首页 > 教师教学 > 教学设计 >

周长优秀教学设计(优秀10篇)

众鼎号分享 164340

众鼎号 分享

作为一位兢兢业业的人民教师,时常要开展教学设计的准备工作,教学设计是把教学原理转化为教学材料和教学活动的计划。如何把教学设计做到重点突出呢?这次帅气的小编为您整理了10篇《周长优秀教学设计》,希望可以启发、帮助到大朋友、小朋友们。

《周长》公开课教学设计 篇一

一、教学目标

1、 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

2、 培养学生的观察、比较、分析、综合及动手操作能力;

3、 结合圆周率的学习,对学生进行爱国主义教育。

二、教学准备

一元硬币、圆形纸片等实物以及直尺,测量结果记录表

三、教学过程:

<一>、创设情境,引起猜想:

(一)激发兴趣

小黄狗和小灰狗比赛跑,小黄狗沿着正方形路线跑,小灰狗沿着圆形路线跑,结果小灰狗获胜。小黄狗看到小灰得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

(二)认识圆的周长

1、回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2、认识圆的周长:

那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币,互相指一指这些圆的周长。

(三)讨论正方形周长与其边长的关系

1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2、 怎样才能知道这个正方形的周长?说说你是怎么想的?

3、 那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总是边长的几倍?

(四)讨论圆周长的测量方法

1、讨论方法: 刚才我们已经解决了正方形周长的问题,而圆的周长呢?

如果我们用直尺直接测量圆的周长,你觉得可行吗?请同学们结合我们手里的圆想一想,有没有办法来测量它们的周长?

2、反馈:(基本情况)

(1)“滚动”——把实物圆沿直尺滚动一周;

(2)“缠绕”——用绸带缠绕实物圆一周并打开;

(3)初步明确运用各种方法进行测量时应该注意的问题。

3、小结各种测量方法:(板书)

化曲为直

4、创设冲突,体会测量的局限性

刚才大屏幕上小灰狗跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?如果不能那怎么办呢?

5、明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。 (板书课题)

(五)合理猜想,强化主体:

1、请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并回答

2、正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3、正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?(正方形的边长和圆的直径相等,直接观察可发现,圆周长小于直径的四倍,因为圆形套在正方形里;而且由于两点间线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

4、小结并继续设疑:

通过观察和想象,大家都已经意识到圆的周长肯定是直径的2~4倍之间,究竟是几倍呢你还能想出办法来找到这个准确的倍数吗

<二>、实际动手,发现规律:

(一)分组合作测算

1、明确要求:

圆的直径我们已经会测量了,接下来就请同学们选择合适的测量方法,确定好测量对象,实际测量出圆的周长、直径,并利用计算器帮助我们找出圆周长与直径之间的关系,填入表格里。

提一个小小的建议,为了更好的利用时间,提高效率,请你们在动手测算之前考虑好怎样合理的分配任务。

测量对象 圆的周长(厘米) 圆的直径(厘米) 周长与直径的关系

2、生利用学具动手操作,师巡视指导、收集信息。

3、集体反馈数据(选取3~4组实验结果,黑板板书展示)

(二)发现规律,初步认识圆周率

1、看了几组同学的测算结果,你有什么发现?

2、虽然倍数不大一样,但周长大多是直径的几倍?

板书:圆的周长总是直径的三倍多一些。

(三)介绍祖冲之,认识圆周率

1、这个倍数通常被人们叫做圆周率,用希腊字母π表示。

2、早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他叫什么吗?

3、这个倍数究竟是多少呢?我们来看一段资料。

(祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

4、理解误差

看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

5、解答开始的问题

现在你能准确的判断出小黄狗和小灰狗谁跑的路程长了吗

(四)总结圆周长的计算公式

1、 如果知道圆的直径,你能计算圆的周长吗?

板书:圆的周长 = 直径× 圆周率

C =πd

2、 如果知道圆的半径,又该怎样计算圆的周长呢

板书:C =2πr

追问:那也就是说,圆的周长总是半径的多少倍

<三>、巩固练习,形成能力

1、判断并说明理由:π = 3.14 ( )

2、选择正确的答案:

大圆的直径是1米,小圆的直径是1厘米。那么,下列说法正确是:()

a.大圆的圆周率大于小圆的圆周率;

b.大圆的圆周率小于小圆的圆周率;

c.大圆的圆周率等于小圆的圆周率。

3、实际问题:老师家里有一块圆形的桌布,直径为1米。为了美观,准备在桌布边缘镶上一圈花边。请问,老师至少需要准备多长的花边?

<四>、课外引申,拓展思维

如果小黄狗沿着大圆跑,小灰狗沿着两个小圆

绕8字跑,谁跑的路程近

《圆的周长》教学设计 篇二

【教学目标】

1、让学生知道什么是圆的周长。

2、理解并掌握圆周率的意义和近似值。

3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

4、通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

5、培养学生的观察、比较、分析、综合及动手操作能力。

【教学重点】

理解和掌握圆的周长的计算公式。

【教学难点】

对圆周率的认识。

【教学准备】

1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

2、教师准备图片。

【教学过程】

一、问题导入

同学们喜欢运动么?小明也是一个爱运动的孩子,他每天都会去公园绕花坛骑行几圈。同学们想知道小明骑行一圈有多远么?我们先来看一下花坛是什么形状的?(学生回答:圆形)对,是圆形。我们要想知道小明骑行一圈有多远,就必须知道圆的周长,这节课我们就来研究圆的周长。

二、探究新知

看到今天的学习内容,同学们都有哪些疑问呢?(学生回答:什么是圆的周长?如何测量圆的周长?圆的周长和什么有关?)

