生通过观察、归纳出二次函数y=ax2+bx+c的图像性质,体验知识的形成过程,力求体现“主体参与、自主探索、合作交流、指导引探”的教学理念。整个教学过程主要分为三部分:第一部分是知识回顾;第二部分是学习探究;第三部分是课堂练习。从当堂的反馈和第二天的作业情况来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

我认为优点主要包括:

1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3、板书字体端正,格式清晰明了,突出重点、难点。

4、我觉的精彩之处是求一般式的顶点坐标时的第二种方法,给学生减轻了一些负担,不一定非得配方或运用公式求顶点坐标。

所以我对于本节课基本上是满意的。但也有很多需要改进的地方主要表现在:

1、知识的生成过程体现的不够具体,有些急于求成。在学生活动中自己引导的较少,时间较短,讨论的不够积极;

2、一般式图像的性质自己总结的较多,学生发言较少,有些知识完全可以有学生提出并生成,这样的结论学生理解起来会更深刻;

3、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

4、合作学习的有效性不够。正所谓:“水本无波,相荡乃成涟漪;石本无火,相击而生灵光。”只有真正把自主、探究、合作的学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

重新去解读这节课的话我会注意以上一些问题,再多一些时间给学生,让他们去体验,探究而后形成自己的知识。

读书破万卷下笔如有神,以上就是众鼎号为大家整理的7篇《九年级数学上册二次函数教案模板》,希望可以对您的写作有一定的参考作用。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:端午节安全教案【精选10篇】

下一篇:返回列表