首页 > 学生学习 > 学习方法 >

高中数学知识点全总结优秀6篇

众鼎号分享 5623

众鼎号 分享

数学作为一门工具性的学科,是高中数学最基础的课程。相应的,数学课程的教学也是教育界一直在关注的重点内容。下面是小编辛苦为朋友们带来的6篇《高中数学知识点全总结》,亲的肯定与分享是对我们最大的鼓励。

高中数学知识点总结 篇一

1、求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2、求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的'单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

变化情况:

(4)检查f(x)的符号并由表格判断极值。

3、求函数的最大值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

4、解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5、导数在实际生活中的应用:

实际生活求解最大(小)值问题,通常都可转化为函数的最值。在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

高中数学知识点总结 篇二

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线所成的角:范围为(0°,90°)esp.空间向量法

两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;

(2)没有公共点——平行或异面

3、直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

高中复习数学方法 篇三

1.多动脑思考

2.强化自己学习训练

要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的定式训练是必要的。尽管复习时间紧张,但我们仍然要注意回归课本。要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。

3.养成良好的学习习惯

学习高三数学必须养成良好的审解题解题习惯,如仔细阅读题目,看清数字,规范解题格式,做到审题要慢解题要快,注重过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。

必背公式 篇四

1、一元二次方程的解

-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

根与系数的关系x1+x2=-b/ax1x2=c/a注:韦达定理

判别式b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有两个不相等的个实根

b2-4ac<0注:方程有共轭复数根

2、立体图形及平面图形的公式

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

抛物线标准方程y2=2pxy2=-2px2=2pyx2=-2py

直棱柱侧面积S=cxh斜棱柱侧面积S=c'xh

正棱锥侧面积S=1/2cxh'正棱台侧面积S=1/2(c+c')h'

圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pixr2

圆柱侧面积S=cxh=2pixh圆锥侧面积S=1/2xcxl=pixrxl

弧长公式l=axra是圆心角的弧度数r>0扇形面积公式s=1/2xlxr

锥体体积公式V=1/3xSxH圆锥体体积公式V=1/3xpixr2h

斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长

柱体体积公式V=sxh圆柱体V=pixr2h

3、图形周长、面积、体积公式

长方形的周长=(长+宽)×2

正方形的周长=边长×4

长方形的面积=长×宽

正方形的面积=边长×边长

三角形的面积

已知三角形底a,高h,则S=ah/2

已知三角形三边a,b,c,半周长p,则S=√[p(p-a)(p-b)(p-c)](海伦公式)(p=(a+b+c)/2)

和:(a+b+c)x(a+b-c)x1/4

已知三角形两边a,b,这两边夹角C,则S=absinC/2

设三角形三边分别为a、b、c,内切圆半径为r

则三角形面积=(a+b+c)r/2

设三角形三边分别为a、b、c,外接圆半径为r

则三角形面积=abc/4r

常用的三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

高中数学知识点全总结 篇五

一、直线与方程高考考试内容及考试要求:

考试内容:

1.直线的倾斜角和斜率;直线方程的点斜式和两点式;直线方程的一般式;

2.两条直线平行与垂直的条件;两条直线的交角;点到直线的距离;

考试要求:

1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程;

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系;

二、直线与方程

课标要求:

1.在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

3.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

4.会用代数的方法解决直线的有关问题,包括求两直线的交点,判断两条直线的位置关系,求两点间的距离、点到直线的距离以及两条平行线之间的距离等。

要点精讲:

1.直线的倾斜角:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角。特别地,当直线l与x轴平行或重合时,规定α= 0°.

倾斜角α的取值范围:0°≤α<180°. 当直线l与x轴垂直时, α= 90°.

2.直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k = tanα

(1)当直线l与x轴平行或重合时,α=0°,k = tan0°=0;

(2)当直线l与x轴垂直时,α= 90°,k 不存在。

由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在。

3.过两点p1(x1,y1),p2(x2,y2)(x1≠x2)的直线的斜率公式:

(若x1=x2,则直线p1p2的斜率不存在,此时直线的倾斜角为90°)。

4.两条直线的平行与垂直的判定

(1)若l1,l2均存在斜率且不重合:

①;②

注: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立。

(2)

若A1、A2、B1、B2都不为零。

注意:若A2或B2中含有字母,应注意讨论字母=0与0的情况。

两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组成的方程组的解的个数。

5.直线方程的五种形式

确定直线方程需要有两个互相独立的条件,确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。

6.直线的交点坐标与距离公式

(1)两直线的交点坐标

一般地,将两条直线的方程联立,得方程组

若方程组有唯一解,则两条直线相交,解即为交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行。

(2)两点间距离

两点P1(x1,y1),P2(x2,y2)间的距离公式

特别地:轴,则、轴,则

(3)点到直线的距离公式

点到直线的距离为:

(4)两平行线间的距离公式:

若,则:

注意点:x,y对应项系数应相等。

数学重点知识点及答题技巧总结 篇六

一、高考数学必考题型 之 函数与导数

考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

函数与导数单调性

若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。

若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。

二、高考数学必考题型 之 几何

公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内

公理2:过不在同一条直线上的三点,有且只有一个平面

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

公理4:平行于同一条直线的两条直线互相平行

定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补

判定定理:

如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行 “线面平行”

如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行“面面平行”

如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直“线面垂直”

如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直“面面垂直”

三、高考数学必考题型 之 不等式

对称性

传递性

加法单调性,即同向不等式可加性

乘法单调性

同向正值不等式可乘性

正值不等式可乘方

正值不等式可开方

倒数法则

四、高考数学必考题型 之 数列

(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。

(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。

(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题。

以上就是众鼎号为大家整理的6篇《高中数学知识点全总结》,希望对您有一些参考价值,更多范文样本、模板格式尽在众鼎号。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:each的详细用法【优秀6篇】

下一篇:2017电影票房排行榜前十名优秀3篇