同学们提的问题可真棒,这些都是研究圆的周长要解决的问题,我们先来探讨一下什么是圆的周长。

请看大屏幕,这里有一个圆,那位同学能上台指一指它的周长呢?(学生指)同学们同意他的看法么?哪位同学能用自己的话定义一下圆的周长?(学生答,老师及时补充纠正,得出圆的周长的定义)。----围成圆的曲线的长叫圆的周长。请同学们把圆的周长的概念默记两遍吧。

请同学们拿出你手边的圆,同桌互相指一指它的周长吧。

三、合作探究

老师看到同学们做的都很棒。既然我们已经知道什么是圆的周长,那么该如何测量圆的周长呢?请同学们四人一小组,利用手边的学具,想办法测一测圆的周长吧!

好,时间到。老师发现这组同学的方法很好,请你们到前面展示一下吧。(学生展示)你的表达能力可真强呀,请回。(结合课件展示绕线法)请看大屏幕,用一根长线紧贴圆绕一周后,剪去多余部分,把线拉直,线的长就是圆的周长。我们把这种方法叫绕线法,可以化曲为直。

老师还发现这组同学的方法也很好,请你们也到前面展示一下吧。(学生展示)你的表达的真清楚呀,请回。(结合课件展示绕线法)请看大屏幕,先在圆上确定一点,然后在直尺上滚动一周,圆滚动一周的长就是圆的周长,我们把这种方法叫滚动法。

四、找出关联

同学们可真聪明,自己就能想办法测量圆的周长。是不是所有的圆都能用这两种方法测量呢?(学生回答:不能)请看这是什么?(学生回答:摩天轮)对,是摩天轮,摩天轮的周长能用绕线法和滚动法测量么?对,不能,因为摩天轮太大了。那么我们就需要研究出一个求圆周长的一般方法了。

我们都知道正方形的周长和边长有关,那么请同学们大胆猜一猜,圆的周长和什么有关?(学生回答:直径、半径)同学们猜的有没有道理呢?我们一起来看一下。看来半径越大,圆的周长也就越大。再看这张图,看来直径越大,圆的周长也越来越大。同学们猜得都有道理,下面我们就来找出周长和直径之间的关系吧,同学们有信心么?

五、合作解疑

请看大屏幕,(读要求),老师给同学们五分钟时间,请同学们四人一小组,自己动手测量,填一填这张表吧。

好,时间到,老师看到同学们计算的非常认真,合作的也很默契,下面老师请四位同学来帮我填一填这张表吧。(学生填)

好,四位同学填了四组数据,请同学们观察这四组数据中周长和直径的比值,你发现了什么?哦,你发现了周长总是直径的3倍多一些,你的观察可真是敏锐呀,凡是算出周长是直径3倍多的同学请举手。这么多呀,看来圆的周长和直径的比值是有规律的。由于我们在测量时存在误差,我们算出的比值也不完全相同。但实际上,圆的周长和直径的比值是一个固定不变的数,这个数叫圆周率,通常用字母∏表示。也就是说周长总是直径的∏倍。

请同学们跟老师读一读这个字母吧。同学们能用等式表示周长、直径和∏之间的关系么?(学生回答,老师板书)。

六、知识渗透

说的真好,那么∏究竟是一个什么样的数呢?这个问题我国古代数学家早就做了研究呢,我们一起看一看吧。(课件展示)我们前人刻苦研究的精神真是值得我们学习呀。看来∏是一个无限不循环小数,但我们在计算时通常保留两位小数,也就是∏≈3.14。

七、公式推导

既然“周长÷直径=∏”,那么周长等于什么?(学生回答,老师板书)如果用字母C表示圆的周长,用字母d表示直径,圆的周长该如何用公式表示?(学生答,板书:C=∏d)看来我们知道直径,就可以用公式C=∏d来求圆的周长。如果我们知道半径,能求圆的周长吗?应该用哪个公式来求?(学生答,板书:C=2∏r)回答的真好,你前面的知识学的真扎实。看来我们知道了半径也能求圆的周长。

请同学们一起读一读这两个公式吧。现在我们只要知道什么就可以求圆的周长了?(学生回答)对,老是重复。下面我们一起来算一算小明绕花坛一周有多远吧。

八、解决问题

1、请看第一问,请同学们想一想该如何解答。请问你用的那个公式?很好请坐。

2、请看第二问,请同学们思考后告诉老师解答方法。(学生回答)

这位同学思考问题可真细心呀,同学们在计算时也要养成细心的习惯,先看清楚单位是否统一。

3、我们再来看摩天轮,请同学们思考后在练习本上解答。这位同学算的最快了,你来说答案吧。你用的那个公式?同学们都算对了么?

三年级数学教案《周长》 篇三

教学目标

1、通过比一比、想一想、指一指等活动感知封闭图形一周的长度是它的周长,并通过独立思考、合作交流等形式给予学生探索求周长的策略。

2、经历数学学习的过程,并在过程中体验成功,增强学好数学的信心,并通过探索求周长的策略的过程培养学生的空间观念和创新意识。

3、通过操作活动,能够寻找解决问题的策略,并学会与他人合作。

重难点

理解周长的定义,掌握求图形周长的策略。

教学过程

一、故事引入,揭示新课

师:孩子们,喜欢听故事吗?

生:喜欢。

师:在一个农庄里住着一位王老伯,他种了许多的蔬菜,还养了一群可爱的小动物,可是,这群淘气的小动物经常跑到菜地里偷吃庄稼,看着辛辛苦苦种出来的庄稼被小动物们糟蹋了,王老伯非常着急。为了保护这些蔬菜,王老伯想了一个办法,他打算用篱笆将菜地围起来,怎么围呢?唐老鸭帮忙设计了两种方案,仔细观察一下,你认为哪种方案最合理呢?(第一种封闭,第二种没有围完,不封闭,学生交流后认识到第一种最好。)

师:经过同学们的认真分析,王老伯也选择了第一种方案。在菜地的一周围上了篱笆,保护了蔬菜。菜地一周的长度我们把它叫做菜地的周长,今天我们就来学习周长的认识(板书——周长的认识)

二、活动体验,探究新知

师:刚才我们认识了菜地的周长,现在你能找出下面图形的周长吗?谁来试一试。

1、(重点引导学生画出树叶的周长,指出国旗的周长、数学书、钟面的周长。)

师:不管从哪里开始,只要沿着图形的边线画满一周,这一周的长度就是树叶的周长。

2、描周长

师:刚才我们指出了图形的周长,你能用笔描出图形的周长吗?

