首页 > 学生学习 > 学习总结 >

中考数学知识点总结(优秀5篇)

众鼎号分享 45868

众鼎号 分享

总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不妨让我们认真地完成总结吧。总结怎么写才是正确的呢?这次帅气的小编为您整理了5篇《中考数学知识点总结》,可以帮助到您,就是众鼎号小编最大的乐趣哦。

中考数学知识点总结 篇一

1、反比例函数的概念

一般地,函数(k是常数,k0)叫做反比例函数。反比例函数的解析式也可以写成的形式。自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像

反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质

反比例函数k的符号k>0k<0图像yO xyO x性质①x的取值范围是x0,

y的取值范围是y0;

②当k>0时,函数图像的两个分支分别

在第一、三象限。在每个象限内,y

随x的增大而减小。

①x的取值范围是x0,

y的取值范围是y0;

②当k<0时,函数图像的两个分支分别

在第二、四象限。在每个象限内,y

随x的增大而增大。

4、反比例函数解析式的确定

确定及诶是的方法仍是待定系数法。由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数的几何意义

设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则

(1)△OPA的面积。

(2)矩形OAPB的面积。这就是系数的几何意义。并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

矩形PCEF面积=,平行四边形PDEA面积=

中考数学知识点总结 篇二

第一章实数

考点一、实数的概念及分类(3分)

1、实数的分类

正有理数

有理数零有限小数和无限循环小数实数负有理数正无理数

无理数无限不循环小数负无理数

整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。

2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,32等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如

(3)有特定结构的数,如0.1010010001等;

(4)某些三角函数,如sin60o等

考点二、实数的倒数、相反数和绝对值(3分)

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

考点三、平方根、算数平方根和立方根(310分)

1、平方根

如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数a的平方根记做“。a”

π+8等;

2、算术平方根

正数a的正的平方根叫做a的算术平方根,记作“a”。正数和零的算术平方根都只有一个,零的算术平方根是零。a(a0)a0

a2a;注意a的双重非负性:

-a(a考点六、实数的运算(做题的基础,分值相当大)

1、加法交换律abba

2、加法结合律(ab)ca(bc)

3、乘法交换律abba

4、乘法结合律(ab)ca(bc)

5、乘法对加法的分配律a(bc)abac

6、实数混合运算时,对于运算顺序有什么规定?

实数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。

7、有理数除法运算法则就什么?

两有理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,商都是零。

8、什么叫有理数的乘方?幂?底数?指数?

相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。记作:an

9、有理数乘方运算的法则是什么?

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。

10、加括号和去括号时各项的符号的变化规律是什么?

去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。

平行线与相交线

知识要点

一.余角、补角、对顶角

1、余角:如果两个角的和是直角,那么称这两个角互为余角。

2、补角:如果两个角的和是平角,那么称这两个角互为补角。

3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角。

4、互为余角的有关性质:

①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,

则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠3=90°,则∠2=∠3.

5、互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°。

②同角或等角的补角相等。如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.

6、对顶角的性质:对顶角相等。

二.同位角、内错角、同旁内角的认识及平行线的性质

7、同一平面内两条直线的位置关系是:相交或平行。

8、“三线八角”的识别:

三线八角指的是两条直线被第三条直线所截而成的八个角。

正确认识这八个角要抓住:同位角位置相同,即“同旁”和“同规”;内错角要抓住“内部,两旁”;同旁内角要抓住“内部、同旁”。三.平行线的性质与判定

9、平行线的定义:在同一平面内,不相交的两条直线是平行线。

10、平行线的性质:两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。

11、过直线外一点有且只有一条直线和已知直线平行。

12、两条平行线之间的距离是指在一条直线上任意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离。

13、如果两条直线都与第三条直线平行,那么这两条直线互相平行。

14、平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等.那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。这三个条件都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角。

15、常见的几种两条直线平行的结论:

(1)两条平行线被第三条直线所截,一组同位角的角平分线平行;

(2)两条平行线被第三条直线所截,一组内错角的角平分线互相平行。

四.尺规作图

16,只用没有刻度的直尺和圆规的作图的方法称为尺规作图。用尺规可以作一条线段等于已知线段,也可以作一个角等于已知角。利用这两种两种基本作图可以作出两条线段的和或差,也可以作出两个角的和或差。

中考数学知识点总结 篇三

等式的性质

1、等式的性质:

①等式两边加同一个数(或式子)结果仍得等式;

②等式两边乘同一个数或除以一个不为零的数,结果仍得等式。

2、利用等式的性质解方程利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化。

3、应用时要注意把握两关:

①怎样变形;

②变形时只有做到步步有据,才能保证是正确的。

中考数学知识点总结 篇四

一、数与代数

Ⅰ、数与式

1、有理数的加法、乘法运算

同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。

同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。

2、合并同类项

合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。

3、去、添括号法则

去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号;

括号前面是负号,去、添括号都变号。

4、单项式运算

加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。

5、分式混合运算法则

分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

变号必须两处,结果要求最简。

6、平方差公式

两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。

7、完全平方公式

首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。

8、因式分解

一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根,

换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。

【注】一提(提公因式)二套(套公式)

9、二次三项式的因式分解

先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。

10、比和比例

两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积;

前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比;

两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比;

商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。

11、根式和无理式

表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制;

无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。

12、最简根 m.shubaoc.com 式的条件

最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

中考数学知识点总结 篇五

中考难点数学知识点

三角函数关系

倒数关系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

中考数学最易出错的知识点

数与式

易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。以及绝对值与数的分类。每年选择必考。

易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。填空题必考。

易错点4:求分式值为零时学生易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。五个基本数的计算:0指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。精确度,有效数字。这个上海还没有考过,知道就好!

易错点9:代入求值要使式子有意义。各种数式的计算方法要掌握,一定要注意计算顺序。

方程(组)与不等式(组)

易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0的情况,还要关注解方程与方程组的基本思想。(消元降次)主要陷阱是消除了一个带X公因式要回头检验!

易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

中考数学易出错的知识点

函数

易错点1:各个待定系数表示的的意义。

易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。

易错点3:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。

易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。

易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。

易错点6:与坐标轴交点坐标一定要会求。面积值的求解方法,距离之和的最小值的求解方法,距离之差值的求解方法。

易错点7:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。

易错点8:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。

以上内容就是众鼎号为您提供的5篇《中考数学知识点总结》,能够给予您一定的参考与启发,是众鼎号的价值所在。

AD位1

相关推荐

AD位2

热门图文

AD3

上一篇:生物必背知识点【7篇】

下一篇:返回列表