请用红线描出下面图形的周长,看谁描的最漂亮。(老师巡视)

师:现在我们看看唐老鸭又是怎样把周长描下来的。(课件演示)

3、初步概括周长定义。

师:现在,如果让你用一句话概括一下,什么是周长,你觉得该怎么说?

生:图形一周的长度,就是它的周长(教师同时板书)。

4、完善周长概念。

师:米老鼠看到唐老鸭把图形的周长描得这样好,也不甘落后,找来了4个图形,我们一起看看:下面那些图形能找出他们的周长,哪些不能找出它们的周长?(课件出示)

师:像第二、第四这样没有围拢,有缺口的图形,我们叫做不封闭图形,它们没有周长。第一、第三这样首尾相连,围拢的图形叫做封闭图形,他们才有周长。

师:现在你觉得“图形一周的长度,就是它的周长”这句话完整吗?如果不完整,还应该加上什么词语才准确。

生:封闭图形一周的长度,叫做它的周长

(师适当板书封闭图形,完善周长概念,然后读一读,要求读出里面的重要词语)

三、实践交流、突破重难点

1、师:现在我们认识了周长,现在能不能利用周长帮王老伯算一算,到底要准备多长的篱笆才能把菜地围好呢?

(引导学生计算三角形的周长)

2、小组合作完成正方形、五角星、圆的周长。

师:在大家的帮助下,我们帮王老伯解决了难题,现在老师还有一个难题:下面3个图形的周长怎么计算呢?

四、回顾小结,鼓励发现

师:回顾一下,这节课你有什么收获?

师小结:今天我们学习了周长,其实周长在我们的生活中随处可见,希望大家能多把学到的知识用来解决生活中的问题,让数学知识更好的为我们的生活服务。

《圆的周长》教学设计 篇四

一、教学目标

(一)知识与技能

理解圆周长和圆周率的意义,理解并掌握圆周长的计算方法,并能解决简单的实际问题。

(二)过程与方法

经历猜测、验证、操作等学习活动,探究圆周率的近似值,在这个过程中发展学生的数学思维水平及动手操作能力。

(三)情感态度和价值观

通过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

二、教学重难点

教学重点:理解和掌握圆的周长的计算方法。

教学难点:圆周率的探究。

三、教学准备

多媒体课件。

四、教学过程

(一)创设情境,引发思考

1.情境导入,揭示课题。

教师:老师家的菜板有点开裂,你有好办法吗?(课件出示情境图。)

学生:给它加一个箍。

教师:在它的边缘箍上一圈铁皮是个好办法,那么需要多长的铁皮呢?

教师:求铁皮的长度,就是求圆的什么?

学生:求铁皮的长度,也就是求圆的周长。

教师:谁能用自己的话说一说,什么是圆的周长?(板书课题。)

学生:圆一周的长度叫圆的周长。

教师:圆的周长与我们之前学习过的图形的周长有什么区别?

学生:以前我们研究的图形都是由直线围成的,而圆是由曲线围成的。

2.合理猜想,确定方向。

教师:圆的周长与圆的什么有关?

学生:直径、半径。

教师:圆的周长是直径的几倍?

学生:……

教师:怎么验证你的猜测呢?

学生:量一量,算一算。

【设计意图】呈现生活情境,引导学生直观感悟什么是圆的周长。因势利导展开猜测,确定研究方向。

(二)设计方案,展开探究

1.探讨设计方案。

(1)如何化曲为直?

教师:圆是曲线图形,尺子是直的,怎么办?

学生:滚一滚,绕一绕……

(2)如何减少误差?

教师:测量结果可能不准确,有什么办法尽量准确一点呢?

学生1:多量几次,选出现次数量多的数据。

学生2:用计算器计算,提高正确率。

教师:除不尽怎么办?

学生1:用分数表示。

学生2:取近似数。

教师:一般保留两位小数,比较方便。

【设计意图】圆与学生以前学习的图形有本质的区别——它是曲线图形,如何化曲为直,学生根据生活经验或预习知道用滚或绕的方法可以解决度量的问题。但如何提高准确性,遇到除不尽怎么办,这些问题对老师而言可能不是问题,对于学生而言却是陌生的,教师对此必须有充分的预设。通过讨论统一认识,为下面的实验扫除障碍。

2.操作获取数据。

小组合作测量数据,计算圆的周长与直径的比值,结果保留两位小数。

物品名称

周长

直径

周长与直径的比值

(三)交流讨论,提升认识

1.交流质疑。

(1)小组汇报,教师直接将结果输入电脑。

【设计意图】在授课的多媒体课件中插入了控件,学生测量和计算的结果在播放状态就可以直接输入,既增加了数据的真实性,增强了授课的互动与趣味性,又便于开展讨论。

(2)质疑不同数据。

教师:为什么测量计算的结果不相同?

学生1:测量有误差,绳子绕的松紧程度不同。

学生2:尺子不够精确,不到一毫米只能估计。

教师:是不是尺子再精确一点,测量结果就准确无误?

教师:有没有其他的方法?

教师:有没有唯一的得数?

【设计意图】讨论是必须的,对于学生的困惑不能以书本、师道尊严压服,教师应让学生畅所欲言,只有理解测量的局限性,才更能理解圆周率的特殊性。

2.概括小结。

(1)圆周率的意义及读写。(课件出示内容。)

任意一个圆的周长与它的直径的比值是一个固定不变的数,我们把它叫做圆周率,用字母表示。它是一个无限不循环小数,≈3.1415926535……但在实际应用中常常只取它的近似值,例如≈3.14。

(2)概括周长计算公式。

如果用C表示圆的周长,就有C=d或C=2r。

(四)联系实际,解决问题

1.例题教学。

(1)出示教材第64页例1。

一辆自行车轮子的半径大约是33 cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1 km,骑车从家到学校,轮子大约转了多少圈?

(2)学生尝试解答。

(3)规范书写。

C=2r

2×3.14×33=207.24(cm)≈2(m)

1000÷2=500(圈)

答:这辆自行车轮子转1圈,大约可以走2 m。小明骑车从家到学校,轮子大约转了500圈。

2.巩固练习。

(1)求下面各圆的周长。

①2×3.14×3=18.84(cm);

②3.14×6=18.84(cm);

③2×3.14×5=31.4(cm)。

(2)解决问题。

①一个圆形喷水池的半径是5 m,它的周长是多少米?

2×3.14×5=31.4(米)

答:它的周长是31.4米。

②小红量得一个古代建筑中的大红圆柱的周长是3.77 m。这个圆柱的直径是多少米?(得数保留一位小数。)

3.77÷3.14≈1.2(米)

答:这个圆柱的直径大约是1.2米。

【设计意图】在练习中直接加入已知周长求直径的问题,是为了培养学生的逆向思维能力。在练习时可以追问学生:已知周长怎样求半径?防止学生形成思维定势。

(五)课堂小结,拓展延伸

1.这节课你有什么收获?说一说圆的周长与直径的关系。

2.介绍中国古代对圆周率的研究及伟大成就。

【设计意图】对圆周率的研究体现了中国古代数学的高度成就,是对学生进行爱国主义教育的绝佳机会,同时也要让学生感受到现代科技的日新月异,从小树立勇攀科学高峰的科学精神。

《周长》公开课教学设计 篇五

一、教学目标:

1、知识与技能。

(1)使学生理解周长含义,建立周长概念,能初步测量计算三角形、四边形等图形的周长;

(2)培养和提高学生的观察能力、动手能力、空间思维和发散思维能力。

2、过程与方法。

(1)优选活用多媒体课件及教具、学具,创设直观、愉悦的教学情境,逐步深化学生对周长的认识;

(2)通过“描一描、找一找、摸一摸、量一量”等操作实践环节,让学生在主动参与中培养仔细观察、独立思考和合作学习的习惯;

(3)通过“想、算、练”等实践训练环节,发展学生的计算能力、空间思维和发散思维能力。

3、情感态度和价值观。

(1)从孩子们感兴趣的情境入手,广泛发掘贴近学生生活的素材,为他们提供尽可能多的参与机会,使他们切实体会到数学就在身边,对数学产生亲切感;

(2)通过“小组合作测量树叶的周长和腰围”,培养孩子们实事求是、与人合作的精神和态度;

(3)通过“智力大闯关”活动,让孩子们体验思维和想象的魅力,享受成功的愉悦和探索的乐趣。

二、教学重点:

认识周长,建立初步的空间观念。

三、教学难点:

正确建立周长的概念。

四、教具:

多媒体课件、自制树叶、双面胶带等。

五、学具:

水彩笔、线绳、皮尺、直尺。

六、教学过程:

(一)、导入课题

同学们,知道今天老师给大家讲什么知识吗?(学生观察后发现信息,提出课题,教师板书。)在这节课上,你想学到什么知识?(教师把学生提出的学习目标简要板书。)

(二)、感受周长

什么是周长呢?我们先来感受一下吧。

1、出示镶边图。

发现了什么信息?阿姨是怎么围的呢?看动画。那什么是桌布的周长呢?(生说)

2、出示量树桩面图。

哎哟,这么好的一棵树被砍了,有什么感受?(生:可惜)以后我们可要保护好树木。小姑娘想知道这棵树有多大,得量一量,怎么量的呢?看动画。那什么是树桩面的周长呢?(生说)

3、教师了解学生对周长的理解。

现在知道什么是周长了吧? 抽生说一说。

其实,要真正认识周长,我们还得具体研究。

(三)、描一描,感受一周

不管是给桌布镶边,还是量树桩面,他们都是怎样围的?(教师引导学生明确是沿边线围一周。教师板书:围 一周)

生活中,很多图形也有这样的一周,我这里有一些,来看看吧。

1、认识图形。

2、抽生描。

你们能一笔沿边线描出图形的一周吗?请两位同学上台选择自己喜欢的图形,在黑板上描。

要求:台上同学描的时候记住,你是从哪一点开始的,又是到哪一点结束的。

台下同学可以选择一个图形,用手书空,与他们一起描。

汇报结果,同时抽一个学生说还可以从其他点开始描吗?

3、辨别一周。了解知识建构情况。

大家知道什么是一周了吧?看这一个图形,红色线条围的是它的一周吗?

逐一汇报,并说理由。重点讲两个小长方形拼成大长方形图。让学生明白沿大长方形边线围一周,才是它的一周。

4、集体动手描一周,强化“一周”。

出示课件,学生在书上用水彩笔描。

(四)、摸一摸,感受长度

生活中,很多物体的面也有这样的一周,你能找到这样的一周吗?并用手摸一摸,看谁找得最多?

1、学生活动。

2、汇报。 你找到什么面的一周?动手摸一摸。

3、有没有比桌面一周更长的一周?

有没有比桌面一周更短的一周?

同学们通过观察、比较,知道很多物体的面也有这样的一周,这一周也有长度,这一周的长度,在数学上,人们给它取了一个名字叫——周长。 教师板书、完善概念。(生读)

4、说物体面的周长。

围黑板面一周的长度,就是黑板面的周长。你还能说围什么面一周的长度,就是它的周长。

生自由说,再汇报。

5、比一比,周长是一样的吗?

(五)、量一量,再认识周长

大家知道周长的意思了,要知道周长有多长,可以用什么办法?(测量)

老师给每一组准备了长方形、圆、五角星三种图形,你能测量他们的周长吗?

你觉得太难了,就可以选择简单些;觉得太简单了,挑战一下难一点的。

1、 提出测量要求。

2、 学生汇报。 你是怎样求周长的?按图形抽生,寻求不同的方法。

总结,在测量的时候,我们可以根据图形灵活选择测量工具。

(六)、拓展,强化认识

围图形一周的长度,就是这个图形的周长,这两个图形周长一样吗?

1、出示课件,(展示方格纸中的长方形和台阶形)用手指图形的周长。

2、学生思考。

猜测——验证——结论

3、汇报。

今天,这节课就要结束了,看黑板,现在明白什么是周长了吧,那周长,又有什么用处呢?它与我们的生活联系可大了,让我们在图片与音乐的欣赏中结束这节课吧。

《圆的周长》教学设计 篇六

【教学目标】

1、让学生明白什么是圆的周长。

2、理解并掌握圆周率的好处和近似值。

3、初步理解和掌握圆的周长计算公式,能正确计算圆的周长。

4、培养和发展学生的空间观念,培养学生抽象概括潜力和解决简单的实际问题潜力。

5、透过了解祖冲之在圆周率方面所作的贡献,渗透爱国主义思想。

6、培养学生的观察、比较、分析、综合及动手操作潜力。

【教学重点】

理解和掌握圆的周长的计算公式。

【教学难点】

对圆周率的认识。

【教学准备】

1、学生准备直径为5厘米、6厘米、7厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

2、教师准备图片。

【教学过程】

一、激情导入

1、动物王国正在举行动物运动会可热闹了,想不想去看一看?

2、一只小山羊和一只梅花鹿分别在圆形和正方形跑道上赛跑,大家猜一猜最后谁跑的路程远?

二、探究新知

(一)复习正方形的周长,猜想圆的周长可能和什么有关系。

1、由比较两种跑道的长短,引出它们的周长你会算吗?(如果学生谈到角或线的形状,就顺势导:正方形是由4条这样的线段围成的,圆是由一条圆滑的曲线围成的。)

2、(生答正方形的周长)追问:你是怎样算的?(生答正方形的周长=边长×4师板书c=4a)那你们说说正方形的周长和它的边长有什么关系?(4倍,1/4)(师,正方形的周长总是它边长的4倍,这是一个固定不变的数。)

3、圆的周长能算吗?如果明白了计算的公式能不能算?看来很有必要研究研究圆的周长的计算方法,下面我们就一齐研究圆的周长。(板书课题:圆的周长)

4、猜想:你觉得圆的周长可能和什么有关系?

(二)测量验证

1、教师提问:你能不能想出一个好办法来测量它的周长呢?

①生1:把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。师生合作演示量教具的周长。

②用绳子在圆上绕一周,再测量出绳子的长短,得到这个圆的周长。

2、①学生动手测量,验证猜想。学生分组实验,并记下它们的周长、直径,填入书中的表格里。

②观察数据,比较发现。

提问:观察一下,你发现了什么呢?(圆的直径变,周长也变,而且直径越短,周长越短;直径越长,周长越长。圆的周长与它的直径有关系。)

3、比较数据,揭示关系

正方形的周长是边长的4倍,那么,圆的周长秘直径之间是不是也存在着固定的倍数关系呢?猜猜看,圆的周长可能是直径的几倍?

学生动手计算:把每个圆的周长除以它的直径的商填入书中表格的第三列。

提问:这些周长与直径存在几倍的关系,(3倍多一些),最后师生共同总结概括出,圆的周长总是直径的3倍多一些,板书:3倍多一些。到底是三倍多多少呢?引导学生看书。

(三)介绍圆周率

1、师:任意一个圆的周长都是它直径的三倍多一些,这是一个固定不变的数,我们把它叫做圆周率,用字母∏来表示,用手指写一写。

2、圆周率是怎样发现的,请同学们看课本小资料,讲述并对学生进行德育教育。

3、小结:早在1500年前,祖冲之把圆周率算到了3.1415926和3.1415927之间,比外国人早了整整一千年,这是中华民族对世界数学史的巨大贡献,这天,同学们自己动手也发现了这一规律,老师相信同学们当中将来也会有成为像祖冲之一样伟大的科学家,根据需要,我们一般保留两位小数。

圆的周长总是它直径的3倍多一点。刚才我们是怎样计算的?两个数相除又可说成是两数的比,所以这个结果就是圆周长与它直径的比值。我们把圆的周长和直径的比值叫做圆周率,用字母“∏”表示。这个比值是固定的,而我们此刻得到的结果有差异主要是测量工具及测量方法有误差造成的。那圆周率的数值到底是多少呢?说说你明白了什么?(强调∏≈3.14,在说的时候要注意是近似值,写和算的时候要按准确值计算,用等号。)

(四)推导公式

1、到此刻,你会计算圆的周长吗?怎样算?

2、如果用c表示圆的周长,表示d直径,字母公式怎样写?(板书:c=∏d)就告诉你直径,你能求圆的周长吗?圆的周长是它直径的∏倍,是一个固定不变的数。

3、明白半径,能求圆的周长吗?周长是它半径的多少倍?

三、运用公式解决问题

1、一张圆桌面的直径是0.95米,求它的周长是多少米?(得数保留两位小数)

2、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

3、钟面直径40厘米,钟面的周长是多少厘米?

4、钟面分针长10厘米,它旋转一周针尖走过多少厘米?

5、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

四、课堂小结

透过这节课的学习你想和大家说点什么?

这节课,同学们大胆猜想圆的周长可能和什么关系、有怎样的关系,然后进行科学的验证,发现了圆的周长的计算方法,你们正在走一条科学的研究之路,期望你们能坚持不懈的走下去。

《圆的周长》教学设计 篇七

一、设计思路

本节课的教学内容是六年级“圆的周长”,教学确立基础与发展并重的教学目标,着眼点不仅仅关注学生有没有理解圆周长的意义。能不能运用公式计算圆的周长,而是如何来激疑,把学生身边的问题数学化,并以“问题”为主线,通过“猜想——验证”“探索——发现”来展开学生探索知识的发生发展过程,促使学生主动探索,从而发现知识的一些规律和方法,并努力为学生提供解决实际问题的机会,在实际运用中培养学生的创新意识。

二、教学过程与设计意图

教学目标:

1、创设情景学生通过猜想、尝试、验证、掌握圆周率的近似值,理解和掌握圆周长公式,并能正确运用计算圆的周长和解答有关简单的实际问题。

2、结合教学内容进行爱国主义教育,激发学生民族自豪感。

3、培养学生大胆猜想、勤于思考、勇于探索的。优良品质。

教学重点:掌握理解圆的周长公式推导过程

教学过程:

A、创设情境·激疑——提出问题

(出示摩托车里程表)(1)师:这里为什么能反映摩托车行的路程呢?

(学生思考后师出示有计数器的跳绳作提示)

(2)师:你们跳过绳吗?你想到了什么?生答:和车轮滚动的圈数有关。

(3)师:你们知道滚动一圈的长度是什么吗?生答:圆的周长。

(4)师:用硬纸板表示车轮,请你摸摸它的周长(揭示课题)。

(5)用直尺测量圆的周长,你感到方便吗?能不能找到比较简便的方法?

设计意图:数学知识来源于生活,从学生熟悉的、感兴趣的事物入手,有利于学生主动探索知识,以往在教学圆周长的过程往往比较注重公式的运用,比如计算圆形水池的周长等等,看似和学生比较贴近,但实际有几个同学看见过圆形的水池,而且计算圆形的水池又有什么作用,这样所谓的实际问题是为了应用而应用,无法激起学生学习的欲望,因此,我设计这样一个情境,摩托车的里程表为什么能反映摩托车行的路程,并引导学生从跳绳的计数器上去思考,把学生身边的问题数学化,为学生提供解决实际问题的机会,使他们感受到所学的知识能运用于生活。

B、师生共同提出假设

(1)请学生回忆正方形周长和边长的关系(边长×4)。

(2)师:能不能求圆周长时也找到这样的倍数关系呢?

(3)师:测量的圆的什么比较方便呢?生答:半径、直径

(4)师:请学生先画几条长短不一的线段作直径画圆

(5)师:观察自己画的圆你发现了什么?

学生仔细观察分小小组讨论研究圆的周长和直径是否存在倍数关系

(6)师:你估计周长是直径的几倍?

学生猜想:生1:3倍左右,生2:2倍左右,生3:5倍左右

(7)师:你有办法验证吗?学生讨论

演示:用绳绕的方法验证(3倍多一点)

设计意图:学生对于关联知识的迁移是很有经验的,比如平行四边形、三角形、梯形面积的计算都是转化成已学过的图形来推导面积计算公式的,求正方形的周长可以用边长乘以4,圆的周长和直径或者半径有没有这样的关系呢?通过学生画大小不同的圆,让学生感到圆的周长和直径可能有一定的倍数关系,在学生的猜想后,通过绳绕的方法加以证明,使学生确信周长和直径存在着一定的倍数关系,到底是3倍多多少呢?是不是一个固定的数?需要通过比较精确的测量、计算才能证明。整个过程是让学生通过“猜想——验证”促使学生积极主动探索知识的。我想“猜想——验证”不仅激发了学生学习的兴趣,而且我认为运用这种数学思想去思考问题正是培养学生创新思想和创新能力的有效途径。

C、探索问题解决的方法·发现——构建新知

(1)师:你还有别的办法研究圆的周长和直径的关系吗?

(可以用绳绕滚动的办法分别测量一些圆的周长)

(2)学生在小小组内动手操作、测量进行验证

直径(厘米)周长(厘米)周长是直径的几倍

2 6.2 3倍多一点

3 9.1 3倍多一点

4 12.9 3倍多一点

(3)小结

a、圆的周长÷直径=3倍多一点经过科学家精密的测量,计算发现这个3倍多一点是一个固定数叫圆周率3.1415926……是一个无限不循环小数,我们在计算时通常取3.14,用字母л表示,(请学生写一写л)

b、结合圆周率进行爱国主义教育

师生共同推导计算圆的周长公式:(C=лd或C=2лr)

D、运用新知识解决数学问题

(1)学生尝试例题求圆的周长

(2)基本练习(略)

设计意图:通过实践、计算,确认圆的周长是直径的三倍多一些,在实践过程培养学生的合作、交流能力,使学生感受到小组合作形成的合力的作用。师生共同推导出求圆周长的计算公式,并通过一些基本题的练习使学生形成基本的技能。

E、评价体验

(1)师:这节课研究了什么?

生1:周长和直径的关系

生2:圆的周长=直径×圆周率,即C=лd或C=2лd

(2)师:(出示一棵古树图片)你能测量它的直径吗?

《圆的周长》教学设计 篇八

教学目的:

1、使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

2、培养学生的观察、比较、分析、综合及动手操作能力。

3、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

4、结合圆周率的学习,对学生进行爱国主义教育。

教学重点:

1、理解圆周率的意义。

2、推导并总结出圆的周长的计算公式并能够正确计算。

教学难点:

深入理解圆周率的意义。

教学过程:

一、复习准备:

(一)最近我们又认识了一个新的平面图形--圆,你对圆又有了哪些认识?

(二)创设情境:龟兔赛跑。

第一次龟兔赛跑,小白兔输了不服气,于是进行了第二次比赛,这回小白兔画了两条比赛路线,小白兔跑圆形路线,乌龟跑正方形路线,结果小白兔赢了,观众纷纷表示比赛不公平,你们知道为什么吗?

二、新授教学。

(一)定义。

1、小乌龟跑的路程就是正方形的什么?小白兔呢?

2、什么是圆的周长?请你摸一摸你手中圆的周长。

3、今天我们就来研究圆的周长。

(二)推导圆的周长公式。

1、学生讨论。

(1)正方形的周长和谁有关系?有什么关系?

(2)你认为圆的周长和谁有关系?

2、猜测。

看图后讨论:圆的周长大约是直径的几倍?为什么?

小结:通过观察大家都已经注意到了圆的周长肯定是直径的2-3倍,那到底是多少倍呢?你有什么好办法吗?

3、实践操作。

(1)目的:用不完全归纳法得出圆的周长约是直径的几倍。

(2)建议:为了更好的利用时间,提高效率,请你们在动手测量之前考虑好怎样分工更合理。

(3)填写表格。

单位:厘米

测量对象

圆的周长

圆的直径

周长与直径的比值

(4)汇报小结

看了几组不同的结果,虽然倍数不同,但周长大多数是直径的三倍多一些。比三倍多多少呢?

(三)认识圆周率、介绍祖冲之。

1、我们把圆的周长与直径的比值叫做圆周率,用希腊字母表示。

2、介绍祖冲之。

(四)总结圆的周长公式。

1、怎样求周的长?如果我用字母c代表圆的周长,d表示圆的直径,那圆的周长公式用字母怎样表示?

教师板书:C=d

2、圆的周长还可以怎样求?

教师板书:C=2r

3、圆的周长分别是直径与半径的几倍?

(五)课堂反馈。

你能够准确的判断出小乌龟和小白兔谁跑的远了吗?为什么?

三、巩固练习。

(一)判断。

1、=3.14()

2、计算圆的周长必须知道圆的直径。()

3、只要知道圆的半径或直径,就可以求圆的周长。()

(二)选择。

1、较大的圆的圆周率()较小的圆的圆周率。

a大于b小于c等于

2、半圆的周长()圆周长。

a大于b小于c等于

(三)实践操作。

请同学们以小组为单位,画一个周长是12.56厘米的圆,先讨论如何画,再操作。

四、课堂小结:

通过这堂课的学习,你有什么收获?你还有什么问题吗?

五、课后作业。

(一)求下面各圆的周长。

1、d=2米

2、d=1.5厘米3.d=4分米

(二)求下面各圆的周长.

1、r=6分米

2、r=1.5厘米

3、r=3米

六、板书设计。

圆的周长

C=dC=2r

单位:厘米

测量对象

圆的周长

圆的直径

周长与直径的比值

活动要求:

1、各个组成部分面积分配合理,布局合理。

2、要体现不同年龄阶段儿童需要.大致分为:1----4岁;5---8岁;9----12岁。

3、要有娱乐活动场所、休息场所、小路。

4、算出各个部分的面积。

《圆的周长》教学设计 篇九

【教学资料】

课本第5--7页例1、例2。完成相应的“做一做”题目和部分练习

【教学目标】

1、使学生理解圆周率的好处,理解和掌握圆的周长计算公式,并能解决简单的实际问题

2、培养学生操作、计算潜力,在学生操作、计算的过程中发现规律,培养学生抽象概括潜力。

3、培养学生创新思维潜力。

4、透过“圆的直径、周长的变化,圆周率不变”的探索,对学生渗透辩证唯物主义的启蒙教育。结合我古代数学家祖冲之的故事,对学生进行爱祖国、爱中华民族的教育。

【教学重点】

探索圆的周长公式

【教学难点】

对圆周率π的理解

【学具准备】

每四个学生一组

1、直径1厘米、2厘米、3厘米、4厘米的圆片各一个

2、直尺一把

3、细绳一条、两根长31.4厘米的细铁丝

4、实验表格

5、计算器 https://www.niubb.net/

【教具准备】

实物投影议、电脑

【教学过程】

一、设疑导入、培养创新意识

1、电脑演示:有甲、乙两学生争论。

甲说:“我脑袋大。”

乙说:“我脑袋比你在大。”

师:“如果你是裁判员应如何评判,两人才能都服气?”

2、学生四人小组讨论

请学生说一说自己的方法

甲生:“看谁的脑袋大。”

师:“如果看不出来怎样办?”

乙生:“把头放入水中,看谁的水面上升得高谁的头就大。”

师:“十分好!很有创意。”

丙生:“用绳绕头一周,测量绳的长度。”

师:“你的办法很有新意,我们的头近似球体,横切面近似于圆,你用绳子测的长度(线测方法),就是脑袋的横切面的周长,谁的周长大谁的头就大。这天我们共同学习“圆的周长”。师板书圆的周长的定义。

二、动手尝试操作,探求新知

1、动手尝试操作

(1)组织学生四人小组用绳测量直径是1厘米和2厘米的小圆的周长,并把测量的结果填入实验表格。

圆的周长c(厘米)

直径d(厘米)

周长÷直径(c÷d)

1

2

3

4

(2)组织学生讨论,除了用绳作测量工具外,还有什么办法能测出圆的周长。

讨论后得出:也能够把圆放在尺上滚动一周,来直接量出它的周长(滚动方法测量),把圆对折进行测量(折叠法)。

(3)用滚动的方法测出直径是3厘米、4厘米的圆的周长,并填好实验表格。

2、探索规律

(1)师将填好的实验表格在实物投影议上出示。

学生观察、分析、讨论得出:圆的周长和直径变化,比值不变,都是3倍多一点。

(2)思想教育

师:“任何圆的周长和直径的比值都是3倍多一点,是一个固定不变的数。我们把圆的周长和直径的比值叫做圆周率,圆周率用字母π(读pai)来表示。其实,约20xx年前,中国的古代数学著作《周髀算经》中就有:“周三径一”的说法,意思是说圆的周长是直径的3倍。约1500年前,我国有一位伟大的数学家、天文学家祖冲之,他计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值计算精确到6位小数的人。他的这一项伟大成就比国外数学家得出这样的精确数值的时间至少早一千年。π是个无限不循环小数,在计算过程中通常取3.14。

教师用绳的一端系一粉笔头,手拿另一端,绕动绳粉笔头在空中“画出一圈”。

师:“像这个圆你能用线测和滚动的方法量出它的周长吗?”

生:“不能”。

师:“这说明用线测和滚动的方法测量圆的周长是有局限的。那么,我们能不能找出圆周长的计算方法呢?”

(3)推导圆周长公式

师:“从公式看出,明白什么条件能够求出圆周长?”

生:“直径、半径。”

师:“如果圆的周长已知,怎样才能求出圆的半径或直径?”

三、圆周长公式的应用(尝试练习)

1、出示例1

学生尝试练习,找学生板演,师生共同讲评。

2、完成例1下面的“做一做”。

3、出示例2

学生尝试练习,找学生板演,师生共同讲评。

4、完成例2下面的“做一做”题目。

5、第8页练习二的1、2、3题。

四、再次尝试操作、第二次创新

1、求出人脑袋的横切面的半径

(1)利用桌面上现有的测量工具,透过计算,怎样求出你脑袋的半径?

(2)四人一组互相合作,动手测量,计算时可利用计算器。

(3)将运算的结果对全班公布,并说明理由。

2周长相等的正方形、圆,谁的面积大

(1)组织学生将长为31.4厘米的铁丝折成正方形和圆形,比一比谁的面积大?

师将折好的正方形和圆形在实物投影仪上显示。得出结论“圆的面积较大。”

(2)四人小组讨论:为什么饭店的桌面一般都设计成圆形的,而课桌设计成长方形的桌面。把讨论的结果讲给同学们听。

五、全课小结

1、这天我们学习了什么资料?

2、经过这节课的学习,你有什么收获?

3、师:“这天我们透过测量学习了圆的周长的求法,而且我们还明白了周长相等的正方形和圆,圆的面积较大。下节课我们将学习如何求圆的面积”。

六、作业

第9页练习二中的第9、10、11题。

板书设计

圆的周长

围成圆的曲线的长叫圆的周长

c=πdc=2πr

例1、一张圆桌面的直径是0.95米。这张圆桌面的周长是多少米?(得数保留两位小数)

(生板演)3.14×0.95

=2.983

=2.98(米)

答:这张圆桌面的周长约是2.98米。

例2、一个圆形水池,周长是37.68米。它的直径是多少米?

(生板演)解:设水池的直径是X米。

3.14×X=37.68

X=12

或:37.68÷3.14=12(米)

答:水池的直径是12米。

《圆的周长》教学设计 篇十

一、教材分析

“圆的周长”是人教版第十一册第四单元的教学内容。它是研究曲线图形的开始,也是今后学习圆面积及圆柱、圆锥等几何知识的基础。

教材从生活情境入手,先让学生思考自行车绕圆形花坛骑一圈大约有多少米,从而引出圆的周长的概念。接着引导学生思考怎样用不同的方法测量圆的周长,在实践中逐渐体会到有些圆不能测量出周长,怎么办?在此基础上,探索圆周率,并归纳总结计算公式、运用公式解题。为了有效内化计算公式,教材安排了相应的变式应用练习。

笔者以为,本教材有以下特点:一是层次分明、思路清晰、逻辑性较强;二是特别重视实验操作,突出直观教学,让学生在丰富的感性认识的基础上学习新知;三是注重培养学生的实验探究、归纳总结和发现规律的能力;四是通过圆周率的介绍,渗透了爱国主义教育。

二、学生分析

学生在三年级上册已经学习了周长的一般概念,熟练掌握了长(正)方形周长的计算方法。教材直观的情境导入,让学生理解圆周长的概念会很容易。学生已具备测量圆周长的基本技能,关键是圆的周长与什么有关,有什么样关系学生难以想到;或者容易受长方形、正方形周长公式影响,以为圆周长与直(半)径也一定成整数倍关系。这就需要教师适当引导、点拨,通过组织学生进行测量、计算、比较分析等探究活动,找出规律,总结特征。

三、学习目标

知识与技能:理解圆周率的意义,掌握圆的周长的计算公式。

过程与方法:通过测量、计算、猜测圆的周长和直径的关系,理解和掌握圆的周长的计算公式,并能正确地计算圆的周长。

情感态度价值观:通过介绍圆周率的史料,渗透爱国主义教育

其中教学的重点是让学生利用实验的手段,通过测量、计算、猜测圆的周长和直径的关系,理解并掌握圆的周长计算方法。

四、教学过程:

(一)复习铺垫

1、复习圆的认识。

2、出示长方形、正方形及几个不规则图形,让学生指一指它们的周长,明确其计算结果用的是长度单位。

以上两步同时进行,为理解圆周长的含义做好铺垫。

(二)教学新知

1、在情境中内化概念

(1)具体感知圆周长的概念。

出示情境图(小蚂蚁在正方形和圆形路口爬行),谁能说说小蚂蚁走哪条路近一些?

说明,小蚂蚁走过的路程实际上就是圆的的周长。

师生共同小结:围成圆的曲线的长是圆的周长。

(2)板书课题。

2、在探究中理解公式

(1)设疑激思

鼓励学生用不同的方式测量圆的周长。

用绳测和滚动测量法,测量自己的学具圆获圆形实物的周长。

学生测量了这些圆的周长以后,教师进一步提问:“要是有一个很大的圆,怎么测量它的周长呢?如学校的圆形花坛。”如果学生说用卷尺绕花坛一周进行测量,教师可以举出更多的圆的例子,如空中划出的圆形,引导学生寻求更为一般化的方法。

学生猜想圆的周长是否也有计算公式时?

激思:圆的周长与什么有关?与直径到底有什么关系?

(2)操作填表

同桌两人一组,正确测量学具圆(实物)的周长和直径。并逐一汇总填表。

再次操作:修正自己的测量结果。

(3)比较发现

分别引导学生竖向和横向看表格,比较找规律,计算圆周长和直径的比值,最后比较、分析、归纳出圆周长是直径的3倍多。

(4)归纳总结

介绍圆周率和祖冲之的故事。

推导公式:圆周率=圆周长/直径;推出圆周长=圆周率×直径,圆周长=2×圆周率×半径。

几下字母公式。

3、在运用中强化公式

教学例1独立解题。

练习:口头列式并讲算理,巩固公式。

(三)巩固练习(图略)

基本练习。判断题,直接求周长。

变式练习。在边长4分米的正方形内化画一个最大的圆,再求周长。

综合练习。求阴影部分的周长。

五教学反思

1课前预设的学生活动太少,数学上没有从活动中探究新知;

2课前对学生原有任职的单位太简单,没有具体到学生。

以上就是众鼎号为大家带来的10篇《周长优秀教学设计》,希望可以启发您的一些写作思路。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:《大自然的语言》教学设计(优秀6篇)

下一篇:返回列表